六年级奥数专项用倒推法解题定稿版
六年级上册奥数第12讲 倒推法解题
第12讲倒推法解题讲义专题简析倒推法解题是从最后的结果出发,运用加和减、乘和除之间的互逆关系,从后往前一步一步地推算,直到找到最初的数据,这种方法又常被称为“还原法”。
适合用倒推法解题的数学问题常满足以下条件:已知最后的结果和到达最后结果时的每一步具体的过程。
例1、筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还剩500米。
这段公路全长多少米?练习:1、一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走。
这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多3公顷,还剩下35公顷没有耕。
这块地共有多少公顷?3、一批水泥,第一天用去多1吨,第二天用去余下的少2吨,还剩下16吨。
原来这批水泥有多少吨?例2、王大伯屋后有一棵桃树。
他孙子每天从树上摘下一些桃子和邻居的小伙伴分着吃,第一天摘下桃子总个数的合,以后8天分别摘下当天树上现有桃子的、、、…、,摘了9天,树上还留下10个桃子。
树上原来有多少个桃子?练习:1、把一根绳子对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米。
这根绳子原来长多少米?2、《九章算术》中有一道题:“今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五斗。
问持米几何?”题意是:有人背米过关卡,经过外关时,用全部米的纳税,过中关时用所余米的纳税,经过内关时用再余米的纳税,最后还剩下5斗米。
这个人原来背多少斗米出关?3、仓库里存粮若干吨,第一次运出总数的又4吨,第二次运出余下的又3吨,第三次运出余下的又5吨,最后还剩下12吨。
这个仓库原有粮食多少吨?例3、有甲、乙两桶油,从甲桶中倒出的油给乙桶后,又从乙桶中倒出的油给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有油多少千克?练习:1、小华拿出自己画片张数的给小强,小强再从自己现有的画片张数中拿出给小华,这时两人各有画片12张。
原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出自己所有钱的给乙后,乙又拿出现在自己所有钱的给甲,这时他们各有90元。
小学六年级上奥数教程:第十二讲 倒推法解题--学生版
第12讲倒推法解题【解题秘钥】有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
【经典例题】例题1:一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?例题2:筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?例题3:有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1.小华拿出自己的画片的1/5给小强,小强再从自己现有的画片中拿出1/4给小华,这时两人各有画片12张,原来两人各有画片多少张?2.甲、乙两人各有人民币若干元,甲拿出1/5给乙后,乙又拿出1/4给甲,这时他们各有90元,他们原来各有多少元?例题4:甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?练习4:1.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。
六年级奥数专项(用倒推法解题)资料
用 倒 推 法 解 题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米?模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨?例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨?模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二只分到余下的23 少4个,第三只分到20个。
这筐桃子共有多少个?(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是10.8。
那么,被擦掉的那个自然数是多少?模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517 。
擦去的数是多少?(奥赛初赛A 卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒?模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时?【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁?2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少?(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
小学六年级奥数第12讲 倒推法解题(含答案分析)
第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
六年级奥数专项用倒推法解题
六年级奥数专项用倒推法解题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】用倒推法解题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米模仿练习1:一堆水泥,第一次用去它的12又3吨,第二次用剩下水泥的13又3吨,第三次又用去第二次余下的14又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15运到甲仓库,再将甲仓库此时存粮的14运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27多12个,第二只分到余下的23少4个,第三只分到20个。
这筐桃子共有多少个(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是。
那么,被擦掉的那个自然数是多少模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517。
擦去的数是多少(奥赛初赛A卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
小学六年级奥数-倒推法解题
二、精讲精练
甲仓库原来占两仓库和的几分之几?
1/3÷(1-1/4)=4/9 原来甲仓库时乙仓库的几分之几?
4÷(9-4)=4/5 答:原来甲仓库的粮食是乙仓库的4/5。
甲、乙两个仓库各有粮食若干吨,从甲仓库运出1/3到乙仓库后,又从乙仓库运出1/3到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?
