高中概率测试题及答案

合集下载

高中数学概率练习题及答案

高中数学概率练习题及答案

高中数学概率练习题及答案一、选择题1. 给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x?0”是不可能事件③“明天广州要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件,其中正确命题的个数是A.0 B. 1C. D.2. 某人在比赛中赢的概率为0.6,那么他输的概率是 A.0.4B. 0. C. 0.3 D. 0.163. 下列说法一定正确的是A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B.一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元D.随机事件发生的概率与试验次数无关4.某个班级内有40名学生,抽10名同学去参加某项活动,每个同学被抽到的概率是其中解释正确的是A.4个人中必有一个被抽到B. 每个人被抽到的可能性是C.由于抽到与不被抽到有两种情况,不被抽到的概率为1,411D.以上说话都不正确5.投掷两粒均匀的骰子,则出现两个5点的概率为A.1115B. C.D. 18612363211 B.C.D. 5486.从{a,b,c,d,e}的所有子集中任取一个,这个集合恰是集合{a,b,c}的子集的概率是 A.7.若A与B是互斥事件,其发生的概率分别为p1,p2,则A、B同时发生的概率为A.p1?p B. p1?pC. 1?p1?pD. 08.在等腰直角三角形ABC中,在斜边AB上任取一点D,则AD的长小于AC的长的概率为A.12 B. 1? C.D.222二、填空题9.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是方片的概率是1,取到41,则取到黑色牌的概率是_____________10.同时抛掷3枚硬币,恰好有两枚正面向上的概率为_______________11.10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为_________12.已知集合A?{|x2?y2?1},集合B?{|x?y?a?0},若A?B??的概率为1,则a的取值范围是______________三、解答题13.由数据1,2,3组成可重复数字的三位数,试求三位数中至多出现两个不同数字的概率.14.从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知P=0.7,P=0.1,P=0.05,求下列事件的概率事件D=“抽到的是一等品或二等品”事件E=“抽到的是二等品或三等品”15.从含有两件正品a,b和一件次品c的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率 .每次取出不放回;每次取出后放回.16.在某次数学考试中,甲、乙、丙三人及格的概率0.4、0.2、0.5,考试结束后,最容易出现几个人及格?17.设甲袋装有m个白球,n个黑球,乙袋装有m个黑球,n个白球,从甲、乙袋中各摸一球,设事件A:“两球相同”,事件B:“两球异色”,试比较P与P的大小.高一数学概率测试题及参考答案1.选2.选3.选4.选5.选6.选7.选8.选1310.答案:1711.答案:59.答案:12:答案:a?[?2,2]13.“三位数中至多出现两个不同数字”事件包含三位数中“恰好出现两个不同的数字”与“三个数全相同”两个互斥事件,故所求概率为2?3?337??727914.由题知A、B、C彼此互斥,且D=A+B,E=B+C P=P=P+P=0.7+0.1=0.8P=P=P+P=0.1+0.05=0.1515. 每次取出不放回的所有结果有每次取出后放回的所有结果:三人都及格的概率p1?0.4?0.2?0.5?0.04 三个人都不及格的概率p2?0.6?0.8?0.5?0.24恰有两人及格的概率p3?0.4?0.2?0.5?0.4?0.8?0.5?0.6?0.2?0.5?0.26 恰有1人及格的概率p4?1?0.04?0.24?0.26?0.46由此可知,最容易出现的是恰有1人及格的情况17.基本事件总数为2,“两球同色”可分为“两球皆白”或“两球皆黑”则P?mnmn2mn,“两球异色”可分为“一白一黑”或“一黑??222m2一白”则P?2?n2m2?n22?2,显然P≤P,当且仅当“m=n”时取等号第三章检测题班级学号一、选择题:1.下列说法正确的是.A.如果一事件发生的概率为十万分之一,说明此事件不可能发生 B.如果一事件不是不可能事件,说明此事件是必然事件 C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为.A.5个 B.8个 C.10个 D.15个.下列事件为确定事件的有.在一标准大气压下,20℃的纯水结冰平时的百分制考试中,小白的考试成绩为105分抛一枚硬币,落下后正面朝上边长为a,b的长方形面积为abA.1个B.2个 C.3个 D.4个4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是.A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球 C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是.A.2/5B、2/3C.2/7D.3/.从一副扑克牌中抽取一张牌,抽到牌“K”的概率是. A.1/5 B.1/C.1/1 D.2/27.同时掷两枚骰子,所得点数之和为5的概率为.A.1/B.1/C.1/D.1/128.在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是.A.5/B.4/C.2/D.1/29.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为.A.60%B.30% C.10%D.50%10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为.A.0.6B.0.5 C.0.35D.0.75二、填空题:11.对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为。

高考数学《概率》综合复习练习题(含答案)

高考数学《概率》综合复习练习题(含答案)

高考数学《概率》综合复习练习题(含答案)一、单选题1.如图,用随机模拟方法近似估计在边长为e (e 2.718≈为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间[]0,e 上的随机数1231000,,,x x x x 和1y ,2y ,3y ,…,1000y ,从而得到1000个点的坐标(),i i x y (1,2,3,1000i =),再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为( )A .0.70B .1.04C .1.26D .1.922.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为( ) A .125 B .85C .35D .253.从1,2,3,4,5中选出三个不同的数字组成一个三位数,则这个三位数是3的倍数的概率为( ) A .320B .310 C .25D .154.已知ABC 和ABD △都内接于同一个圆,ABC 是正三角形,ABD △是直角三角形,则在ABD △内任取一点,该点取自ABC 内的概率为( )A .14B .12C .34D 35.现代健康生活的理念,每天锻炼1小时,健康工作50年,幸福生活一辈子.我国每所学校都会采取一系列措施加强学生的体育运动.在某校举行的秋季运动会中,来自同一队的甲乙丙丁四位同学参加了4100⨯米接力赛,则甲乙互不接棒的概率为( ) A .16B .13C .12D .236.某校对高一新生进行体能测试(满分100分),高一(1)班有40名同学成绩恰在[]60,90内,绘成频率分布直方图(如图所示),从[)60,70中任抽2人的测试成绩,恰有一人的成绩在[)60,65内的概率是()A.715B.815C.23D.137.我国拥有包括民俗、医药、文学、音乐等国家级非物质文化遗产3000多项,下图为民俗非遗数进前10名省份排名,现从这10个省份中任取2个,则这2个省份民俗非遗数量相差不超过1个的概率为()A.215B.15C.415D.258.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.在各不相同的10个球中有6个红球和4个白球,不放回地依次摸出两个球,第一次摸出红球的条件下,第二次也摸出红球的概率为 A .110 B .13C .25D .5910.有5把外形一样的钥匙,其中3把能开锁,2把不能开锁,现准备通过一一试开将其区分出来,每次随机抽出一把进行试开,试开后不放回,则恰好试开3次就将能开锁的和不能开锁的钥匙区分出来的概率是( )A .35B .310 C .45D .2511.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为 A .27B .57C .29D .5912.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学,每人随机写下一个都小于1的正实数对(),x y ,再统计x 、y 两数能与1构成钝角三角形时的数对(),x y 的个数m ,最后再根据m 来估计π的值.假如统计结果是60m =,那么π≈( )A .165 B .65C .7825D .14245二、填空题13.已知某人同时抛掷了两枚质地均匀的正方体骰子,记“两枚骰子的点数之和是6的倍数”为事件A ,则()P A =______________.14.如图,连接△ABC 的各边中点得到一个新的111A B C △,又连接111A B C △的各边中点得到222A B C △,如此无限继续下去,得到一系列三角形:ABC ,111A B C △,222A B C △,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是______.15.某校有高一、高二、高三、三个年级,其人数之比为2:2:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,现从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为___________.16.一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位,如果他记得密码的最后一位是奇数,则他不超过两次就按对密码的概率是________.三、解答题17.在第29届“希望杯”全国数学邀请赛培训活动中,甲、乙两名学生的6次培训成绩(单位:分)如茎叶图所示.(1)若从甲、乙两名学生中选择一人参加第29届“希望杯”全国数学邀请赛,你会选择哪一位?说明理由;(2)从甲的6次成绩中随机抽取2次,试求抽到119分的概率.18.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,甲、乙都中靶的概率为0.72,求下列事件的概率; (1)乙中靶; (2)恰有一人中靶; (3)至少有一人中靶.19.从0,1,2,3,4,5,6,7,8,9这10个自然数中,任取3个不同的数. (1)这3个数组成一个三位数,求这个三位数能够被5整除的概率; (2)设X 为所取的3个数中奇数的个数,求X 的可能取值及相应的概率.20.在全国防控疫情阻击战关键阶段,校文艺团排练了4个演唱节目,2个舞蹈节目参加社区慰问演出.(结果用数字作答)(1)若从6个节目中选3个参加市演出汇报,求3个节目中恰有1个舞蹈节目的选法种数; (2)现对6个节目安排演出顺序,求4个演唱节目接在一起的概率;(3)现对6个节目安排演出顺序,求节目甲不在第一个且不在最后一个演出的概率.21.为了调查某地区高中女生的日均消费情况,研究人员随机抽取了该地区5000名高中女生作出调查,所得数据统计如下图所示.(1)求a 的值以及这5000名高中女生的日均消费的平均数(同一组数据用该组区间的中间值代替);(2)在样本中,现按照分层抽样的方法从该地区消费在[)15,20与[)20,25的高中女生中随机抽取9人,若再从9人中随机抽取3人,记这3人中消费在[)15,20的人数为X ,求X 的分布列以及数学期望.22.为了研究性格和血型的关系,随机抽查了100个人的血型和性格,其情况如下表:(1)根据上面的22⨯列联表,判断是否有95%的把握认为性格与血型有关?(2)在“内向型”性格的人中,用分层抽样的方法抽取5人.若从5人中抽取3人进一步分析性格和血型的关系,求恰好抽到两名“O型或A型”人的概率.附表:其中22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++23.某科研机构为了研究喝酒与糖尿病是否有关,对该市30名成年男性进行了问卷调查,并得到了如下列联表,规定“”平均每天喝100mL以上的”为常喝.已知在所有的30人中随机抽取1人,患糖尿病的概率为4 .(1)请将上表补充完整,并判断是否有99.5%的把握认为糖尿病与喝酒有关?请说明理由;(2)已知常喝酒且有糖尿病的6人中恰有两名老年人,其余为中年人,现从常喝酒且有糖尿病的这6人中随机抽取2人,求恰好抽到一名老年人和一名中年人的概率.参考公式及数据:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.24.A,B,C三个班共有180名学生,为调查他们的上网情况,通过分层抽样获得了部分学生一周的上网时长,数据如下表(单位:小时):(Ⅰ)试估计B班的学生人数;(Ⅱ)从这180名学生中任选1名学生,估计这名学生一周上网时长超过15小时的概率; (Ⅲ)从A班抽出的6名学生中随机选取2人,从C班抽出的7名学生中随机选取1人,求这3人中恰有2人一周上网时长超过15小时的概率。

