概率基础测试题附答案

合集下载

概率试题及答案

概率试题及答案

D( X ) = 1 ; 统计量 X ~ N (2, 1 ) 。
4
4
二、选择题(每题 3 分,共 15 分) 1.设 A, B 为任二事件, 则下列关系正确的是( D )。
(A) P(A − B) = P(A) − P(B)
(B) P(A B) = P(A) + P(B)
(C) P(AB) = P(A)P(B)
-2 4
4
P{X = −1,Y = 1} = P{U ≤ −1,U 1} = 0 ,
P{X = 1,Y = −1} = P{U −1 ,U ≤1} = 1 1 dx = 1 ,
−1 4
2
P{X = 1,Y = 1} = P{U −1,U 1} = 2 1 dx = 1 .
(D) P( A) = P( AB) + P( AB)
2. 设 X ~ N(0,1), 又常数 c 满足 P{X≥c} = P{X c} , 则 c 等于( B )。
(A) 1
(B) 0
(C) 1 2
(D) -1
3.设 X ~ B(n, p), E( X ) = 6, D( X ) = 3.6 , 则有( C )。
3.设随机变量
X
的概率密度为
f
(x)
=
e−x ,
x 0, 则 E(e−2 X ) =
1

0, x≤0.
3
4.设X~ NhomakorabeaN (1, 32 ) , Y
~
N (0, 42 ) ;X与Y的相关系数 XY
=
1 −,
2
Z = X + Y ,则E(Z)= 32
1 3
,D(Z)= 3。
5 . 设 总 体 X ~ N(2, 25) , X1, X 2 , , X100 是 从 该 总 体 中 抽 取 的 样 本 , 则 E( X ) = 2;

事件的概率试题及答案

事件的概率试题及答案

事件的概率试题及答案1. 单选题:如果一个骰子被公平地掷出,那么掷出偶数的概率是多少?A. 1/2B. 1/3C. 3/8D. 1/6答案:A2. 多选题:以下哪些事件是互斥的?A. 掷一枚硬币得到正面或反面B. 掷骰子得到1或得到6C. 掷骰子得到奇数或得到偶数D. 掷骰子得到3或得到5答案:B, D3. 判断题:如果一个事件的概率是0,那么这个事件不可能发生。

答案:正确4. 填空题:如果一个事件的概率是0.5,那么它的补事件的概率是______。

答案:0.55. 计算题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:5/86. 简答题:解释什么是条件概率,并给出一个例子。

答案:条件概率是指在某个条件或事件已经发生的条件下,另一个事件发生的概率。

例如,如果已知一个班级里有50%的学生是女生,那么在随机挑选一个学生是女生的条件下,这个学生是左撇子的概率,就是条件概率。

7. 应用题:一个工厂生产两种类型的零件,A型和B型。

A型零件的合格率为90%,B型零件的合格率为80%。

如果从生产线上随机抽取一个零件,发现它是合格的,那么这个零件是A型的概率是多少?答案:设事件A为零件是A型,事件B为零件合格。

根据贝叶斯定理,P(A|B) = P(B|A) * P(A) / P(B)。

已知P(A) = 0.5,P(B|A) = 0.9,P(B) = P(B|A) * P(A) + P(B|A') * P(A') = 0.9 * 0.5 + 0.8 * 0.5 = 0.85。

所以P(A|B) = 0.9 * 0.5 / 0.85 ≈ 0.529。

8. 论述题:描述概率论在现实生活中的应用,并举例说明。

答案:概率论在现实生活中有广泛的应用,例如在风险评估、保险计算、医学研究、天气预报等领域。

例如,在医学研究中,研究人员可能会使用概率论来评估某种治疗方法对特定疾病的效果,通过分析治疗组和对照组的治愈率差异,来确定治疗方法的有效性。

小学概率测试题及答案

小学概率测试题及答案

小学概率测试题及答案一、选择题(每题2分,共10分)1. 一个袋子里有5个红球和3个蓝球,随机从中取出一个球,抽到红球的概率是多少?A. 1/2B. 1/3C. 3/5D. 2/52. 抛一枚公正的硬币,正面朝上的概率是多少?A. 1/2B. 1C. 0D. 1/43. 一个班级有30个学生,其中15个是男生,15个是女生。