C
练习2:
二、精讲精练
二、精讲精练
【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油? 【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。 甲:【24×2-24÷(1-1/5)】÷(1-1/3)=27(千克) 乙:24×2-27=21(千克) 答:甲桶原有油27千克,乙桶原有油21千克。
路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米? 【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。列式为: 【500÷(1-2/7)+100】÷(1-1/5)=1000米 答:这段公路全长1000米。
某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?
六年级奥数:第12讲 倒推法解题
第12講 倒推法解題一、知識要點有些應用題如果按照一般方法,順著題目的條件一步一步地列出算式求解,過程比較繁瑣。
所以,解題時,我們可以從最後的結果出發,運用加與減、乘與除之間的互逆關係,從後到前一步一步地推算,這種思考問題的方法叫倒推法。
二、精講精練【例題1】一本文藝書,小明第一天看了全書的31,第二天看了餘下的53,還剩下48頁,這本書共有多少頁?練習1:1、某班少先隊員參加勞動,其中73的人打掃禮堂,剩下隊員中的85打掃操場,還剩12人打掃教室,這個班共有多少名少先隊員?2、一輛汽車從甲地出發,第一天走了全程的83,第二天走了餘下的32,第三天走了250千米到達乙地。
甲、乙兩地間的路程是多少千米?3、把一堆蘋果分給四個人,甲拿走了其中的61,乙拿走了餘下的52,丙拿走這時所剩的43,丁拿走最後剩下的15個,這堆蘋果共有多少個?【例題2】築路隊修一段路,第一天修了全長的51又100米,第二天修了餘下的72 ,還剩500米,這段公路全長多少米?練習2:1、一堆煤,上午運走72,下午運的比餘下的31還多6噸,最後剩下14噸還沒有運走,這堆煤原有多少噸?2、用拖拉機耕一塊地,第一天耕了這塊地的31又2公頃,第二天耕的比餘下的21多3公頃,還剩下35公頃,這塊地共有多少公頃?3、一批水泥,第一天用去了21多1噸,第二天用去了餘下31少2噸,還剩下16噸,原來這批水泥有多少噸?【例題3】有甲、乙兩桶油,從甲桶中倒出31給乙桶後,又從乙桶中倒出51給甲桶,這時兩桶油各有24千克,原來甲、乙兩個桶中各有多少千克油?練習3:1、小華拿出自己的畫片的51給小強,小強再從自己現有的畫片中拿出41給小華,這時兩人各有畫片12張,原來兩人各有畫片多少張?2、甲、乙兩人各有人民幣若干元,甲拿出51給乙後,乙又拿出41給甲,這時他們各有90元,他們原來各有多少元?【例題4】甲、乙、丙三人共有人民幣168元,第一次甲拿出與乙相同的錢數給乙;第二次乙拿出與丙相同的錢數給丙;第三次丙拿出與這時甲相同的錢數給甲。
(完整word版)六年级倒推法解题
倒推法解题【知识点】有些应用题如果按照一般方法, 顺着题目的要求一步一步地列出算式求解, 过程比较繁琐, 量与量之间的关系也不好找。
对于这种类型的应用题, 解题时, 我们可以从最后的结果出发, 运用加与减、乘与除之间的互逆关系, 从后往前一步一步推算, 这种思考问题的方法就叫倒推法。
运用这种方法, 反向倒推过去, 反而易于解决问题。
【练习题】1. 张大爷提篮去卖蛋, 第一次卖了全部的一半又半个, 第二次卖了余下的一半又半个, 第三次卖了第二次余下的一半又半个, 第四次卖了第三次余下的一半又半个。
这时, 鸡蛋都卖完了。
问张大爷篮中原来有鸡蛋多少个?(15)2.三只猴子去吃篮里的桃子, 第一只猴子吃了, 第二只猴子吃了剩下的, 第三只猴子吃了第二只剩下的, 最后篮子里还剩下6只桃子。