数学必修3第三章概率测试题(附答案)

数学必修3第三章概率测试题(附答案)

高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( ). A .241 B .61C .83D .121 2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ).A .31B .π2C .21D .32 3.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103B .51C .101D .121 5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .12519 6.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51 B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61 B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b .则a +b 能被3整除的概率为 .三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.参考答案一、选择题 1.D解析:1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是121. 2.A解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使cos x 的值介于0到21之间,需使-2π≤x ≤-3π或3π≤x ≤2π,两区间长度之和为3π,由几何概型知cos x 的值介于0到21之间的概率为π3π=31.故选A.3.D解析:从5个数中选出3个数的选法种数有10种,列举出各种情形后可发现,和等于6的两个数有1和5,2和4两种情况,故选出的3个数中任何两个数的和不等于6的选法有(10-3×2)种,故所求概率为104=52. 4.A解析:从五个球中任取两个共有10种情形,而取出的小球标注的数字之和为3或6的只有3种情况:即1+2=3,2+4=6,1+5=6,,故取出的小球标注的数字之和为3或6的概率为103. 5.D解析:由于一个三位数,各位数字之和等于9,9是一个奇数,因此这三个数必然是“三个奇数”或“一个奇数两个偶数”.又由于每位数字从1,2,3,4,5中抽取,且允许重复,因此,三个奇数的情况有两种:(1)由1,3,5组成的三位数,共有6种;(2)由三个3组成的三位数,共有1种.一个奇数两个偶数有两种:(1)由1,4,4组成的三位数,共有3种;(2)由3,2,4组成的三位数,共有6种;(3)由5,2,2组成的三位数,共有3种.再将以上各种情况组成的三位数的个数加起来,得到各位数字之和等于9的三位数,共有19种.又知从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数共有53=125种.因此,所求概率为12519. 6.D解析:所求概率为224π1π⨯⨯ =161. 7.B解析:区域Ω为区间[-2,3],子区域A 为区间(1,3],而两个区间的长度分别为5,2. 8.A解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比. 9.B解析:A ,B 为互斥事件,故采用概率的加法公式P (A +B )=P (A )+(B )=61+61=31. 二、填空题 10.61. 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于10分钟,只有当他打开收音机的时间正好处于13∶50至14∶00之间才有可能,相应的概率是6010=61. 11.31.解析:基本事件有A ,B ;A ,C ;B ,C 共3个,A 未被照看的事件是B ,C ,所以A未被照看的概率为31.12.32. 解析:A ,B 为互斥事件,故采用概率的加法公式得P (A +B )=31,1-P (A +B )=32.13.32. 解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2]. 14.34. 解析:从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P =43. 15.13.解析:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P (A )=13.三、解答题16.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A ,B ,C ,D ,E ,则(1)P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52. 所以,射中10环或9环的概率为0.52.(2)P (A ∪B ∪C ∪D )= P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87. 所以,至少射中7环的概率为0.87.(3)P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29. 所以,射中环数小于8环的概率为0.29.17.解:这是一个几何概型问题.设甲、乙两艘船 到达码头的时刻分别为x 与y ,A 为“两船都不需要等待 码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要 等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲 早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构 成集合A ={(x ,y )| y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 对应图中阴影部分,全部结果构成集合Ω为边长是24的正方形. 由几何概型定义,所求概率为P (A )=的面积的面积ΩA =22224212-24211-24⨯⨯+)()(=5765.506=0.879 34.18.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即n =36.出现6点的情况有(1,5),(5,1),(2,4),(4,2),(3,3).∴m 1=5, ∴概率为P 1=n m 1=365. 出现7点的情况有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3).23 22∴m 2=6, ∴概率为P 2=n m 2=366=61. 出现8点的情况有(2,6),(6,2),(3,5),(5,3),(4,4). ∴m 3=5, ∴概率为P 3=n m 3=365. 19.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,b ),(b ,a 1),(b ,a 2)。

高中数学概率论测试题

高中数学概率论测试题

高中数学概率论测试题在高中数学的学习中,概率论是一个充满趣味和挑战的领域。

它不仅能帮助我们理解生活中的各种随机现象,还能培养我们的逻辑思维和数学应用能力。

接下来,让我们一起通过一些测试题来深入探索概率论的奇妙世界。

一、选择题1、从装有 2 个红球和 2 个黑球的口袋内任取 2 个球,那么互斥而不对立的两个事件是()A 至少有一个黑球与都是黑球B 至少有一个黑球与至少有一个红球C 恰有一个黑球与恰有两个黑球D 至少有一个黑球与都是红球答案:C解析:A 选项中,“至少有一个黑球”包含“都是黑球”,不是互斥事件;B 选项中,“至少有一个黑球”和“至少有一个红球”都包含“一个黑球一个红球”的情况,不是互斥事件;C 选项中,“恰有一个黑球”和“恰有两个黑球”不能同时发生,是互斥事件,且不是对立事件;D 选项中,“至少有一个黑球”与“都是红球”不能同时发生,是互斥事件,且是对立事件。

2、已知随机变量 X 服从正态分布 N(3,1),且P(2≤X≤4) = 06826,则 P(X > 4) =()A 01588B 01587C 01586D 01585答案:B解析:因为随机变量 X 服从正态分布 N(3,1),所以图象关于 x = 3对称。

P(2≤X≤4) = 06826,所以 P(X > 4) = 05 05×06826 = 01587 。

3、甲、乙两人独立地解同一问题,甲解决这个问题的概率是 p1,乙解决这个问题的概率是 p2,那么恰好有 1 人解决这个问题的概率是()A p1p2B p1(1 p2) + p2(1 p1)C 1 p1p2D 1 (1 p1)(1 p2)答案:B解析:恰好有1 人解决这个问题,分两种情况:甲解决,乙没解决,概率为 p1(1 p2);乙解决,甲没解决,概率为 p2(1 p1)。

