什么是侧向抽芯机构

合集下载

注射模具的侧抽芯机构

注射模具的侧抽芯机构

侧抽芯机构的动作顺序
01
02
03
开模
模具开始分开,滑块在斜 锲作用下开始进行抽芯动 作。
抽芯
滑块继续沿着导滑槽滑动, 直至侧型芯完全抽出。
复位
斜锲推动滑块回到初始位 置,完成侧型芯的复位。
03 侧抽芯机构
主要用于将成型产品从模具中顺利脱出,减少产品与 模具的摩擦和损坏。
调整与更换
根据需要调整机构的参数或更换磨损部件, 保持机构性能稳定。
清洁与润滑
定期对机构进行清洁和润滑,以减少磨损和 摩擦,延长使用寿命。
记录与报告
对维护保养过程进行记录,及时报告异常情 况,以便及时处理。
侧抽芯机构的常见故障及排除方法
抽芯动作不顺畅
抽芯力不足
检查润滑系统是否正常工作,清理或更换 润滑剂。
检查气动系统是否正常工作,调整气动压 力或更换磨损部件。
抽芯位置不准确
抽芯机构卡死
检查传感器和控制系统是否正常工作,调 整传感器位置或校准控制系统。
检查机构是否有异物卡住,清理异物或更 换磨损部件。
感谢您的观看
THANKS
优化侧抽芯动作
通过调整侧抽芯动作的顺序和时间,优化侧抽芯过程,提高侧抽芯 效率。
引入智能化技术
通过引入传感器、控制器等智能化技术,实现侧抽芯机构的自动控 制和调整,提高侧抽芯精度和稳定性。
05 侧抽芯机构的制造与维护
侧抽芯机构的制造工艺流程
确定设计要求
根据模具的规格和性能要求, 确定侧抽芯机构的设计方案。
侧向分型抽芯机构
主要用于将模具的动模和定模分开,便于取出成型产 品。
特殊用途侧抽芯机构
用于满足特殊需求的侧抽芯机构,如多色注射、嵌件 安装等。

注塑成型工艺第九章侧向分型与抽芯机构

注塑成型工艺第九章侧向分型与抽芯机构
端部成半球状或锥形, 锥体角应大于斜销的倾角, 以避免斜销有效工作长度部 分脱离滑块斜孔之后,锥体 仍有驱动作用。
材料:T10A、T8A及20钢 渗碳淬火,热处理硬度在 55HRC以上,表面粗糙度Ra 不大于0.8 μm
配合:斜销与其固定板采用H7/m6或H7/n6;与滑 块斜孔采用较松的间隙配合,如H11/d11,或留有0.5~ 1mm间隙,此间隙使滑块运动滞后于开模动作,且使分 型面处打开一缝隙,使塑件在活动型芯未抽出前获得松动, 然后再驱动滑块抽芯。
与β=0(即抽芯方向垂直开模方向)情况相比,斜销倾 角相同时,所需开模行程和斜销工作长度可以减小,而开 模力和斜销所受的弯曲力将增加,其效果相当于斜销倾角 为(α+β)时的情况。
由此可 见斜销的 倾角不能 过大,以 α+β≤15~ 20°为宜, 最大不能 超过25°。
③滑块抽拔方向朝定模方向倾斜β角时[图9—9(b)]
求斜销直径的另一种方法:采用查表法来确定。查 表前,首先要计算出抽芯力Fc,根据Fc和斜销倾角由表 9-l查出最大弯曲力,然后根据最大弯曲力、侧型芯中心 线与斜销固定底面的距离Hw(图9—8,Hw=Lcosα)以及斜 销的倾角由表9—2查得斜销的直径d。
4.斜销的长度
确定了斜销倾角α、有效工作长度L和直径d之后,可
H S cot (9-2)
斜销有效工作长度L与倾角α的关系为
L S
s in
(9-3)
上两式可见:倾角α增大,为完 成抽芯所需的开模行程及斜销有效 工作长度均可减小,有利于减小模 具的尺寸。
α对斜销受力情况的影响:
抽芯时滑块在斜销作用下沿导滑槽运动,忽略摩擦 阻力时,滑块将受到下述三个力的作用[图9—8 (a)],抽 芯阻力Fc、开模阻力Fk(即导滑槽施于滑块的力)以及斜 销作用于滑块的正压力F’。由此可得抽芯时斜销所受的 弯曲力F (与F’大小相等,方向相反)。

第九章侧向抽芯机构

第九章侧向抽芯机构

第九章:侧向抽芯机构侧向抽芯机构概念与A,B板开模方向不一致的开模机构使用场合1)当胶件上存在与开模方向不一致的结构2)存在不能有脱模斜度的外侧面(比如要装配的垂直的面) 侧向抽芯机构分类1)斜导柱(或弯销)+滑块2)斜滑块3)斜顶4)液压或气动5)手动斜导柱(或弯销)+滑块侧向分型机构1、工作原理:将垂直运用分解为侧向运动2、机构组成:(见图)该机构包括斜导柱(或斜销),锁紧快,滑块,压块,定位滚珠,弹簧等3、主要设计参数:1)斜导柱倾角a: 150≤a≤250(注a尽量取小些,通常为160~200,角度与抽芯距和滑块高度有关)2)滑块斜面倾角b=a+20~303)抽芯距S=胶件侧向凹凸深度+2~5mm(当行遂道时,可以取1mm)4)斜导柱的长度L=S/sin(a)+H/cos(a),H为固定板的厚度,还可以用图解法确定5)斜导柱直径一般在8~20mm,购买比计算长2-5mm左右的顶针回来加工斜导柱直径的经验值4、设计要点1)斜导柱的固定和加工(见图)2)如何实现延时抽芯(见图),斜导柱的孔加大,做成鹅蛋型孔3)滑块的导向定位及配合精度(H7/f7),一般定位为下行用挡块,上行用弹簧,左右行用波仔加弹簧先复位机构。