原有桃子多少只?(18)3.一捆电线, 第一次用去全长的一半多3米, 第二次用去余下的一半少10米, 第三次用去15米, 最后还剩7米。
这捆电线原有多少米?(54)4.修一段路, 第一天修全路的还多2千米, 第二天修余下的少1千米, 第三天修余下的还多1千米, 这样还剩下20千米没有修完, 求公路的全长?(85)5.一只猴子偷吃桃子, 它第一天偷吃了树上桃子的, 以后的8天每天偷吃树上桃子的、、……, 这时树上还剩下10个桃子。
问树上原来有多少个桃子?(100)6. 甲、乙二人分16个苹果, 分完后, 甲将自己所得苹果数的分给了乙, 乙又将自己现有苹果数的还给甲;最后甲又将自己现有苹果数的给了乙, 这时两人苹果数恰好相等。
问: 最初甲分得几个苹果?(15)一瓶酒精, 第一次倒出, 然后倒回瓶中40克, 第二次倒出瓶中剩下酒精的, 第三次倒出180克, 瓶中还剩下60克。
问原来瓶中有酒精多少克?(750)8、甲、乙、丙三人共有人民币168元, 第一次甲拿出与乙相等的钱给乙;第二次乙拿出与丙相等的钱给丙;第三次丙拿出与甲相等的钱给甲, 这时, 三人的钱刚好相等。
六年级奥数培优 应用题之倒退法解题
六年级奥数培优 应用题倒推法解题1、理解三类基本倒推法应用题的分析思考方法;2、会根据题目的特征画出合适的图示进行分析解答。
例题1、一个数乘以7后,再加上7,结果再除以7,最后再减7,此时结果为7.原来这个数是多少?举一反三1、一个数减去5,再乘以5,加上5,最后再除以5,结果得2.这个数原来是多少?2、王老师今年年龄除以4,再加上4,再乘以4,最后减去4,结果得44.王老师明年多少岁考点归纳学习思考例题2、一堆西瓜,第一次卖出总数的41又4个,第二次卖出余下的21又2个,第三次又卖出余下的21又2个,还剩2个。
这堆西瓜共有多少个?举一反三 1、一批水泥,第一天用去了21多1吨,第二天用去了余下的31少2吨,还剩下16吨。
原来水泥有多少吨?2、仓库存量若干吨,第一天运了总数的101,以后8天分别运了现有存量的,71,81,91……,21,31,运了9天后,仓库还剩2015吨。
仓库原存量多少吨?例题3、甲、乙各存款若干元,甲拿了存款的51给乙后,乙再拿出现有存款的41给甲,这时他们各有180元。
两人原存款多少元?举一反三1、有甲、乙两桶油,从甲桶中倒出31油给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有36千克。
原来甲、乙两个桶中各有油多少千克?2、甲、乙两瓶酒精共有200千克,甲倒出20%给乙后,乙又倒出这时酒精的25%给甲,结果两瓶酒精的重量相等。
原来甲、乙两瓶酒精各有多少千克?1、一个数除以8后,再加上8,最后再减去8得6.这个数原来是多少?2、一堆煤,第一天运了总数的40%后,第二天运了余下的40%少12吨,结果还剩42吨。
原来这批煤共有多少吨?3、甲、乙两筐梨共有240千克,第一次甲拿20%给乙,第二次乙又拿了这时的31给甲,此时两筐梨的重量比为3:2。
原来两筐梨的重量各是多少千克?自我检测。
小学六年级奥数 第12讲 倒推法解题~例2
2 7
,还剩500米,这段公路全长多
少米?
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
2 7
,还剩500米,这段公路全长多
少米?
思路导航
从“还剩500米”入手倒着往前推,它占余下的1-2/7= 57,第一天修后还剩500÷5/7=700米,如果第一天正好修 全长的1/5,还余下700+100=800米,这800米占全长的1 -1/5=4/5,这段路全长800÷4/5=1000米。
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
2 7
,还剩500米,这段公路全长多
少米?