所以恰好有 1 人解决这个问题的概率是 p1(1 p2) + p2(1 p1) 。

二、填空题1、从 1,2,3,4,5 这 5 个数字中,随机抽取 3 个数字组成一个三位数,其中奇数的个数为_____。

《概率》数学测试题及答案

《概率》数学测试题及答案

《概率》数学测试题及答案《概率》数学测试题及答案1.从装有2个红球和2个白球的口袋中任取2个球,那么互斥而不对立的两个大事是()A.至少有一个白球和全是白球B.至少有一个白球和至少有一个红球C.恰有一个白球和恰有2个白球D.至少有一个白球和全是红球2.从甲,乙,丙三人中任选两名代表,甲被选中的的概率是()A.B.C.D.13.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是()A.B.C.D.4.在两个袋内,分别写着装有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中各任取一张卡片,则两数之和等于5的概率为()A.B.C.D.5.袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为()A.B.C.D.非以上答案6.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A.B.C.D.7.甲、乙两人进行围棋竞赛,竞赛实行五局三胜制,无论哪一方先胜三局则竞赛结束,假定甲每局竞赛获胜的概率均为,则甲以3∶1的比分获胜的概率为()A.B.C.D.8.袋中有5个球,3个新球,2个旧球,每次取一个,无放回抽取2次,则第2次抽到新球的概率是()A.B.C.D.9.某校高三年级进行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采纳抽签的方式确定他们的演讲挨次,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()A.B.C.D.10.袋里装有大小相同的黑、白两色的手套,黑色手套15只,白色手套10只.现从中随机地取出两只手套,假如两只是同色手套则甲获胜,两只手套颜色不同则乙获胜. 试问:甲、乙获胜的机会是()A.一样多B.甲多C.乙多D.不确定的11.在5件不同的产品中有2件不合格的产品,现再另外取n件不同的合格品,并在这n+5件产品中随机地抽取4件,要求2件不合格产品都不被抽到的概率大于0.6,则n的最小值是.12.甲用一枚硬币掷2次,登记国徽面(记为正面)朝上的次数为n. ,请填写下表:正面对上次数n21概率P(n)13.在集合内任取1个元素,能使代数式的概率是.14.20名运动员中有两名种子选手,现将运动员平均分为两组,种子选手分在同一组的概率是.15.在大小相同的6个球中,4个红球,若从中任意选取2个,则所选的2个球至少有一个红球的概率是.16.从1,2,3,…,9这9个数字中任取2个数字:(1)2个数字都是奇数的概率为;(2)2个数字之和为偶数的概率为.17.有红,黄,白三种颜色,并各标有字母A,B,C,D,E的卡片15张,今随机一次取出4张,求4张卡片标号不同,颜色齐全的概率.18.从5双不同的鞋中任意取出4只,求下列大事的概率:(1)所取的`4只鞋中恰好有2只是成双的;(2)所取的4只鞋中至少有2只是成双的.19.在10枝铅笔中,有8枝正品和2枝次品,从中不放回地任取2枝,至少取到1枝次品的概率是多少?20.10根签中有3根彩签,若甲先抽一签,然后由乙再抽一签,求下列大事的概率:(1)甲中彩;(2)甲、乙都中彩;(3)乙中彩21.设一元二次方程,依据下列条件分别求解(1)若A=1,B,C是一枚骰子先后掷两次消失的点数,求方程有实数根的概率;(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非负实数根的概率.参考答案:1.A;2.C;3.A;4.B;5.C;6.D;7.A;8.D;9.B; 10.A; 11. 14; 12. ;13. ; 14. ; 15. ; 16. ;;17. 解:基本领件总数为,而符合题意的取法数,;18. 解:基本领件总数是=210(1)恰有两只成双的取法是=120∶所取的4只鞋中恰好有2只是成双的概率为(2)大事“4只鞋中至少有2只是成双”包含的大事是“恰有2只成双”和“4只恰成两双”,恰有两只成双的取法是=120,四只恰成两双的取法是=10∶所取的4只鞋中至少有2只是成双的概率为19. (直接法):至少取到1枝次品包括:A=“第一次取到次品,其次次取到正品”;B=“第一次取到正品,其次次取到次品”;C=“第一、二次均取到次品”三种互斥大事,所以所求大事的概率为P(A)+P(B)+P(C)==.20. 解:设A={甲中彩} B={乙中彩} C={甲、乙都中彩} 则C=AB(1)P(A)=;(2)P(C)=P(AB)=(2)21. 解.(1)当A=1时变为方程有实数解得明显若时; 1种若时; 2种若时; 4种若时; 6种若时; 6种故有19种,方程有实数根的概率是.B=-A,C=A-3,且方程有实数根,得,得而方程有两个正数根的条件是:即,故方程有两个正数根的概率是而方程至少有一个非负实数根的对立大事是方程有两个正数根故所求的概率为.。

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

高二数学概率综合试题

高二数学概率综合试题

高二数学概率综合试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.(Ⅰ)求从区中应分别抽取的工厂个数;(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由分层抽样的含义即可得总共有54个工厂,所以抽取的6个工厂占总数的,所以每个区域的工厂的个数即可求出.(Ⅱ)因为6个被抽到的工厂中,A区有3个工厂,B区有2个,C区有1个.从中抽取两个工厂共有15种情况,一一列举出来.通过数2个工厂中都没来自区的共有3种情况,所以符合2个工厂中至少有1个来自区的共有12种,即可求得结论.试题解析:解:(Ⅰ)由题可知,每个个体被抽取到得概率为;设三个区被抽到的工厂个数为,则所以,故三个区被抽到的工厂个数分别为(Ⅱ)设区抽到的工厂为,区抽到的工厂为,区抽到的工厂为则从6间工厂抽取2个工厂,基本事件有:,,,,,,,,,,,,,共15种情况;2个都没来自区的基本事件有,,共3种情况设事件“至少一个工厂来自区”为事件,则事件为“2个都没来自区”所以所以,至少有一个工厂来自区的概率为【考点】1.分层抽样的思想.2.概率的计算中含至少通常考虑从对立面出发.3.甲乙两名学生通过某种听力测试的概率分别为,两人同时参加测试,其中有且只有一人通过的概率为()A.B.C.D.【答案】C【解析】依题意求其中有且只有一人通过的概率分为两种情况①甲通过乙没通过的概率为.②甲没通过乙通过的概率为.故有且只有一人通过的概率为.故选C.计算概率把握两个基本定理.【考点】1.概率的含义.2.分类的思想.4.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】(1)(2)选择方案甲进行抽奖时,累计得分的数学期望最大【解析】解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”,,这两人的累计得分的概率为. 6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为由已知:,,,他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12分【考点】独立事件的概率以及期望点评:主要是考查了独立事件的概率以及期望值的运用,属于中档题。