随机选出一个学生,该学生是女生的概率是多少?A. 1/2B. 1/3C. 1/4D. 2/34. 一个袋子里有10个球,其中2个是白球,8个是黑球。

随机取出两个球,取出的两个球都是黑球的概率是多少?A. 4/5B. 2/5C. 1/5D. 1/105. 一个袋子里有6个红球,4个黄球,如果随机取出3个球,至少有1个红球的概率是多少?A. 1B. 3/4C. 1/2D. 1/4二、填空题(每题3分,共15分)6. 一个袋子里有3个红球和7个蓝球,随机取出两个球,取出的两个球都是蓝球的概率是______。

7. 抛两枚公正的骰子,两枚骰子的点数之和为7的概率是______。

8. 一个班级有40个学生,其中20个是男生,20个是女生。

随机选出两个学生,选出的两个学生都是女生的概率是______。

9. 一个袋子里有5个红球和5个蓝球,随机取出三个球,取出的三个球中至少有一个红球的概率是______。

10. 抛一枚公正的硬币三次,至少出现一次正面的概率是______。

三、解答题(每题5分,共20分)11. 一个袋子里有4个红球和6个蓝球,随机取出两个球,求取出的两个球都是红球的概率。

12. 抛三枚公正的硬币,求至少出现两次正面的概率。

13. 一个班级有50个学生,其中25个是男生,25个是女生。

随机选出三个学生,求选出的三个学生中至少有两个女生的概率。

14. 一个袋子里有8个红球和2个黄球,随机取出四个球,求取出的四个球中至少有三个红球的概率。

答案:一、选择题1. C2. A3. A4. A5. A二、填空题6. 7/157. 1/68. 1/39. 31/3510. 7/8三、解答题11. 取出两个球都是红球的概率是 1/5。

《概率初步》测试题(含答案))

《概率初步》测试题(含答案))
2
果选得男生的概率为2,求男女生数各多少?
21. (5分)口袋里有红、绿、黄三种颜色的球,其中有红球
1
1个绿球的概率是-,求摸出一个黄球的概率?
3
22.(5分)从数学、语文、英语、计算机这四门课程中选出两门排在星期一上午第一、二
两节课,数学和计算机不能排在一起,语文不能排在第一节,两节可以排同一门课程,
11.天气台预报明天下雨的概率为70%,
A.明天30%的地区会下雨
C.明天出行不带雨伞一定会被淋湿
则下列理解正确的是()
B.明天30%的时间会下雨
D.明天出行不带雨伞被淋湿的可能性很大
12.下列成语所描述的事件是必然事件的是()
A.水中捞月B.拔苗助长C.守株待兔D.
13.如图,等腰梯形ABCD中,AB//CD,E、F、M、N分别 是AB、CD、DE、CE中点,AB=2CD.如果向这个梯形 区域内随意投掷绿豆, 区域内(不包含边界)
人1
x5,令x一、
2
5
(2)
(4)2008年奥运会在北京举行.其中不确定事件有(
C.3个D.4个 (骰子每一面的点数分别是从

B.掷出两个骰子的点数和为
D.掷出两个骰子的点数和为
3253749
2 2 2 2
随机掷一枚均匀的硬币,正面朝上;
(3)12名同学

1到6这六个数字
6是必然事件
14是随机事件
1、
18.(5分)一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出 红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?
19.(5分)将一枚硬币连掷3次,出现“两正,一反”的概率是多少?

概率论基础试题及答案

概率论基础试题及答案

概率论基础试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X≤0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.3,则P(X=3)的值为:A. 0.0573B. 0.05734C. 0.05735D. 0.0574答案:A3. 若随机变量X与Y相互独立,则P(X>Y)的值为:A. P(X)P(Y)B. P(X) - P(X≤Y)C. 1 - P(X≤Y)D. 1 - P(X)P(Y)答案:C4. 随机变量X服从泊松分布,其期望值为λ,若λ=5,则P(X=3)的值为:A. 0.175467B. 0.175468C. 0.175469D. 0.17547答案:A5. 随机变量X服从均匀分布U(a, b),其概率密度函数为:A. f(x) = 1/(b-a), a≤x≤bB. f(x) = 1/(a-b), a≤x≤bC. f(x) = 1/(a+b), a≤x≤bD. f(x) = 1/(a-b), b≤x≤a答案:A二、填空题(每题3分,共15分)1. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = __________,其中μ为均值,σ^2为方差。