第二天没修之前(第一天修后剩下):
500÷(1-
2 7
)=
700(米)
第一天没修之前(原来):
(700+100)÷(1-
1 5
)=
1000(米)
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
知识要点
有些应用题如果按照一般方法,顺着题目的条件一步 一步地列出算式求解,过程比较繁琐。所以,解题时,我 们可以从最后的结果出发,运用加与减、乘与除之间的互 逆关系,从后到前一步一步地推算,这种思考问题的方法 叫倒推法。
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
3、一批水泥,第一天用去了
1 2
多1吨,第二天用去了
余下
1 3
少2吨,还剩下16吨,原来这批水泥有多少吨?
六年级奥数第12周.倒推法解题
有甲、乙两桶油,从甲桶中倒出 给乙桶后,又从乙桶中倒出 给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?
疯狂操练3
1.小华拿出自己画片的 给小强,小强再从自己现有的画片中拿出 给小华,这时两人各有画片12张,原来两人各有画片多少张?
2.甲、乙两人各有人民币若干元,甲拿出 给乙后,乙又拿出 给甲,这时他们各有90元,他们原来各有多少元?
2.《九章算术》中有一道题:“今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五斗。问持米几何?”题意是:有人背米过关卡,经过外关时,用全部米的 纳税,过中关时用所余的 纳税,经过内关时用再余的 纳税,最后还剩下5斗米。这个人原来背多少斗米出关?
3.仓库里存粮若干吨,第一次运出总数的 又4吨,第二次运出余下的 又3吨,第三次运出余下的 又5吨,最后还剩下12吨。这个仓库原有粮食多少吨?
【500÷(1-2/7)+100】÷(1-1/5)=1000米
答:这段公路全长1000米。
练习2:
1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?
2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?
3.一瓶酒精,第一次倒出 ,然后倒回瓶中40克,第二次再倒出瓶中酒精的 ,第三次倒出180克,瓶中还剩下60克,原来瓶中有多少克酒精?
王牌例题4
甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?
疯狂操练4
小学六年级奥数第12讲 倒推法解题(含答案分析)
第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
六年级奥数专项(用倒推法解题)演示教学
用 倒 推 法 解 题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13又1米;此时还剩下15米。
这条铁丝原来长多少米?模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨?例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库和乙仓库中各存粮多少吨?模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二只分到余下的23 少4个,第三只分到20个。
这筐桃子共有多少个?(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是10.8。
那么,被擦掉的那个自然数是多少?模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数的平均数是35517 。
擦去的数是多少?(奥赛初赛A 卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒?模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时?【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁?2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少?(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。
六年级奥数倒推法解题
六、倒推法解题班级 姓名例1、张大爷提篮去卖蛋,第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个。
这时,鸡蛋都卖完了。
张大爷篮中原有鸡蛋多少个?例2、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。
这捆电线原有多少米?例3、李白买酒:“无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。
”试问壶里原有多少酒?例4、甲、乙、丙三人各有画片若干张,要求互相赠送,先由甲送给乙、丙,所送张数等于乙、丙原来的张数。
再由乙送给甲、丙现在的张数,最后由丙送给甲、乙现在的张数,互送后每人各有32张,问原来各有画片多少张?例5、3只猴子吃篮里的桃子,第一只猴子吃了13 ,第二只猴子吃了剩下的13,第三只猴子吃了第二只剩下的14,最后篮里还剩下6只桃子。
问篮里原有桃子多少只?例6、修一段路,第一天修全路的12 还多2千米,第二天修余下的13少1千米,第三天修余下的14还多1千米,这样还剩下20千米没有修完,求公路的全长。
练习六1、货场原有煤若干吨。