(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。

专题09 概率(专题测试)--解析版

专题09 概率(专题测试)--解析版

专题09 概率(专题测试) 【基础题】 1.(2021·全国高一单元测试)从数字1,2,3,4中任取三个不同的数字,则所抽取的三个数字之和能被6整除的概率为( ) A .12 B .15 C .14 D .25【答案】C【分析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从数字1,2,3,4中任取三个不同的数字,方法有:123,124,134,234++++++++共4种, 其中所抽取的三个数字之和能被6整除的有:1236++=共1种,故所求概率为14. 故选:C2.(2021·全国高三专题练习(文))在新冠疫情的冲击下,全球经济受到重创,右图是各国公布的2020年第二季度国内生产值(GDP )同比增长率,现从这5个国家中任取2个国家,则这2个国家中第二季度GDP 同比增长率至少有1个低于15%-的概率为( )A .310B .12C .35D .710 【答案】D【分析】利用列举法求解即可【详解】令中国、澳大利亚、印度、英国、美国的2020年第二季度国内生产值(GDP )同比增长率分别为A ,B ,C ,D ,E ,其中C ,D 都低于15%-,则从这5个国家中任取2个国家有:AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共10种,其中至少有1个低于15%-有AC ,AD ,BC ,BD ,CD ,CE ,DE 共7种,所以所求概率为710.故选:D.3.(2020·广西玉林市·北流市实验中学高二期中(理))从1,2,3,4,5这五个数中任取两个不同的数,则这两个数都是奇数的概率是( )A .0.1B .0.2C .0.3D .0.6【答案】C【分析】根据题中条件,列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求概率.【详解】从1,2,3,4,5这五个数中任取两个数,包含的基本事件有:()1,2,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5,共10个;则这两个数都是奇数包含的基本事件有:()1,3,()1,5,()3,5,共3个;所以这两个数都是奇数的概率是310P =.故选:C. 4.(2021·全国高一课时练习)把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( )A .23B .13C .35D .14【答案】B【分析】根据列举法,列举出总的基本事件,以及满足条件的基本事件,基本事件个数之比即为所求概率.【详解】分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为()12,3,4,()12,4,3,()3,12,4,()4,12,3,()3,4,12,()4,3,12,有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为()1,23,4,()4,23,1,()23,1,4,()23,4,1,()1,4,23,()4,1,23,有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为()1,2,34,()2,1,34,()34,1,2,()34,2,1,()1,34,2,()2,34,1,有6种分法;共有18种分法,则2,3连号的概率为61183P ==.故选:B . 【点睛】本题主要考查求古典概型的概率,属于基础题型.5.(2021·浙江高一单元测试)从一批产品中随机抽取3件产品进行质量检测,记“3件产品都是次品”为事件A ,“3件产品都不是次品”为事件B ,“3件产品不都是次品”为事件C ,则下列说法正确的是( ) A .任意两个事件均互斥B .任意两个事件均不互斥C .事件A 与事件C 对立D .事件A 与事件B 对立【答案】C【分析】根据互斥事件和对立事件的概念可得选项.【详解】由题意知:事件C 包括三种情况,一是有两个次品一个正品,二是有一个次品两个正品,三是三件都是正品,没有次品.由此知: A 与C 是互斥事件,并且是对立事件; B 与C 是包含关系,不是互斥事件,不是对立事件;A 与B 是互斥事件,但不对立事件.故选:C.【点睛】本题考查互斥事件、对立事件的概念和辨析,属于基础题.6.(2021·浙江高一单元测试)设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件【答案】B【分析】由题意先求P (A )+P (B ),然后检验P (A )+P (B )是否与P (A ∪B )相等,从而可判断是否满足互斥关系【详解】因为P (A )+P (B )=1185315+==P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选:B 【点睛】此题考查了互斥事件的概率公式的简单应用,属于基础题7.(2020·全国高一单元测试)对于总数N 的一批零件,抽取一个容量为30的样本.若每个零件被抽到的可能性均为25%,则N =( )A .120B .150C .200D .240 【答案】A【分析】根据每个个体被抽到的概率及样本容量,即可求得总体个数.【详解】∵对于总数为N 的一批零件,抽取一个容量为30的样本,每个零件被抽到的可能性均为25%, ∴3025%N=,解得120N =.故选:A. 【点睛】本题考查了样本容量与抽样概率的关系,属于基础题.8.(2021·全国高一课时练习)若A ,B 为对立事件,则下列式子中成立的是( )A .()()1P A PB +< B .()()1P A P B +>C .()()0P A P B +=D .()()1P A P B +=【答案】D【分析】根据事件的对立关系,结合概率的加法公式即可求解.【详解】若事件A 与事件B 是对立事件,则A B 为必然事件,再由概率的加法公式得()()1P A P B +=.故选:D.【点睛】此题考查对立事件的概率关系,关键在于弄清对立事件的特点及性质.9.(2020·全国高一课时练习)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20, 0.30, 0.10.则此射手在一次射击中不够8环的概率为A .0.30B .0.40C .0.60D .0.90【答案】B【分析】先求出此射手在一次射击中大于等于8环的概率,即可求出结果.【详解】记“此射手在一次射击中大于等于8环”为事件A ,由题意可得()0.200.300.100.60P A =++=,所以,此射手在一次射击中不够8环的概率为()10.40P P A =-=.故选B【点睛】本题主要考查对立事件,熟记对立事件的性质即可,属于基础题型.10.(多选题)(2020·全国高一)中国篮球职业联赛(CBA )中,某男篮球运动员在最近几次参加的比赛中的得分情况如下表:记该运动员在一次投篮中,投中两分球为事件A ,投中三分球为事件B ,没投中为事件C ,用频率估计概率的方法,得到的下述结论中,正确的是( )A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C += 【答案】ABC【分析】求出各事件的概率,并结合对立事件的概率公式可判断出各选项的正误.【详解】由题意可知,()550.55100P A ==,()180.18100P B ==, 事件A B +与事件C 为对立事件,且事件A 、B 、C 互斥,()()()()110.27P C P A B P A P B ∴=-+=--=,()()()0.45P B C P B P C +=+=.故选:ABC.【点睛】本题考查事件的概率,涉及互斥事件和对立事件概率公式的应用,考查计算能力,属于基础题. 11.(2021·浙江高一单元测试)某校参加夏令营的同学有3名男同学,,A B C 和3名女同学,,X Y Z ,其所属年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母写出这个试验的样本空间;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件M 的样本点,并求事件M 发生的概率.【答案】(1)答案见解析;(2)答案见解析;25. 【分析】(1)根据样本空间的概念写出即可;(2)利用列举法写出样本点,然后根据古典概型的概率公式求出概率即可得.【详解】(1)这个试验的样本空间为: {}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,,,,,,,,,,,A B A C A X A Y A Z B C B X B Y B Z C X C Y C Z X Y X Z Y Z . (2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为;{},A Y ,{},A Z ,{},B X ,{},B Z ,{},C X ,{},C Y 共6种,因此事件M 发生的概率()62155P M ==. 【点睛】本题考查了样本空间的概念,考查了用列举法求古典概型的概率,属于基础题.12.(2021·全国高一课时练习)5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:(1)甲中奖的概率()P A ; (2)甲、乙都中奖的概率()P B ;(3)只有乙中奖的概率(C)P ; (4)乙中奖的概率()P D .【答案】(1)25;(2)110;(3)310;(4)25 【分析】(1)写出所有的基本事件,找出甲中奖的基本事件有8种,所以可求甲中奖的概率为25; (2)写出所有的基本事件,找出甲、乙都中奖的基本事件,然后可得概率;(3)写出所有的基本事件,找出只有乙中奖的基本事件,然后可得概率;(4)写出所有的基本事件,找出乙中奖的基本事件,然后可得概率.【详解】将5张奖券编号为1,2,3,4,5,其中4,5为中奖奖券,用(,)x y 表示甲抽到号码x ,乙抽到号码y ,则所有可能的结果为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4), (3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种.(1)甲中奖包含8个基本事件:(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4), 82()205P A ∴==. (2)甲、乙都中奖包含2个基本事件:(4,5),(5,4), 21()2010P B ∴==. (3)只有乙中奖包含6个基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5), ∴63()2010P C ==. (4)乙中奖包含8个基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),(4,5),(5,4), ∴82()205P D ==. 【点睛】本题主要考查古典概率的求解,列出基本事件空间和各类事件所包含的基本事件是求解的关键,注意抽取方式的不同对结果的影响,侧重考查数学运算的核心素养.【提升题】13.(2021·全国高一单元测试)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为( ).A .112B .16C .14D .13【答案】B【分析】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,列举所有比赛的情况,利用古典概型的概率公式计算即可得出结果.【详解】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,所有比赛的情况::11()a b ,、22(,)a b 、33(,)a b ,齐王获胜三局;11()a b ,、23(,)a b 、32(,)a b ,齐王获胜两局;12(,)a b 、21(,)a b 、33(,)a b ,齐王获胜两局;12(,)a b 、23(,)a b 、31(,)a b ,齐王获胜两局;13(,)a b 、21(,)a b 、32(,)a b ,田忌获胜两局;13(,)a b 、22(,)a b 、31(,)a b ,齐王获胜两局,共6种情况,则田忌胜1种情况,故概率为16P =,故选:B 【点睛】本题考查了古典概型的概率计算问题,考查了理解辨析和数学运算能力,属于中档题目. 14.(2021·全国高一课时练习)抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,则一次试验中,事件A 或事件B 至少有一个发生的概率为( ) A .23 B .13 C .12 D .56【答案】A【分析】由古典概型概率公式分别计算出事件A 和事件B 发生的概率,又通过列举可得事件A 和事件B 为互斥事件,进而得出事件A 或事件B 至少有一个发生的概率即为事件A 和事件B 的概率之和.【详解】事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,∴P (A )2163==,P (B )2163==, 又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A 和事件B 为互斥事件, 则一次试验中,事件A 或事件B 至少有一个发生的概率为P (A ∪B )=P (A )+P (B )112333=+=, 故选:A .【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.15.(2021·浙江高一单元测试)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,则甲壳上所有阴阳数之和__________;若从五个阳数中随机抽取三个数,则能使得这三个数之和等于15概率是__________.【答案】45 15【分析】由洛书上所有数相加即得和,用列举法列出从五个阳数中随机抽取三个数的所有基本事件,求和后知和为15的基本事件的个数,从而可得概率.【详解】甲壳上所有阴阳数之和为12945++=(或15345⨯=),五个阳数是1,3,5,7,9,任取3个数所得基本事件有:135,137,139,157,159,179,357,359,379,579共10个,其中和为15的有159,357共2个,所求概率为21105P ==.故答案为:45;15. 【点睛】本题考查数学文化,考查古典概型,用列举法是解决古典概型的常用方法.通过中国古代数学文化激发学生的学习兴趣,激发学生求知欲和创新意识,拓展学生的思维,培养学生的爱国情怀. 16.(2021·全国高一单元测试)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.【答案】(1)49;(2)604729. 【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)根据对立事件的概率公式计算可得;【详解】(1)设i A 表示事件:一个试验组中,服用A 有效的小鼠有i 只,0i =,1,2,i B 表示事件“一个试验组中,服用B 有效的小鼠有i 只“,0i =,1,2, 依题意有:1124()2339P A =⨯⨯=,2224()339P A =⨯=.0111()224P B =⨯=, 1111()2222P B =⨯⨯=,所求概率为:010212()()()P P B A P B A P B A =++14141444949299=⨯+⨯+⨯= (2)依题意这3个试验组中至少有一个甲类组的对立事件为这3个试验组中没有一个甲类组的.所以概率34604119729P ⎛⎫=--= ⎪⎝⎭; 【点睛】本题考查相互独立事件的概率公式的应用,以及对立事件的概率计算,属于中档题.【拓展题】(选用)17.(2021·全国高一单元测试)某社区举办《“环保我参与”有奖问答比赛》活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响. (1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.【答案】(1)乙:38;丙:23;(2)2132 . 【分析】(1)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A 、B 、C ,则()34P A =,且有1()?()121()()4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩,由此能求出乙、丙两人各自回答对这道题的概率. (2)首先计算出0个家庭回答正确这道题的概率与1个家庭回答正确这道题的概率,再根据对立事件的概率公式计算可得;【详解】(1)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A 、B 、C ,则()34P A =,且有1()?()121()()4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩, 即1[1()][1()]121()()4P A P C P B P C ⎧--=⎪⎪⎨⎪=⎪⎩,解得()38P B =, ()23P C =. (2)有0个家庭回答正确的概率为()()()()0151548396P P ABC P A P B P C ===⨯⨯= 有1个家庭回答正确的概率为 ()()()()()()()()()()1P P ABC ABC ABC P A P B P C P A P B P C P A P B P C =++=++351131152748348348324=⨯⨯+⨯⨯+⨯⨯= 所以不少于2个家庭回答正确这道题的概率为01572111962432P P P =--=--= 【点睛】本题主要考查独立重复试验的概率乘法公式,互斥事件和对立事件,体现了分类讨论的数学思想,求出甲、乙、丙三人各自答对这道题的概率,是解题的关键,属于中档题.18.(2021·全国高一单元测试)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm (即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm ),数据统计如下:0.07 0.24 0.39 0.54 0.61 0.66 0.73 0.82 0.82 0.820.87 0.91 0.95 0.98 0.98 1.02 1.02 1.08 1.14 1.201.20 1.26 1.29 1.31 1.37 1.40 1.44 1.58 1.62 1.68(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的80%分位数;(2)有A ,B 两个水池,两水池之间有10个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼.(ⅰ)将其中汞的含量最低的2条鱼分别放入A 水池和B 水池中,若这2条鱼的游动相互独立,均有13的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(ⅱ)将其中汞的含量最低的2条鱼都先放入A 水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A 水池进入B 水池且不再游回A 水池,求这两条鱼由不同小孔进入B 水池的概率.【答案】(1)中位数为1;众数为0.82;极差为1.61;估计这批鱼该项数据的80百分位数约为1.34;(2)(ⅰ)49;(ⅱ)910. 【分析】(1)由中位数—排序后处于中间的数,如有两个数取其平均数;众数—出现频率最高的数、极差—最大数与最小数的差;p 百分比位数—数据集中有n 个数:当np 为整数时12np np x x ++,当np 不为整数时[]1np x +;即可求出对应值;(2) (ⅰ)记A :“两鱼最终均在A 水池”; B :“两鱼最终均在B 水池”求出概率,由它们的互斥性即可求得两条鱼最终在同一水池的概率;(ⅱ)记n C :“两鱼同时从第n 个小孔通过”且鱼的游动独立,知1()100n P C =,而10个事件互斥,则“两鱼同时从一个小孔通过”的概率即可求,它与“两条鱼由不同小孔通过”为互斥事件,进而求得其概率【详解】(1)由题意知,数据的中位数为0.98 1.0212+=,数据的众数为0.82, 数据的极差为1.680.07 1.61-=,估计这批鱼该项数据的80百分位数约为1.31 1.37 1.342+= (2)(ⅰ)记“两鱼最终均在A 水池”为事件A ,则212()339P A =⨯= 记“两鱼最终均在B 水池”为事件B ,则212()339P B =⨯= ∵事件A 与事件B 互斥,∴两条鱼最终在同一水池的概率为224()()()999P AB P A P B =+=+= (ⅱ)记“两鱼同时从第一个小孔通过”为事件1C ,“两鱼同时从第二个小孔通过”为事件2C ,依次类推;而两鱼的游动独立 ∴12111()()1010100P C P C ===⨯= 记“两条鱼由不同小孔进入B 水池”为事件C ,则C 与1210...C C C 对立,又由事件1C ,事件2C ,10C 互斥∴121011()(...)1010010P C P C C C ==⨯=即12109()1(...)10P C P C C C =-= 【点睛】本题考查了数据特征值的概念,以及利用条件概率公式,结合互斥事件、独立事件等概念求概率;注意独立事件:多个事件的发生互不相关,且可以同时发生;互斥事件:一个事件发生则另一个事件必不发生,即不能同时发生。