答案:1/(σ√(2π)) * e^(-(x-μ)^2/(2σ^2))2. 已知随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中x≥0,则其期望值为E(X) = __________。

答案:1/λ3. 若随机变量X与Y相互独立,且P(X) = 0.6,P(Y) = 0.4,则P(X∩Y) = __________。

答案:0.244. 随机变量X服从二项分布B(n, p),若n=5,p=0.2,则P(X≥3) = __________。

答案:0.031255. 随机变量X服从几何分布,其概率质量函数为P(X=k) = (1-p)^(k-1)p,其中k=1,2,3,...,则其方差Var(X) = __________。

概率论试题及答案

概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。

2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。

三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。

求在一小时内至少有一台机器发生故障的概率。

2. 一个班级有50名学生,其中30名男生和20名女生。

如果随机选择一名学生,这名学生是男生的概率是0.6。

求这个班级中男生和女生的人数。

四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。

2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。

如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。

求第二次取出的球是蓝球的概率。

答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。

至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。

2. 设男生人数为x,女生人数为y。

根据题意,x/(x+y) = 0.6,且x+y=50。

解得x=30,y=20。

四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。

计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

概率初步试题及答案

概率初步试题及答案

概率初步试题及答案一、选择题(每题4分,共20分)1. 某事件的概率为0.5,那么它的对立事件的概率是()。

A. 0.5B. 0C. 1D. 0.3答案:C2. 抛掷一枚硬币,正面朝上的概率是()。

A. 0.5B. 0.25C. 0.75D. 1答案:A3. 随机变量X服从二项分布B(n,p),其中n=10,p=0.3,那么P(X=3)是()。

A. 0.3B. 0.03C. 0.09D. 0.33答案:C4. 某次考试,甲、乙、丙三人的成绩独立,甲通过的概率为0.7,乙通过的概率为0.6,丙通过的概率为0.5,那么三人都通过的概率是()。

A. 0.21B. 0.35C. 0.105D. 0.05答案:C5. 已知随机变量X服从正态分布N(μ,σ^2),其中μ=0,σ^2=1,那么P(-1<X<1)是()。

A. 0.6826B. 0.95C. 0.8413D. 0.9772答案:C二、填空题(每题5分,共20分)1. 概率的取值范围是()。

答案:[0,1]2. 随机变量X服从泊松分布,其参数λ=4,则P(X=2)=()。

答案:0.33. 某次实验中,事件A和事件B是互斥的,且P(A)=0.4,P(B)=0.3,则P(A∪B)=()。

答案:0.44. 已知随机变量X服从均匀分布U(0,3),则E(X)=()。

答案:1.5三、计算题(每题10分,共20分)1. 已知随机变量X服从二项分布B(5,0.2),求P(X≥3)。

答案:P(X≥3)=P(X=3)+P(X=4)+P(X=5)=C_5^3*0.2^3*0.8^2+C_5^4*0.2^4*0.8+0.2^5=0.0512+0.0128+0.00032=0.064322. 已知随机变量X服从正态分布N(2,4),求P(1<X<3)。

答案:P(1<X<3)=Φ((3-2)/2)-Φ((1-2)/2)=Φ(0.5)-Φ(-0.5)=0.6915-0.3585=0.333四、解答题(共40分)1. 某班有50名学生,其中有20名女生,30名男生。