第一次运出存煤的一半,第二次运进450吨,第三次又运出现有煤的一半又50吨,结果还剩600吨。
货场原存煤多少吨?2、小芳从家带来鸡蛋,第一天吃了全部的一半又半个,第二天吃了余下的一半又半个,第三天再吃余下的一半又半个,恰恰吃完。
小芳从家带了几个鸡蛋?3、仓库里的水泥要全部运走。
第一次运走了全部的12 又12吨,第二次运走了剩余的13 又13 吨,第三次运走了第二次余下的14 又14吨,第四次运走了第三次余下的15 又15吨,第五次运走了最后剩下的19吨。
这个仓库原来共有水泥多少吨?4、把180个苹果按每个人一个分给甲、乙、丙、丁四个幼儿班小朋友。
如果甲班人数加2,乙班人数减2,丙班人数乘以2,丁班人数除以2,四个班人数则相等。
这四个班各应分多少个?5、甲、乙、丙三个小朋友按下列方法分配苹果:甲取了全部的13又8个,乙取所剩的13 又8个,丙取了最后余下的13和所剩下的8个。
六年级奥数分册第12周 倒推法解题-名校版
第十二周 倒推法解题专题简析:有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
例题1。
一本文艺书,小明第一天看了全书的13 ,第二天看了余下的35,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35 =25。
第一天看后还剩下48÷25 =120页,这120页占全书的1-13 =23 ,这本书共有120÷23=180页。
即48÷(1-35 )÷(1-13 )=180(页)答:这本书共有180页。
练习11. 某班少先队员参加劳动,其中37 的人打扫礼堂,剩下队员中的58打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2. 一辆汽车从甲地出发,第一天走了全程的38 ,第二天走了余下的23,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米? 3. 把一堆苹果分给四个人,甲拿走了其中的16 ,乙拿走了余下的25,丙拿走这时所剩的34 ,丁拿走最后剩下的15个,这堆苹果共有多少个?例题2。
筑路队修一段路,第一天修了全长的15 又100米,第二天修了余下的27,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27 =57,第一天修后还剩500÷57 =700米,如果第一天正好修全长的15,还余下700+100=800米,这800米占全长的1-15 =45 ,这段路全长800÷45 =1000米。
列式为:【500÷(1-27 )+100】÷(1-15 )=1000米答:这段公路全长1000米。
练习21. 一堆煤,上午运走27 ,下午运的比余下的13还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨? 2. 用拖拉机耕一块地,第一天耕了这块地的13 又2公顷,第二天耕的比余下的12多3公顷,还剩下35公顷,这块地共有多少公顷?3. 一批水泥,第一天用去了12 多1吨,第二天用去了余下13少2吨,还剩下16吨,原来这批水泥有多少吨?例题3。
举一反三-六年级奥数分册~第12周 倒推法解题
第十二周倒推法解题专题简析:有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
例题1。
一本文艺书,小明第一天看了全书的13,第二天看了余下的35,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35=25。
第一天看后还剩下48÷25=120页,这120页占全书的1-13=23,这本书共有120÷23=180页。
即48÷(1-35)÷(1-13)=180(页)答:这本书共有180页。
练习11.某班少先队员参加劳动,其中37的人打扫礼堂,剩下队员中的58打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的38,第二天走了余下的23,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的16,乙拿走了余下的25,丙拿走这时所剩的34,丁拿走最后剩下的15个,这堆苹果共有多少个?例题2。
筑路队修一段路,第一天修了全长的15又100米,第二天修了余下的27,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27=57,第一天修后还剩500÷57=700米,如果第一天正好修全长的15,还余下700+100=800米,这800米占全长的1-15=45,这段路全长800÷45=1000米。
列式为:【500÷(1-27)+100】÷(1-15)=1000米答:这段公路全长1000米。
练习21.一堆煤,上午运走27,下午运的比余下的13还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的13又2公顷,第二天耕的比余下的12多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了12多1吨,第二天用去了余下13少2吨,还剩下16吨,原来这批水泥有多少吨?例题3。
六年级奥数:倒推法解题
*有些应用题如果按照一般方法,顺着题目的条件
一步一步地列出算式求解,过程比较繁琐。所以, 解题时,我们可以从最后的结果出发,运用加与 减、乘与除之间的互逆关系,从后到前一步一步 地推算,这种思考问题的方法叫倒推法。
【例题1】一本文艺书,小明第一天看了全书的1/3, 第二天看了余下的3/5,还剩下48页,这本书共有多 少页?