概率经典测试题附答案解析

概率经典测试题附答案解析
【答案】A
【解析】
【分析】
根据题意,用黑色方砖的面积除以正方形地砖的面积即可.
【详解】
停在黑色方砖上的概率为: ,
故选:A.
【点睛】
本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.
4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()
A. B. C. D.
D、∵ >0,∴ 是不可能事件,故D不符合题意;
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
12.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )
A. B. C. D.
C、∵易建联罚球投篮的命中率大约是82.3%,
∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;
D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.
故选:A.
【点睛】
本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.
13.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )

概率经典测试题含解析

概率经典测试题含解析

概率经典测试题含解析一、选择题1.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.13【答案】A【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49.故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖B.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.4.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.5.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.6.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.7.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则下列说法正确的是 ( )A.mn一定等于12B.mn一定不等于12C.mn一定大于12D.投掷的次数很多时,mn稳定在12附近【答案】D【解析】某人随意投掷一枚均匀的骰子,投掷了n次,其中有m次掷出的点数是偶数,即掷出的点数是偶数的频率为mn,则投掷的次数很多时mn稳定在12附近,故选D.点睛:本题考查了频率估计概率的知识点,根据在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近判断即可.11.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.下列事件中,属于随机事件的是().A.凸多边形的内角和为500︒B.凸多边形的外角和为360︒C.四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边【答案】C【解析】【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:C .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A .16B .13C .23D .14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况, ∴这两个球上的数字之积为奇数的概率是21=126.故选A .【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.下列事件是必然事件的是( )A .打开电视机正在播放动画片B .投掷一枚质地均匀的硬币100次,正面向上的次数为50C .车辆在下个路口将会遇到红灯D .在平面上任意画一个三角形,其内角和是180︒ 【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A 、打开电视机正在插放动画片为随机事件,故此选项错误;B 、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C 、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D 、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确. 故选:D .【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.15.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流.A .1B .2C .3D .4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握:必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.16.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.17.如图,在△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,现给出以下四个结论:(1)AE =CF ;(2)△EPF 是等腰直角三角形;(3)S 四边形AEPF =12S △ABC ;(4)当∠EPF 在△ABC 内绕顶点P 旋转时始终有EF =AP .(点E 不与A 、B 重合),上述结论中是正确的结论的概率是( )A.1个B.3个C.14D.34【答案】D【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到选项A,B,C都是正确的,当EF=AP 始终相等时,可推出222AP PF=,由AP的长为定值,而PF的长为变化值可知选项D不正确.从而求出正确的结论的概率.【详解】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴1245EAP BAC∠=∠=︒,12AP BC CP==.(1)在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP∴AE=CF.(1)正确;(2)由(1)知,△AEP≌△CFP,∴PE=PF,又∵∠EPF=90°,∴△EPF是等腰直角三角形.(2)正确;(3)∵△AEP≌△CFP,同理可证△APF≌△BPE.∴12AEP APF CPF BPE ABCAEPFS S S S S S=+=+=V V V V V四边形.(3)正确;(4)当EF=AP始终相等时,由勾股定理可得:222EF PF=则有:222AP PF=,∵AP的长为定值,而PF的长为变化值,∴2AP与22PF不可能始终相等,即EF与AP不可能始终相等,(4)错误,综上所述,正确的个数有3个,故正确的结论的概率是34.故选:D.【点睛】用到的知识点为:概率=所求情况数与总情况数之比;解决本题的关键是利用证明三角形全等的方法来得到正确结论.18.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【答案】C【解析】试题解析:A. “购买1张彩票就中奖”是不可能事件,错误;B. “概率为0.0001的事件”是不可能事件,错误;C. “任意画一个三角形,它的内角和等于180°”是必然事件,正确;D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.20.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.。

高中概率测试题及答案

高中概率测试题及答案

第三章(概率)检测题班级姓名学号一、选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( ).A.如果一事件发生的概率为十万分之一,说明此事件不可能发生B.如果一事件不是不可能事件,说明此事件是必然事件C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为( ).A.5个B.8个C.10个D.15个3.下列事件为确定事件的有().(1)在一标准大气压下,20℃的纯水结冰(2)平时的百分制考试中,小白的考试成绩为105分(3)抛一枚硬币,落下后正面朝上(4)边长为a,b的长方形面积为abA.1个B.2个C.3个D.4个4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是().A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是().A.2/5 B、2/3 C.2/7 D.3/46.从一副扑克牌(54张)中抽取一张牌,抽到牌“K"的概率是().A.1/54 B.1/27 C.1/18 D.2/277.同时掷两枚骰子,所得点数之和为5的概率为().A.1/4 B.1/9 C.1/6 D.1/128.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是().A.5/6 B.4/5 C.2/3 D.1/29.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( ).A.60% B.30%C.10%D.50%10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为( ).A.0。

概率经典测试题附答案

概率经典测试题附答案

概率经典测试题附答案一、选择题1.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 =,【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖cm cm cm的三根木条能组成一个三角形B.长度分别是3,5,6C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.4.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.9.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.10.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A .22π- B .24π- C .28π- D .216π-【答案】A 【解析】 【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【详解】解:如图,连接PA 、PB 、OP , 则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.11.下列事件是必然发生事件的是( ) A .打开电视机,正在转播足球比赛 B .小麦的亩产量一定为1000公斤C .在只装有5个红球的袋中摸出1球,是红球D .农历十五的晚上一定能看到圆月 【答案】C 【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.13.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B 【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.在四张质地、大小相同的卡片上,分别画有如图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为()A.1 B.34C.12D.14【答案】B【解析】【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可.【详解】∵四个图形中,是中心对称图形的有平行四边形、矩形及圆三个,∴P(中心对称图形)=34,故选B.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个 【答案】A 【解析】 【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④. 【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒ ,所以构成等边三角形,④结论正确.所以正确1个,答案选A . 【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.16.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+,∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.17.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )个. A .20 B .16C .12D .15【答案】C 【解析】 【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案. 【详解】解:设白球个数为x 个,∵摸到红球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%, ∴4144x =+, 解得:12x =,经检验,12x =是原方程的解 故白球的个数为12个. 故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.18.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD⋅,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn .。

概率基础测试题附解析

概率基础测试题附解析

概率基础测试题附解析一、选择题1.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【解析】【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.5.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.6.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,可见卖油的技艺之高超.如图,若铜钱半径为,中间有边长为的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A.B.C.D.【答案】D【解析】【分析】用中间正方形小孔的面积除以圆的总面积即可得.【详解】∵铜钱的面积为4π,而中间正方形小孔的面积为1,∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是,故选:D.【点睛】考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.7.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.8.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D 【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.11.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.13【答案】D【解析】【分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴»»»==AC CD DB,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD ,∴△COD 是等边三角形, ∴OC=OD=CD , ∵2CD =,∴2OC OD CD ===, ∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°, ∴∠ODB =∠COD =60°, ∴OC ∥BD , ∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD ,飞镖落在阴影区域的概率21233ππ=÷=, 故选:D . 【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.13.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D 【解析】 【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.14.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( ) A .15B .110C .25D .225【答案】B 【解析】 【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案. 【详解】用字母A 、B 、C 、D 、E 分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形, 所以,正好抽中养老保险和医疗保险的概率P=212010. 故选B. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.16.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.17.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.18.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B .经过有交通信号灯的路口,遇到红灯C .掷一次骰子,向上一面的点数是6D .射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A .任意画一个三角形,其内角和是180°是必然事件;B .经过有交通信号灯的路口,遇到红灯是随机事件;C .掷一次骰子,向上一面的点数是6是随机事件;D .射击运动员射击一次,命中靶心是随机事件;故选:A .【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.20.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.。