概率基础测试题及答案解析

概率基础测试题及答案解析

概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。

2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。

3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。

在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。

4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。

5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。

6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。

7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。

概率基础测试题附答案解析

概率基础测试题附答案解析

概率基础测试题附答案解析一、选择题1.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.2.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰【答案】D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.136B.16C.112D.13【答案】A【解析】【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636=故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.6.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.7.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.8.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126 ==故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A .大于12B .等于12C .小于12D .无法确定【答案】B 【解析】 【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能, ∴第3次正面朝上的概率是12. 故选:B . 【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.14.下列事件中,确定事件是( )A .向量BC uuu r与向量CD uuu r 是平行向量B 40=有实数根;C .直线()20y ax a =+≠与直线23y x =+相交D .一组对边平行,另一组对边相等的四边形是等腰梯形 【答案】B 【解析】 【分析】根据“必然事件和不可能事件统称确定事件”逐一判断即可. 【详解】A. 向量BC uuu r与向量CD uuu r 是平行向量,是随机事件,故该选项错误;B. 40=有实数根,是确定事件,故该选项正确;C. 直线()20y ax a =+≠与直线23y x =+相交,是随机事件,故该选项错误;D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误; 故选:B . 【点睛】本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.15.下列说法正确的是 ( )A .要调查现在人们在数学化时代的生活方式,宜采用普查方式B .一组数据3,4,4,6,8,5的中位数是4C .必然事件的概率是100%,随机事件的概率大于0而小于1D .若甲组数据的方差2s 甲=0.128,乙组数据的方差2s 乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.16.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,226810+=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.17.在六张卡片上分别写有13,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56【答案】B 【解析】 【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率. 【详解】∵这组数中无理数有 共2个, ∴卡片上的数为无理数的概率是21=63.故选B. 【点睛】本题考查了无理数的定义及概率的计算.18.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是 180° D .抛一枚硬币,落地后正面朝上 【答案】C 【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.20.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。

概率基础测试题附解析

概率基础测试题附解析

概率基础测试题附解析一、选择题1.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【解析】【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.5.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.6.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以构酌油之,自钱孔入,而钱不湿”,可见卖油的技艺之高超.如图,若铜钱半径为,中间有边长为的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是()A.B.C.D.【答案】D【解析】【分析】用中间正方形小孔的面积除以圆的总面积即可得.【详解】∵铜钱的面积为4π,而中间正方形小孔的面积为1,∴随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是,故选:D.【点睛】考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.7.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.8.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D 【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.11.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.13【答案】D【解析】【分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴»»»==AC CD DB,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD ,∴△COD 是等边三角形, ∴OC=OD=CD , ∵2CD =,∴2OC OD CD ===, ∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°, ∴∠ODB =∠COD =60°, ∴OC ∥BD , ∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD ,飞镖落在阴影区域的概率21233ππ=÷=, 故选:D . 【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.13.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF 部分的概率是( )A .34B .14C .124D .125【答案】D 【解析】 【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可. 【详解】解:∵AH=6,BH=8, 勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96, ∴针扎在小正方形GHEF 部分的概率是1004=125故选D. 【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.14.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( ) A .15B .110C .25D .225【答案】B 【解析】 【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案. 【详解】用字母A 、B 、C 、D 、E 分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形, 所以,正好抽中养老保险和医疗保险的概率P=212010. 故选B. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.16.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.17.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()个.A.20 B.16 C.12 D.15【答案】C【解析】【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x个,∵摸到红球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴41 44x=+,解得:12x=,经检验,12x=是原方程的解故白球的个数为12个.故选C【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.18.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B .经过有交通信号灯的路口,遇到红灯C .掷一次骰子,向上一面的点数是6D .射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A .任意画一个三角形,其内角和是180°是必然事件;B .经过有交通信号灯的路口,遇到红灯是随机事件;C .掷一次骰子,向上一面的点数是6是随机事件;D .射击运动员射击一次,命中靶心是随机事件;故选:A .【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.20.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案在学习概率论的过程中,一场考试是检验学生掌握程度的重要方式。

下面将为大家介绍一些概率论考试题及其答案,希望能够帮助大家更好地复习和准备考试。

1. 选择题1.1 在一副标准扑克牌中,抽取一张牌,观察到它是黑桃的情况下,再次从该扑克牌中抽取一张牌,观察该牌是红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/3答案:D. 1/31.2 掷一枚骰子,观察到一个正整数出现的情况下,再次掷骰子,观察到另一个正整数出现的概率是多少?A. 1/12B. 1/6C. 1/36D. 1/18答案:B. 1/62. 计算题2.1 有一个有12个不同数字的骰子,抛出两次。

求两次得到的和是偶数的概率。

答案:一共有6 * 6 = 36 种可能的结果。

其中,和为偶数的情况有:(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), (5,3), (5,5), (6,2), (6,4), (6,6) 共计18种。