*500÷(1-2/7)=700(米) *求出第一天修完后剩下的米数。 *第一天修后还剩500÷5/7=700米,如果第一天正好修全长
的1/5,还余下700+100=800米,这800米占全长的1-1/5 =4/5,
从“剩下48页”入手倒着往前推, 它占余下的1-3/5=2/5。
先求出第一天余下的页数:
【例题1】一本文艺书,小明第一天看了全书的1/3, 第二天看了余下的3/5,还剩下48页,这本书共有多 少页?
第二天看了余下的3/5,还剩下48页,从“剩下48页” 入手倒着往前推,它占余下的1-3/5=2/5。
【例题1】一本文艺书,小明第一天看了全书的1/3, 第二天看了余下的3/5,还剩下48页,这本书共有多 少页?
第二天看了余下的3/5,还剩下48页,
【例题1】一本文艺书,小明第一天看了全书的1/3, 第二天看了余下的3/5,还剩下48页,这本书共有多 少页?
第二天看了余下的3/5,还剩下48页,
先求出第一天余下的页数,第一天看后还剩下 48÷2/5=120页,这120页占全书的1-1/3=2/3。 最后求出这本书的页数。
*练习1: *1.某班少先队员参加劳动,其中3/7的人打扫礼堂,
剩下队员中的5/8打扫操场,还剩12人打扫教室,这个 班共有多少名少先队员?
*2.一辆汽车从甲地出发,第一天走了全程的3/8,第
六年级上册奥数教案 倒推法解题 全国通用
课题: 倒推法解题课时:一课时教学内容:小学奥数举一反三(六年级)第十二周倒推法解题教学目标:知识与技能:使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤.过程与方法:使学生在对解决问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力.情感态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心.教学重难点重点:学会运用“倒推”的策略解决实际问题.难点:根据具体问题确定合理的解题步骤.教学过程:一、温故(1)( 4 )×3=12(2)(21 )÷3-6=1(3)小红的年纪加上9,除以2,减去2,再乘2,恰好是34岁,请问小红的年纪是多大?34÷2+2)×2-9=29(岁)答:小红的年纪是29岁.教师引导学生回顾感知倒推法,并总结倒推法的方法.(倒推法何时用:1、一个数经过某些变化,知道了结果,要求原来的那个数.2、知道每一步的过程,但如果按顺序列式求解比较繁琐)教师小结:像这样知道现在的结果,推求原来的的方法叫做倒推法.这是一种重要的解决问题的策略,今天这节课我们来深入了解它,(板书课题:倒推法解题)二、知新1、出示例题1王大伯屋后有一棵桃树.他孙子每天从树上摘下一些桃子和邻居的小伙伴分着吃,第一天摘下桃子总个数的101 ,以后8天分别摘下当天树上现有桃子的 91, 81, 71,…,31 ,21,摘了9天,树上还留下10个桃子.树上原来有多少个桃子?教师引导学生审题,分析题型,教授学生运用线段图的方法解决倒推法的题型.练习1把一根绳子对剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米.这根绳子原长多少米?三、小课总结?1、倒推法解题(还原问题)从结果出发,运用逆向思维,从后往前一步步推算,找到最初的数据.2、解题工具:倒推图、线段图四、板书设计倒推法解题五、布置作业:六、课后反思:。
[新编]六年级奥数分册第12周 倒推法解题
第十二周 倒推法解题专题简析:有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
例题1。
一本文艺书,小明第一天看了全书的13 ,第二天看了余下的35 ,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35 =25。
第一天看后还剩下48÷25 =120页,这120页占全书的1-13 =23 ,这本书共有120÷23 =180页。
即48÷(1-35 )÷(1-13 )=180(页)答:这本书共有180页。
练习11. 某班少先队员参加劳动,其中37 的人打扫礼堂,剩下队员中的58打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2. 一辆汽车从甲地出发,第一天走了全程的38 ,第二天走了余下的23,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?3. 把一堆苹果分给四个人,甲拿走了其中的16 ,乙拿走了余下的25,丙拿走这时所剩的34 ,丁拿走最后剩下的15个,这堆苹果共有多少个?例题2。