人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)

人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)

一、选择题1.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为( ) A .2144B .1223C .1225D .21112.斐波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家昂纳多斐波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上斐波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,现从该数列的前10项中随机的抽取一项,则该数除以3余数为1的概率为( ) A .18B .14C .38D .123.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,灯亮的概率为( )A .316B .34C .1316D .144.设两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为( ) A .2pB .2p C .1p D .12p 5.设A ,B ,C 是三个事件,给出下列四个事件:(Ⅰ)A ,B ,C 中至少有一个发生; (Ⅱ)A ,B ,C 中最多有一个发生; (Ⅲ)A ,B ,C 中至少有两个发生; (Ⅳ)A ,B ,C 最多有两个发生;其中相互为对立事件的是( ) A .Ⅰ和ⅡB .Ⅱ和ⅢC .Ⅲ和ⅣD .Ⅳ和Ⅰ6.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥7.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A .22213221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .22232233C ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .21112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭8.下列说法正确的是( )A .天气预报说明天下雨的概率为0900,则明天一定会下雨B .不可能事件不是确定事件C .统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强D .某种彩票的中奖率是11000,则买1000张这种彩票一定能中奖 9.一个三位数的百位,十位,个位上的数字依次是,,a b c ,当且仅当a b c b >>且时称为“凹数”,若{},,1234a b c ∈,,,,从这些三位数中任取一个,则它为“凹数”的概率是 A .13B .532C .732D .71210.有3位男生和2位女生在周日去参加社区志愿活动,从该5位同学中任取3人,至少有1名女生的概率为( ) A .110B .25C .35D .91011.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13, 那么甲、乙两人至少有一人拿到该技能证书的概率是( ) A .1315B .1115C .23D .3512.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为( ) A .0.24B .0.36C .0.6D .0.8413.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:1日2日3日4日5日10时观展人数3256427245672737235513时观展人数5035653771494693370816时观展人数61006821658048663521通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为()A.12B.25C.35D.34二、解答题14.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.(1)记事件A为“一次摸出2个球,摸出的球为一个红球,一个白球”.求()P A;(2)记事件B为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件C为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:1()()()5P C P B P A-=.15.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[)50,60,[)60,70,…[]90,100分成5组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的平均数;(3)已知满意度评分值在[)50,60内的男生数与女生数的比为3:2,若在满意度评分值为[)50,60的人中随机抽取2人进行座谈,求恰有1名女生的概率.16.高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.(1)求小明同学选A类科目数X的分布列.(2)求小明同学从A类和B类科目中均至少选择1门科目的概率.17.甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率:(Ⅰ)两人都投中;(Ⅱ)恰好有一人投中;(Ⅲ)至少有一人投中.18.2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.附:临界值表参考公式:22()=)()()()n ad bcKa b c d a c b d(-++++,+n a b c d=++.19.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?20.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.21.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.22.某社区对安全卫生进行问卷调查,请居民对社区安全卫生服务给出评价(问卷中设置仅有满意、不满意).现随机抽取了90名居民,调查情况如下表:男居民女居民合计a 2560满意35(1)利用分层抽样的方法从对安全卫生服务评价为不满意的居民中随机抽取6人,再从这6人中随机抽取2人,求这2人中男、女居民各有1人的概率;(2)试通过计算判断能否在犯错误的概率不超过0.05的情况下认为男居民与女居民对社区安全卫生服务的评价有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.23.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?24.某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同.每次游戏需要从这两个箱子里面各随机摸出两个球.(1)设在一次游戏中,摸出红球的个数为X,求X分布列;(2)若在一次游戏中,摸出的红球不少于2个,则获奖.求一次游戏中,获奖的概率. 25.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在6090分钟的选修物理的学生中任选2人,求至少有1人阅读时间在7590之间的概率.26.2020年开始,山东推行全新的高考制度,新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分,2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行线上检测,下面是100名学生的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图;(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,由频率分布直方图,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中,用分层随机抽样的方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而计算在目标被击中的情况下,甲、乙同时击中目标的概率,可得答案. 【详解】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C , 则()()()()()1110.610.80.92P C P A P B =-=--⨯-=; 则在目标被击中的情况下,甲、乙同时击中目标的概率为0.60.80.921223P ⨯==. 故选:B. 【点睛】本题考查条件概率的计算,是基础题,注意认清事件之间的关系,结合条件概率的计算公式正确计算即可.属于基础题.2.D解析:D 【分析】写出斐波那契数列的前10项,列举出被3除所得的余数,由概率公式可得答案. 【详解】数列{}n a 满足:121a a ==,()*21Nn n n a a a n ++=+∈,数列的前10项为:1,1,2,3,5,8,13,21,34,55 该数列被3除所得的余数为1,1,2,0,2,2,1,0,1,1 所以10项中共有5项满足除以3余数为1, 故概率为51102P . 故选:D 【点睛】本题考查概率的求法,考查列举法的应用,属于基础题.3.C解析:C【分析】灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,根据概率公式得到结果. 【详解】由题意知,本题是一个相互独立事件同时发生的概率,灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开, 这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是111111111322222222216111222⨯+⨯⨯⨯+⨯⨯⨯⨯=⨯,灯亮和灯不亮是两个对立事件,∴灯亮的概率是31311616-=, 故选:C . 【点睛】本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题.4.C解析:C 【分析】利用A 发生B 不发生与A 不发生B 发生的概率相同,事件A 和B 同时不发生的概率是p ,建立方程,即可求得事件A 发生的概率. 【详解】根据题意设事件A 发生的概率为a ,事件B 发生的概率为b , 则有(1)(1)(1)(1)a b p a b a b --=⎧⎨-=-⎩①②由②知a b =,代入①得1a =故选:C . 【点睛】本题主要考查相互独立事件的概率的计算,解题的关键是正确理解题意,列出方程,属于中档题.5.B解析:B 【分析】利用互斥事件、对立事件的定义直接求解. 【详解】解:A ,B ,C 是三个事件,给出下列四个事件: (Ⅰ)A ,B ,C 中至少有一个发生;(Ⅱ)A,B,C中最多有一个发生;(Ⅲ)A,B,C中至少有两个发生(Ⅳ)A,B,C最多有两个发生;在A中,Ⅰ和Ⅱ能同时发生,不是互斥事件,故A中的两个事件不能相互为对立事件;在B中,Ⅱ和Ⅲ既不能同时发生,也不能同时不发生,故B中的两个事件相互为对立事件;在C中,Ⅲ和Ⅳ能同时发生,不是互斥事件,故C中的两个事件不能相互为对立事件;在D中,Ⅳ和Ⅰ能同时发生,不是互斥事件,故D中的两个事件不能相互为对立事件.故选:B.【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.6.B解析:B【分析】根据互斥事件的定义,逐个判断,即可得出正确选项.【详解】A为三件产品全不是次品,指的是三件产品都是正品,B为三件产品全是次品,C为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:A与B是互斥事件;A与C是包含关系,不是互斥事件;B与C是互斥事件,故选B.【点睛】本题主要考查互斥事件定义的应用.7.C解析:C【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C⎛⎫⋅⋅ ⎪⎝⎭,若前两局都是甲赢,所求概率为223⎛⎫⎪⎝⎭,因此,甲获胜的概率为22112221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.8.C解析:C 【分析】运用概率的相关知识对四个选项逐一进行分析即可 【详解】对于A ,天气预报说明天下雨的概率为90%,表示下雨的可能性比较大,是不确定事件,在一定条件下可能下雨,也可能不下雨,但明天一定会下雨是不正确的,故错误; 对于B ,根据定义可知不可能事件是确定事件,故错误;对于C ,统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强,故正确; 对于D ,某种彩票的中奖率是11000,每一次买彩票的中奖是独立的,并不是买1000张这种彩票一定能中奖,故错误 故选C 【点睛】本题主要考查了辨别生活中的概率,理解并运用概率知识即可判断,较为基础.9.C解析:C 【解析】 【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解. 【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有44464⨯⨯=个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有3428C ⨯=种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有2416C ⨯=种方法,所以共有凹数8+6=14个, 由古典概型的概率公式得P=1476432=. 故答案为:C 【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.10.D解析:D 【分析】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,列举出所有的基本事件,并确定事件“从这5位同学中任取3人,至少有1名女生”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,从这5位同学中任取3人,所有的基本事件有:ABC 、ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共10种,其中,事件“从这5位同学中任取3人,至少有1名女生”包含的基本事件有:ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共9种,因此,所求概率为910P =. 故选:D. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.11.D解析:D 【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项. 【详解】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为:21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=, 故选:D. 【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.12.D解析:D 【分析】先求出对立事件:一次都未投中的概率,然后可得结论. 【详解】由题意小明每次投篮不中的概率是10.60.4-=,再次投篮都不中的概率是20.40.16=,∴他再次投篮至少投中一次的概率为10.160.84-=.故选:D.【点睛】本题考查相互独立事件同时发生的概率公式,在出现至少、至多等词语时,可先求其对立事件的概率,然后由对立事件概率公式得出结论.13.C解析:C【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率.【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11 236m C C==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105mPn===.故选:C【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于基础题.二、解答题14.(1)35;(2)证明见解析.【分析】(1)列举出从袋中一次摸出2个球的所有基本事件,找出其中满足事件A的基本事件有6个,即可求解()P A;(2)同样列举出从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件B的基本事件;同理列举出从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件C的基本事件,即可计算出1()()()5P C P B P A-=.【详解】解:(1)记这3个红球为123,,a a a ,2个白球记为12,b b ,则从袋中一次摸出2个球的所有基本事件为:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b 共10个,其中满足事件A 的基本事件有6个,所以()63105P A ==. (2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为()11,a a ,()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()22,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()33,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()11,b b ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b ,()22,b b 共25个,满足事件B 的基本事件有12个,所以()1225P B =. 从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b 共20个,满足事件C 的基本事件有12个,所以()123205P C ==. 因此:()()312352525P C P B -=-=, 又()35P A =,所以()()()15P C P B P A -=. 【点晴】方法点晴:等可能事件概率一般用列举法列举出所有基本事件,找出满足所求事件的基本事件个数,直接用公式求得概率. 15.(1)0.01;(2)77;(3)35. 【分析】(1)由各组的频率和为1,列方程可求出x 的值; (2)由平均数的公式直接求解即可;(3)先计算满意度评分值在[)50,60内有1000.005105⨯⨯=人,按比例男生3人女生2人,从5人中选2人,用列举法列出所有情况,利用概率公式求解即可. 【详解】解:(1)由()0.0050.020.0350.030101x ++++⨯=,解得0.01x =;(2)这组数据的平均数为550.05650.2750.35850.3950.177⨯+⨯+⨯+⨯+⨯=; (3)满意度评分值在[)50,60内有1000.005105⨯⨯=人,男生数与女生数的比为3:2,故男生3人,女生2人,记为12312,,,,A A A B B ,记“满意度评分值为[)50,60的人中随机抽取2人进行座谈,恰有1名女生”为事件A ,从5人中抽取2人有:12A A ,13A A ,11A B ,12A B ,23A A ,21A B ,22A B ,31A B ,32A B ,12B B ,所以总基本事件个数为10个,A 包含的基本事件:11A B ,12A B ,21A B ,22A B ,31A B ,32A B ,共6个,所以 ()63105P A ==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1;②直方图中纵轴表示频率除以组距,故每组样本中的频率为组距乘以小长方形的高,即矩形的面积;③直方图中每组样本的频数为频率乘以总数; ④最高的小矩形底边中点横坐标即是众数; ⑤中位数的左边和右边小长方形面积之和相等;⑥平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 16.(1)分布列见解析;(2)910. 【分析】(1)确定X 的所有取值为0,1,2,3,X 服从超几何分布,代入超几何分布的概率公式,计算每个X 的取值对应的概率,列出X 的分布列即可;(2)即两门A 类科目一门B 类科目或者一门A 类科目两门B 类科目的概率,则概率()()12P P X P X ==+=,从而计算可得;【详解】解:(1)小明同学选A 类科目数X 可能的取值为0,1,2,3,则X 服从超几何分布,()0333361020C C P X C ===, ()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===. X 的分布列为:(2)设“小明同学从A 类和B 类科目中均至少选择1门科目”为事件C ,()()()99912202010P C P X P X ==+==+= 【点睛】本题考查了离散型随机变量的概率分布列,考查了超几何分布,古典概型的概率计算,计数原理.属于中档题.17.(Ⅰ)0.72;(Ⅱ)0.26;(Ⅲ)0.98. 【分析】(Ⅰ)由相互独立事件概率的乘法公式即可得解;(Ⅱ)由相互独立事件概率的乘法公式、互斥事件概率的加法公式,运算即可得解; (Ⅲ)由互斥事件概率加法公式即可得解. 【详解】设A =“甲投中”,B =“乙投中”,则A =“甲没投中”,B =“乙没投中”, 由于两个人投篮的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立, 由己知可得()0.8P A =,()0.9P B =,则()0.2P A =,()0.1P B =; (Ⅰ)AB =“两人都投中”,则()()()0.80.90.72P AB P A P B ==⨯=; (Ⅱ)ABAB =“恰好有一人投中”,且AB 与AB 互斥,则()()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.80.10.20.90.26=⨯+⨯=;(Ⅲ)AB ABAB =“至少有一人投中”,且AB 、AB 、AB 两两互斥,所以(()()())P ABABAB P AB P AB P AB =++ )0.720.260.9()(8P AB P ABAB =+==+.【点睛】本题考查了对立事件的概率及概率的加法公式、乘法公式的应用,考查了运算求解能力,属于中档题.18.(1)见解析;(2)0.4 【分析】(1)根据独立性检验求出()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯,即得不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)利用古典概型求选到的两名观众都喜爱该演讲的概率. 【详解】(1)假设:观众性别与喜爱该演讲无关,由已知数据可求得,()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯ ∴ 不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)抽样比为616010=,样本中喜爱的观众有40×110=4名,不喜爱的观众有6﹣4=2名.记喜爱该演讲的4名男性观众为a,b,c,d,不喜爱该演讲的2名男性观众为1,2,则基本事件分别为:(a,b),(a,c),(a,d),(a,1),(a,2),(b,c),(b,d),(b,1),(b,2),(c,d),(c,1),(c,2),(d,1),(d,2),(1,2).其中选到的两名观众都喜爱该演讲的事件有6个,故其概率为P(A)=60.4 15=【点睛】本题主要考查独立性检验和古典概型,意在考查学生对这些知识的理解能力,掌握水平和应用能力.19.(1)0.05;(2)0.45;(3)1200.【分析】(1)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(2)先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(3)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果.【详解】把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个.(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=120=0.05.(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=920=0.45.(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=220=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚,每月可赚1200元.考点:1.互斥事件的概率加法公式;2.概率的意义20.(1)0.016;(2)约为74.1;(3)35.。