因此,所求概率为18/36 = 1/2。

2.2 一副扑克牌中,黑桃、红桃、梅花、方块各有13张,从中抽取五张牌,求至少有一张黑桃的概率。

答案:总共抽取5张牌,共有C(52,5)种取法。

不抽取黑桃的情况有C(39,5)种取法。

因此,至少有一张黑桃的情况有C(52,5) - C(39,5) 种取法。

所求概率为[C(52,5) - C(39,5)] / C(52,5)。

3. 应用题3.1 有甲、乙两个工人分别制作产品A和产品B,已知甲的合格率为85%,乙的合格率为90%。

如果随机抽查一件产品是合格的,求这件产品是乙制作的概率。

答案:假设事件A为产品合格,事件B为产品由乙制作。

根据题意,可得P(A|B) = 90%,P(A|B') = 85%,P(B) = 1/2,P(B') = 1/2。

概率试题及答案

概率试题及答案

概率试题及答案### 概率试题及答案题目1:一个袋子里有5个红球和3个蓝球,随机从袋子里取出一个球,然后放回。

再取出一个球。

求两次取出的球都是红球的概率。

解答:首先,我们定义事件A为第一次取出红球,事件B为第二次取出红球。

- 事件A发生的概率P(A)为红球数除以总球数,即P(A) = 5/8。

- 由于取出的球放回,事件B发生的概率与事件A相同,即P(B) =5/8。

我们需要计算的是两次事件都发生的概率,即P(A∩B)。

由于这两个事件是独立的,我们可以使用乘法法则计算:\[ P(A∩B) = P(A) \times P(B) = \frac{5}{8} \times \frac{5}{8} = \frac{25}{64} \]题目2:一个班级有30名学生,其中有15名男生和15名女生。

随机选取5名学生参加一个活动,求至少有2名男生的概率。

解答:我们可以使用组合来解决这个问题。

首先计算总的选取方式,然后计算没有男生或只有1名男生的选取方式。

- 总的选取方式是从30名学生中选取5名,即C(30, 5)。

- 没有男生的方式是从15名女生中选取5名,即C(15, 5)。

- 只有1名男生的方式是从15名男生中选取1名,从15名女生中选取4名,即C(15, 1) * C(15, 4)。

至少有2名男生的概率是1减去没有男生或只有1名男生的概率:\[ P(\text{至少2名男生}) = 1 - \frac{C(15, 5) + C(15, 1)\times C(15, 4)}{C(30, 5)} \]题目3:一个工厂有3条生产线,每条生产线每天生产1000个产品。