筑路队修一段路,第一天修了全长的15 又100米,第二天修了余下的27 ,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27 =57,第一天修后还剩500÷57 =700米,如果第一天正好修全长的15 ,还余下700+100=800米,这800米占全长的1-15 =45 ,这段路全长800÷45=1000米。
列式为:【500÷(1-27 )+100】÷(1-15)=1000米答:这段公路全长1000米。
练习21. 一堆煤,上午运走27 ,下午运的比余下的13还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2. 用拖拉机耕一块地,第一天耕了这块地的13 又2公顷,第二天耕的比余下的12多3公顷,还剩下35公顷,这块地共有多少公顷?3. 一批水泥,第一天用去了12 多1吨,第二天用去了余下13少2吨,还剩下16吨,原来这批水泥有多少吨?例题3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数专项用倒推法解题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】
用倒推法解题
【知识与方法】:
倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。
这种方法对于解答一些分数应用题同样适用。
【例题精讲】
例题1:有一条铁丝,第一次剪下它的1
2
又1米;第二次剪下剩下的
1
3
又1米;此时还剩下
15米。
这条铁丝原来长多少米?
模仿练习1:一堆水泥,第一次用去它的1
2
又3吨,第二次用剩下水泥的
1
3
又3吨,第三次
又用去第二次余下的1
4
又3吨,这时这堆水泥正好剩下3吨。
这堆水泥原来有多少吨
例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的1
5
运到甲仓库,再将甲仓库此时存
粮的1
4
运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。
那么,原来甲仓库
和乙仓库中各存粮多少吨?
模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的2
7
多12个,第二只分到余下
的2
3
少4个,第三只分到20个。
这筐桃子共有多少个(
竞赛决赛试题)
例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。
后来擦掉其中一个,剩下的数的平均数是10.8。
那么,被擦掉的那个自然数是多少?
模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。
其余各数
的平均数是355
17。
擦去的数是多少(
奥赛初赛A卷试题)
例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。
如果一开始就放进8个这样的细胞,要充满整个瓶的
4
1,需要多少秒?
模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要多少小时?
【巩固与提高】
1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。
小明今年多少岁
2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?
3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的1
7
,第二天它吃了余下桃子的
1
6
,第
三天它吃了余下桃子的1
5
,第四天它吃了余下桃子的
1
4
,第五天它吃了余下桃子的
1
3
,第六
天它吃了余下桃子的1
2
,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是
多少(
奥赛初赛试题)
4、学校将一批糖果发给甲、乙、丙、丁四个班。
先将全部糖果的1
3
减去
2
3
千克给甲班,再
把余下的1
4
加上
1
2
千克给乙班,又把余下的一半给丙班,最后把剩余的一半加上
1
2
千克给丁
班,这时学校还剩5千克。
这批糖果有多少千克(
邀请赛试题)
5、☆小明每分钟吹一次肥皂泡,每次恰好吹出100个。
肥皂泡吹出之后,经过一分钟有一半破了,经过二分钟还有二十分之一没有破,经过两分半钟全部肥皂泡破了。
小明在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有多少个(
奥赛决赛试题)
6、☆王老师在黑板上写了若干个连续自然数1、2、3、……,然后擦去其中的一个合数与
两个质数,剩下的数的平均数是95
6。
那么,王老师在黑板上共写了多少个数擦去的合
数最大是多少。