高中概率测试题及答案

高中概率测试题及答案

高中概率测试题及答案一、选择题(每题4分,共20分)1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 2/5C. 3/5D. 4/72. 抛一枚公正的硬币两次,两次都是正面朝上的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/163. 一个班级有30名学生,随机选取5名学生参加比赛,至少有1名女生的概率是多少?(假设班级中男女比例为1:1)A. 1/2B. 3/4C. 7/8D. 15/164. 一个袋子里有3个白球和2个黑球,不放回地抽取两次,第一次抽到白球,第二次也抽到白球的概率是多少?A. 1/2B. 1/3C. 1/5D. 2/55. 一个骰子连续投掷两次,两次都得到6的概率是多少?A. 1/36B. 1/12C. 1/6D. 1/4二、填空题(每题5分,共20分)6. 一个袋子里有10个球,其中3个是红球,7个是蓝球。

随机抽取一个球,抽到红球的概率是_________。

7. 抛一枚公正的骰子,得到奇数点数的概率是_________。

8. 一个班级有50名学生,其中25名男生,25名女生。

随机选取10名学生参加比赛,恰好有5名男生和5名女生的概率是_________。

9. 一个袋子里有5个红球,4个蓝球和1个黄球。

不放回地抽取两次,第一次抽到红球,第二次也抽到红球的概率是_________。

10. 一个袋子里有10个球,其中2个是特殊球,8个是普通球。

随机抽取两次,第一次抽到特殊球,第二次也抽到特殊球的概率是_________。

三、解答题(每题10分,共20分)11. 一个袋子里有4个红球和6个蓝球,不放回地抽取两次,求:(1)第一次抽到红球,第二次抽到蓝球的概率。

(2)两次都抽到红球的概率。

12. 一个班级有40名学生,其中20名男生,20名女生。

随机选取5名学生参加比赛,求:(1)至少有1名男生的概率。

(2)恰好有2名男生和3名女生的概率。

概率基础测试题及答案

概率基础测试题及答案

D. 2 16
∴米粒落在阴影部分的概率为 2 4 2 ,
4
2
故选 A.
【点睛】 本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.
9.袋中有 8 个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇
匀后又摸出一球,再记下颜色,做了 50 次,共有16 次摸出红球,据此估计袋中有黑球
D、明天气温高达 30C ,一定能见到明媚的阳光是随机事件,故 D 错误;
故选:B. 【点睛】 本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题 的关键.
4.从﹣1、2、3、﹣6 这四个数中任取两数,分别记为 m 、 n ,那么点 m, n 在函数
y 6 图象的概率是( ) x
( )个.
A.15
B.17
C.16
D.18
【答案】B 次,其中 16 次摸到红球,则摸到红球与摸到黑球的次数之比为 8: 17,由此
可估计口袋中红球和黑球个数之比为 8: 17;即可计算出黑球数.
【详解】
∵共摸了 50 次,其中 16 次摸到红球,∴有 34 次摸到黑球,∴摸到红球与摸到黑球的次
概率基础测试题及答案
一、选择题
1.下列说法正确的是( ) A.检测某批次灯泡的使用寿命,适宜用全面调查 B.“367 人中有 2 人同月同日生”为必然事件 C.可能性是 1%的事件在一次试验中一定不会犮生 D.数据 3,5,4,1,﹣2 的中位数是 4 【答案】B 【解析】 【分析】 根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、 随机事件的概念进行判断. 【详解】 检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A 错; 一年有 366 天所以 367 个人中必然有 2 人同月同日生,B 对; 可能性是 1%的事件在一次试验中有可能发生,故 C 错; 3,5,4,1,-2 按从小到大排序为-2,1,3,4,5,3 在最中间故中位数是 3,D 错. 故选 B. 【点睛】 区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事 件、随机事件的概念.