每条生产线每天出现次品的概率是0.01。

求至少有一条生产线出现次品的概率。

解答:我们可以使用对立事件的概念来解决这个问题。

首先计算所有生产线都没有次品的概率,然后用1减去这个概率。

- 每条生产线没有次品的概率是1 - 0.01 = 0.99。

- 所有生产线都没有次品的概率是0.99^3。

(完整版)概率初步测试题含答案

(完整版)概率初步测试题含答案

第二十五章 概率初步一、填空题(每题4分,共24分)1.一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是________.2.从1~9这9个自然数中任取一个,是4的倍数的概率是________.3.在一个不透明的口袋中,有若干个红球和白球,它们除颜色外无其他差别,从中任意摸出一个球,摸到红球的概率是0.75,若白球有3个,则红球有________个.4.田大伯为了与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘里先捞出200条鱼,做上标记后再放入鱼塘,经过一段时间后他又捞出300条,发现有标记的鱼有20条,则估计田大伯的鱼塘里有________条鱼.5.如图25-Z -1所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在阴影区域的概率是________.二、选择题(每题4分,共32分)7.下列事件中,是必然事件的为( )A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩8.气象台预测“本市明天降雨的概率是80%”,对预测理解正确的是( )A .本市明天有80%的地区降雨B .本市明天将有80%的时间降雨C .明天出行不带雨具可能会淋雨D .明天出行不带雨具肯定会淋雨9.下列图形: 任取一个是中心对称图形的概率是( )A.14B.12C.34D .1 10.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外没有其他区别.若从这个盒子中随机摸出1个球,是黄球的概率是35,则盒子中黄球的个数是( )A .2B .4C .6D .811.在一个不透明的袋子里有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出1个球记下颜色后放回,再随机摸出1个球,则两次都摸到白球的概率为( )A.116B.18C.14D.1212.若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465,则由1,2,3这三个数字构成的数字不重复的三位数是“凸数”的概率是( )A.13B.12C.23D.5613.某火车站的显示屏每隔4分钟显示一次火车班次的信息,显示时间持续1分钟.某人到达该车站时,显示屏上正好显示火车班次信息的概率是( )A.16B.15C.14D.1314.小杰和爸爸妈妈一起去奥体中心看球赛,他们买了3张连号的票,小杰挨着爸爸坐的概率是( )A.12B.13C.23D.34三、解答题(共44分)15.(10分)有四张背面完全相同的纸牌A ,B ,C ,D ,其中正面分别画有四个不同的几何图形(如图25-Z -3),小华将这4张纸牌背面朝上洗匀后摸出1张,放回洗匀后再摸出1张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示);(2)求摸出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.图25-Z -316.(10分)九年级学生在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选其中一种),表示两次摸出的小球上标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.17.(12分)将正面分别标有数字2,3,4的三张形状、大小一样的卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张卡片,求抽到奇数的概率;(2)随机地抽取一张卡片,将卡片上标有的数字作为十位上的数字(不放回),再随机地抽取一张卡片,将卡片上标有的数字作为个位上的数字,组成的两位数恰好是“23”的概率是多少?18.(12分)中央电视台的《中国诗词大会》节目文化品位高,内容丰富,某校八年级模拟开展“中国诗词大会”比赛,对全年级同学成绩进行统计后分为“优秀”“良好”“一般”“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:图25-Z-5(1)扇形统计图中“优秀”所对应的扇形的圆心角为________度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大会”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.9、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条10、有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( ) A . 23 B .12C .15D .1312、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )A .15个B .20个C .30个D .35个23、甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,(1)请用树状图法或列表法,求恰好选中甲、乙两同学的概率;(2) 若已确定甲打第一场,再从其余三位同学中随机选出一位,求恰好选中乙同学的概率.教师详解详析1.162.29 3.9 4.3000 5.126.0.5 10 7.C 8.C 9.C 10.C 11.C 12.A 13.B 14.C15.解:(1)画树状图得:则共有16种等可能的结果,即(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ).(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的有4种结果,∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率为416=14. 16.解:(1)列表如下:(2)∴P(中奖)=39=13. 17.解:(1)P(抽到奇数)=13. (2)∴P(组成的两位数恰好是“23”)=16. 18.解:(1)360°×(1-40%-25%-15%)=72°.全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人).将条形统计图补充完整,如图所示:(2)画树状图,共有12种等可能的结果,选中的两名同学恰好是甲、丁的结果有2种,∴P(选中的两名同学恰好是甲、丁)=212=16.。

概率基础测试题及答案解析

概率基础测试题及答案解析
故选C
4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
【答案】C
【解析】
【分析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
所以小斌和小宇两名同学选到同一课程的概率= ,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
6.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是( )
概率基础测试题及答案解析
一、选择题
1.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()
A.小于 B.等于 C.大于 D.无法确定
【答案】B
【解析】
【分析】
根据概率的意义分析即可.
【详解】
解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是
∴抛掷第100次正面朝上的概率是
【点睛】
本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.
14.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()
A.大于 B.等于 C.小于 D.无法确定
【答案】B

概率初步精选练习题(含答案)

概率初步精选练习题(含答案)

概率初步练习题一、选择题1、“任意买一张电影票,座位号是2的倍数”,此事件是( )A .不可能事件B .不确定事件C .必然事件D .以上都不是2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( ) A .21 B .31 C .32 D .61 3、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( )A .21 B . 32 C .51 D .101 4、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( )A .21P P >B . 21P P <C . 21P P =D .以上都有可能5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A .201B . 10019C .51 D .以上都不对二、填空题6、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______.7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______.8、任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.9、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.10、在数学兴趣小组中有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_______.11、布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球的概率是_________.12、有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任取一组,则:(1)P (抽到两位数)= ;(2)P (抽到一位数)= ;(3)P (抽到的数大于8)= ;13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s .小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________.14、如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是_______.15、(2011山东烟台中考题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16、若从一个不透明的口袋中任意摸出一球是白球的概率为61,已知袋中白球有3个,则袋中球的总数是________。

概率基础测试题及答案

概率基础测试题及答案

D. 2 16
∴米粒落在阴影部分的概率为 2 4 2 ,
4
2
故选 A.
【点睛】 本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.
9.袋中有 8 个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇
匀后又摸出一球,再记下颜色,做了 50 次,共有16 次摸出红球,据此估计袋中有黑球
D、明天气温高达 30C ,一定能见到明媚的阳光是随机事件,故 D 错误;
故选:B. 【点睛】 本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题 的关键.
4.从﹣1、2、3、﹣6 这四个数中任取两数,分别记为 m 、 n ,那么点 m, n 在函数
y 6 图象的概率是( ) x
( )个.
A.15
B.17
C.16
D.18
【答案】B 次,其中 16 次摸到红球,则摸到红球与摸到黑球的次数之比为 8: 17,由此
可估计口袋中红球和黑球个数之比为 8: 17;即可计算出黑球数.
【详解】
∵共摸了 50 次,其中 16 次摸到红球,∴有 34 次摸到黑球,∴摸到红球与摸到黑球的次
概率基础测试题及答案
一、选择题
1.下列说法正确的是( ) A.检测某批次灯泡的使用寿命,适宜用全面调查 B.“367 人中有 2 人同月同日生”为必然事件 C.可能性是 1%的事件在一次试验中一定不会犮生 D.数据 3,5,4,1,﹣2 的中位数是 4 【答案】B 【解析】 【分析】 根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、 随机事件的概念进行判断. 【详解】 检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A 错; 一年有 366 天所以 367 个人中必然有 2 人同月同日生,B 对; 可能性是 1%的事件在一次试验中有可能发生,故 C 错; 3,5,4,1,-2 按从小到大排序为-2,1,3,4,5,3 在最中间故中位数是 3,D 错. 故选 B. 【点睛】 区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事 件、随机事件的概念.

2024年数学概率初步认识基础练习题六年级下册(含答案)

2024年数学概率初步认识基础练习题六年级下册(含答案)

2024年数学概率初步认识基础练习题六年级下册(含答案)试题部分一、选择题:1. 下列哪个事件是必然事件?()A. 从一副去掉大小王的扑克牌中随机抽取一张牌,抽到红桃B. 抛掷一个正常的六面骰子,向上一面的点数小于7C. 抽取一个数字,这个数字既是偶数又是质数D. 抛掷一枚硬币,正面朝上2. 下列哪个事件是不可能事件?()A. 一年有13个月B. 人的身高超过3米C. 一个星期有8天D. 一根绳子的长度为负数3. 从一副52张的扑克牌中随机抽取一张牌,抽到黑桃的概率是()A. 1/4B. 1/2C. 1/13D. 1/264. 一个袋子里有5个红球,3个蓝球,2个黄球,从中随机抽取一个球,抽到红球的概率是()A. 5/10B. 5/12C. 1/2D. 2/55. 下列哪个游戏是公平游戏?()A. 抛硬币,正面朝上甲方赢,反面朝上乙方赢B. 抛骰子,点数大于3甲方赢,点数小于等于3乙方赢C. 抽扑克牌,红桃甲方赢,黑桃乙方赢D. 抽球,红色球甲方赢,蓝色球乙方赢6. 两个相同的骰子同时抛掷,两个骰子向上一面的点数之和为7的概率是()A. 1/6B. 1/12C. 5/36D. 1/97. 一个转盘被分成8个等大的扇形区域,其中4个区域涂成红色,2个区域涂成蓝色,2个区域涂成绿色。

转动转盘,指针停在红色区域的概率是()A. 1/2B. 1/4C. 1/3D. 1/88. 下列哪个事件的概率为0?()A. 从一副扑克牌中抽取一张牌,抽到大小王B. 抛掷一个正常的六面骰子,向上一面的点数为7C. 抽取一个数字,这个数字小于1D. 抛掷一枚硬币,硬币竖立不倒9. 下列哪个事件的概率为1?()A. 从一副扑克牌中抽取一张牌,抽到方块B. 抛掷一个正常的六面骰子,向上一面的点数小于6C. 抽取一个数字,这个数字大于0D. 抛掷一枚硬币,正面朝上或反面朝上10. 一个袋子里有10个球,其中3个是白球,7个是黑球。

2024年数学统计与概率的初步认识基础练习题六年级下册(含答案)

2024年数学统计与概率的初步认识基础练习题六年级下册(含答案)