概率经典测试题及答案解析

概率经典测试题及答案解析

概率经典测试题及答案解析一、选择题1.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P=;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.3.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 =,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4.袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个.A.15 B.17 C.16 D.18【答案】B【解析】【分析】根据共摸球50次,其中16次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可估计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数.【详解】∵共摸了50次,其中16次摸到红球,∴有34次摸到黑球,∴摸到红球与摸到黑球的次数之比为8: 17,∴口袋中红球和黑球个数之比为8: 17,∴黑球的个数8÷817= 17(个),故答案选B.【点睛】本题主要考查的是通过样本去估计总体,只需将样本"成比例地放大”为总体是解本题的关键.5.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C ,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A 、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A 错误; B 、操场上小明抛出的篮球会下落是必然事件,故B 正确;C 、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C 错误;D 、明天气温高达30C ︒,一定能见到明媚的阳光是随机事件,故D 错误;故选:B .【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.7.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩ , 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.8.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.23B.12C.13D.14【答案】C【解析】【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193,故选C.考点:简单事件的概率.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:2184= 故选D .10.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .22π- B .24π- C .28π- D .216π-【答案】A【解析】【分析】 求得阴影部分的面积后除以正方形的面积即可求得概率.【详解】解:如图,连接PA 、PB 、OP ,则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.13【答案】A【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49.故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16, 故选D .14.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流.A .1B .2C .3D .4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.16.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B.经过有交通信号灯的路口,遇到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A.任意画一个三角形,其内角和是180°是必然事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.18.在六张卡片上分别写有13,π,1.5,5,02六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.56【答案】B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有 ,2共2个,∴卡片上的数为无理数的概率是21 = 63.故选B.【点睛】本题考查了无理数的定义及概率的计算.19.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.20.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.。

(含答案)《概率》真题

(含答案)《概率》真题
8.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为 ,中将可以获得2分;方案乙的中奖率为 ,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为 ,求 的概率;
A.0.72;0.9 B.0.9;0.72 C.0.9;0.9 D.0.72;0.72
8.小球 在右图所示的通道由上到下随机地滑动,最后在下底面的某个出口落出,则一次投放小球,从“出口 ”落出的概率为()
A. B. C. D.
二、填空题
9.若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在2.28%以下设计的,如果某地成年男子的身高 (单位:㎝),则该地公共汽车门的高度应设计为________cm
解: =0.3413 =0.5-0.3413=0.1587.
3.设 ,则 等于( )
A.1.6B.3.2C.6.4D.12.8
4.如果随机变量ξ~N(1,4),则P(ξ>3)、D( ξ)等于( )
A.0.1587;2B.0.1587;1C.0.0228;2 D.0.0228;1
5.已知在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,则经过4次测试恰好将2个次品全部找出的概率( )
(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为 + = .由题意得η~(3, )
则P(η=2)= ( )2(1- )= .
14.某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

----
第三章(概率)检测题
班级姓名学号10 小题,每小题3 分,共30 分,在每小题给出的四个选项中,只有一项是符合题(本题共一、选择题:
目要求的)
1.下列说法正确的是().
A.如果一事件发生的概率为十万分之一,说明此事件不可能发生
B.如果一事件不是不可能事件,说明此事件是必然事件
C.概率的大小与不确定事件有关
D .如果一事件发生的概率为99.999%,说明此事件必然发生1/5,已知袋中红球有3 个,则袋中共有除颜色外完全相2.从一个不透明的口袋中摸出红球的概率为
同的球的个数为().
B.8 个C..5 个10 个D.15 个A
3..下列事件为确定事件的有()
(1)在一标准大气压下,20℃的纯水结冰
(2) 平时的百分制考试中,小白的考试成绩为105 分
(3)抛一枚硬币,落下后正面朝上
(4)边长为a,b 的长方形面积为ab
A.1个B.2 个C.3个D.4个
4.从装有除颜色外完全相同的2 个红球和2 个白球的口袋内任取2 个球,那么互斥而不对立的两个().事件是个红球1 .至少有1 个白球,至少有.至少有A 1 个白球,都是白球B .至少有个白球D 个白球,恰有C.恰有 1 2 个白球,都是红球1
5.从数字1,2,3,4,5 中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400 的().概率是C.2/7D.2/3B、3/42/5.A
(54(”的概率是K )中抽取一张牌,抽到牌“.6.从一副扑克牌张)
C.A .1/54 1/18 1/27 2/27D.B.
()的概率为.5 .同时掷两枚骰子,所得点数之和为7
--
----
A .1/4B.1/9C.1/6D.1/12
2 或
3 整除的概率是().8.在所有的两位数(10~99) 中,任取一个数,则这个数能被
A .5/6B.D.1/2 4/5C.2/3
9.甲、乙两人下棋,甲获胜的概率为90%,则甲、乙两人下成
和棋的概率为40%,甲不输的概率为
() .
A .60%B.30%C.10%D .50%
10.根据多年气象统计资料,某地6 月1 日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概
率为().
A .0.65B.0.55C.0.35D .0.75
二、填空题:(本题共 4 小题,共18 分,请把答案填写在答题纸上)
11.(3 分)对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能
发生的”,⑤“不太可能发生的”这 5 种生活现象,发生的概
率由小到大排列为(填序
号)。

12 .(6 分)在10000 张有奖明信片中,设有一等奖5 个,二等奖10 个,三等奖l00 个,
张.l 从中随意买
获一等奖)=,P( 获二等奖)=,P( 获三等奖)=.(1)P( )=不中奖,中奖)= P( .(2)P(
13 .(3 分)同时抛掷两枚骰子,则至少有一个5 点或 6 点的概率是.
14.(6 分)下表为初三某班被录取高一级学校的统计表:
重点中学普通中学其他学校合计
男生/人1871
人女生/21016
人合计/
(1) 完成表格.
(2)P(录取重点中学的学生)=;P(录取普通中学的学生)=;
P(录取的女生)=.
三、解答题:(本题共 6 小题,共52 分,解答应写出文字说明,证明过程或演算步骤. )
--
----
15.(8 分) 由经验得知,在某商场付款处排队等候付款的人数及概率如下表:
5 人以上排队人数43012
概率0.040.30.160.10.10.3
(2)至少有至多有 2 人排队的概率是多少2(1) 人排队的概率是多少??
【解】:
16.(10 分) 2.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1 个.有放回
地抽取 3 次,求:
(2)3 个颜色全相同的概率.个全是红球的概率.(1)3
(4)3 个颜色全不相同的概率.个颜色不全相同的概率.(3)3
【解】:
17.(8 分) 某地区的年降水量在下列范围内的概率如下表所示:
年降水量/mm[100 ,150)[150 ,200)[200 ,250)[250 ,
300)
概率0.140.160.120.25
(1)求年降水量在[100 ,200)(mm) 范围内的概率;
(2)求年降水量在[150 ,300)(mm) 范围内的概率.
【解】:
(各面分别标有数A 为“朝上一面的,若事件5,6)4 21,,3,,抛掷一均匀的正方体玩具数) (8 18.分
“朝上一面的数不超过是奇数”,事件B3”,求P(A+B) .
下面的解法是否正确?为什么?若不正确给出正确的解法.
--
----
,3/6=1/2 P(A) =3/6=1/2 ,P(B) =解因为P(A+B) =P(A)+P(B) ,而
.=1/2+1/2=1 所以P(A+B)
【解】:
天计算,两名学生的生日相同的概率是多少) 一年按365 19.(15 分
【解】:
张考签,抽过的考签不再放回.考生王张不同的考签.每个考生抽分) 抽签口试,共有10 1 20.(10
张,他是第3 某会答其中个抽签者,求王某抽到会答考签的概率.5 【解】:
案答
选择题:一、
C、、7 B8C9、D10、、、、1、C 2、D3 C4 C5 A6、D
填空题:二、
、④⑤③②①111 1977;2311;)2、(12 1)(;
2000200020001000100
4
、13
9
141717;;)(2 114、()略
275427
三、解答题:
0.74 115、())2 0.56(2118)、(161 )3 ;()4;( 2 ;()
99279
0.37、(17)10.55)(2
--
----
2
、18 31、19
3653(等可能事件,与抽签顺序无关)20、10
--
----
--
----
是相视的莞尔一笑, 那是心与心的交汇,是一杯饮了半盏的酒,
沉香在喉,甜润在心。

红尘中,我们会相遇一些人,一些事,跌跌撞撞里,逐渐懂得了这世界,懂得如何经营自己的内心,使它柔韧,更适应这风雨征途,而不会在过往的错失里纠结懊悔一生。

时光若水,趟过岁月的河,那些旧日情怀,或温暖或痛楚,总会在心中烙下深深浅浅的痕。

生命是一座时光驿站,人们在那里来来去去。

一些人若长亭古道边的萋萋芳草,沦为泛泛之交;一些人却像深山断崖边的幽
兰,只一株,便会馨香满谷。

人生,唯有品格心性相似的人,才可以在锦瑟华年里相遇相知,互为欣赏,互为懂得,并沉淀下来,做一生的朋友。

试问,你的生命里,有无来过这样一个人呢?
”. 张爱玲说 “因为懂得,所以慈悲
于千万人群中,遇见你要遇见的人,没有早一步,也没有晚一步,四目相对,只淡淡的问候一句:哦!原来你也在这里,这便足够。

世间最近与最遥远的距离,来自于心灵与心灵。

相遇了,可以彼此陌生,人在咫尺心在天涯,也可初见如旧,眼光交汇的那一刻,抵得人间万般暖。

-- ----
专业资料 学习资料

育培训考试建筑装潢资料
--。

相关文档
最新文档