2024年数学统计与概率的初步认识基础练习题六年级下册(含答案)试题部分一、选择题:1. 下列哪个图形可以表示一个事件发生的可能性?()A. 长方形B. 正方形C. 圆形D. 梯形2. 下列哪个游戏是公平的?()A. 抛硬币,正面朝上算赢B. 抛骰子,点数大于3算赢C. 抽扑克牌,红桃算赢D. 投篮比赛,每人投10次,进球多者赢A. 概率大于1的事件一定不可能发生B. 概率等于0的事件一定不可能发生C. 概率等于1的事件一定会发生D. 概率等于0.5的事件发生的可能性是50%4. 一个袋子里有5个红球,3个蓝球,2个黄球,从中随机摸出一个球,摸到红球的可能性是()A. 5/10B. 3/10C. 2/10D. 1/105. 下列哪个事件属于随机事件?()A. 太阳从东方升起B. 掷骰子,掷出6点C. 一年有365天D. 正方形有四条边6. 下列哪个游戏不公平?()A. 抛硬币,正面朝上算赢B. 抽扑克牌,黑桃算赢C. 抛骰子,点数小于4算赢D. 投篮比赛,每人投10次,进球多者赢7. 一个班级有40人,其中有20人会游泳,25人会骑自行车,15人既会游泳又会骑自行车,那么至少有多少人不会游泳也不会骑自行车?()A. 5B. 10C. 15D. 208. 下列哪个图形可以表示一个必然事件?()A. 空心圆B. 实心圆C. 半圆D. 椭圆9. 下列哪个说法是错误的?()A. 概率是表示事件发生可能性大小的数值B. 概率的取值范围是0到1C. 必然事件的概率是1D. 不可能事件的概率是010. 一个箱子里有6个球,编号为1、2、3、4、5、6,随机取出一个球,取出编号为偶数的可能性是()A. 1/2B. 1/3C. 1/4D. 1/6二、判断题:1. 抛硬币时,正面朝上的可能性比反面朝上的可能性大。

()2. 一个事件的概率越大,发生的可能性就越大。

()3. 概率等于0的事件是不可能事件。

()4. 概率等于1的事件是必然事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率基础测试题附答案一、选择题1.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰【答案】D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A.23B.29C.13D.19【答案】B【解析】【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为29;故选:B.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解5.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】点(),m n在函数6yx=的图象上,6 mn∴=.列表如下:mn的值为6的概率是41 123=.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.6.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.7.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn =.8.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.13【答案】D【解析】【分析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C 、D 是半圆O 的三等分点, ∴==AC CD DB ,∴∠AOC =∠COD =∠DOB =60°, ∵OC=OD ,∴△COD 是等边三角形, ∴OC=OD=CD , ∵2CD =,∴2OC OD CD ===, ∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°, ∴∠ODB =∠COD =60°, ∴OC ∥BD , ∴=BCDBODSS,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD ,飞镖落在阴影区域的概率21233ππ=÷=, 故选:D . 【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .19【答案】A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( )A.12B.14C.35D.23【答案】D【解析】【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案【详解】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:46=23.【点睛】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.已知实数0a ,则下列事件是随机事件的是()A .0a ≥B .10a +>C .10a -<D .210a +<【答案】B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是( )A .指针落在标有5的区域内B .指针落在标有10的区域内C .指针落在标有偶数或奇数的区域内D .指针落在标有奇数的区域内【答案】C 【解析】 【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可. 【详解】解:A 、指针落在标有5的区域内的概率是18; B 、指针落在标有10的区域内的概率是0;C 、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.13.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为16,故选D.14.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .15.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流. A .1 B .2C .3D .4【答案】B 【解析】 【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握:必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.16.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是()A.116B.716C.14D.18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份,因此,获得签字笔的概率为:41 164,故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.17.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是()A.34B.38C.916D.23【答案】C【解析】【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出.【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P ,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.19.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.20.如图,由四个直角边分别是6和8的全等直角三角形拼成的“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF部分的概率是()A .34B .14C .124D .125【答案】D【解析】【分析】求出AB,HG的边长,进而得到正方形GHEF 的面积和四个小直角三角形的面积,求出比值即可.【详解】解:∵AH=6,BH=8,勾股定理得AB=10,∴HG=8-6=2,S△AHB=24,∴S正方形GHEF =4,四个直角三角形的面积=96,∴针扎在小正方形GHEF 部分的概率是1004=125故选D.【点睛】本题考查了几何概型的实际应用,属于简单题,将概率问题转换成求图形的面积问题是解题关键.。

相关文档
最新文档