4)滑块上的斜孔直径应比斜导柱大1~1.5mm5)什么情况下用压块,(A. 滑块的宽度大于80-100mm以上时,B.产品的定单大,模具的使用时间长,寿命长,C.模具的精度要求高)压块的因定(见图),用螺钉加销子6)滑块滑离导向槽的长度应不大于滑块长的三分之一7)滑块的限位装置(包括弹簧滚珠<香港叫Ball仔)定位,两种弹簧螺钉定位法)8)滑块的运水(滑块的高度,宽度较大,与熔胶的接触面大)9)滑块斜面上的镶块(主要是耐磨)10)销紧块的固定与定位11)尽量将顶针布置于侧抽芯或斜滑块在分模面上的投影范围之外,若无法做到,则必加先复位机构5、弯销侧向分型机构:该机构常用于适时抽芯,抽芯距离较长等场合,其原理和斜导柱相似,但加工较复杂,见图斜滑块抽芯机构:常用于胶件有侧凹,侧孔,抽芯距不大,但面积较大的场合1、后模斜滑块抽芯机构(见图)1)滑出长度应不小于滑块总长度的三分之一2)滑出长度L=抽芯距S/tg(a)3)斜面倾角一般在15~25度之间4)不能让胶件在脱模时留在其中一个滑块上5)上面应高出0.5mm,下面应避空0.5mm6)斜滑块推出时应有导向及限位机构7)当胶件易粘前模时,应设置滑块止动销,确保胶件留在后模8)注意有时须加先复位机构2、前模斜滑块抽芯机构(见图)其原理和结构与后模斜滑块抽芯机构基本相同,不同的是为保证弹簧推出安全可靠,须加设拉钩装置.如果与顶针发生干涉,要加先复位机构。

侧向分型及抽芯机构

侧向分型及抽芯机构
一、斜导柱(销)分型与抽芯机构
特点:结构简单、制造方便、安全可靠、应用广泛等特点。
工作原理如图所示:
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
1、斜导柱的设计 (1)斜销的结构如图
(2)斜销倾斜角a的确定 斜销倾斜角a与斜销所受的弯 曲离抽拔力开模力等有关的重 要参数,从受力图上可知如图。
b 合模定位?
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
4.楔紧块的设计
(1)楔紧块的形式
(2)楔紧块的楔角a’ 楔紧块的楔角一般取a’=a+(2。~3。)
为什麽?
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
2.滑块与导滑槽的设计
(1)侧型芯与滑块的连接形式
滑块材料一般采用 45钢或T8、T10, 热处理硬度HRC40 以上。
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
(2)侧型芯的结构
(3)滑块限位肩的位置
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
(4)滑块的导滑形式 滑块与导滑槽的配合形式(如右图)
(3)斜销直径d的计算
斜销主要承受弯曲力,可根据最大许用弯曲应力验算:
M=PI1
式中 M—最大弯距 P —斜销所受最大弯曲力
I1—弯曲力力点距斜销伸出端根部的距离


M W

即可计算斜销直径:
M
PI
d 3 0.1 3 0.1
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
锥面定位的滑块导滑槽
第十章 侧向分型与抽芯机构

侧抽芯机构

侧抽芯机构

(1)结构设计
① 斜导柱:起驱动滑块的作用。 材料:钢45、T8、T10、钢20渗碳处理 硬度:HRC55以上 光洁度:在1.6以上 倾斜角:α小于25度 头部:圆弧形 配合精度:与固定板之间用配合:H7/m6
② 滑块
结构形式:组合式、整体式 运动平稳:由与导滑槽的配合精度保证。 活动范围;由定位装置限制。
……⑧
分析:从⑧可知:当Q1不变 α↑→开模力P1↑
②代入⑥得正压力
……⑨ 当Q1不变,α↑→弯曲力P↑
结论
当抽拔阻力Q1固定时,斜导柱的倾斜角a变大, 将使开模力(P1 )弯曲力(P)均变大。
B.斜导柱的倾斜角α与L、S的关系
L——导柱有效长度 S——抽拔距 H——开模距 L=S/sinα H=S·ctgα
S1>S2
二.机动侧向分型抽芯机构
1.分类 主要有以下几种
斜导柱 斜槽 斜滑快 弯销 弹簧 楔块 齿轮齿条 斜导槽
2.斜导柱侧向分型抽芯机构
斜导柱:与开模方向成 一定角度 导滑槽: 滑块:定位装置、保持 抽芯后滑块的位置。 压紧块:防止成型时受 力而使滑块移动。
原理:开模时,开模力通过斜导柱作用于滑块,使滑块在导滑槽内移 动,完成抽芯的动作。闭模时,使斜导柱进入滑块的斜孔,使之复位。
d斜导柱台肩直径h定模板厚度d斜导柱工作部分直径倾斜角3抽芯形式主要有四种结构形式应用非常广泛但必须注意复位时滑块与顶出系统不要发生干涉现象为了实现斜导柱与滑块的相对运动定模部分要增加一个分型面因此需设顺序分型机构
一. 概述
1.侧向分型抽芯机构 活动型芯、侧向抽芯机构的概念
2.分类: (1)手动 ①开模后在模外与塑件分离 ②开模前人工直接或靠传动装置抽出型芯。 特点:模具结构简单;制模方便,周期短,劳动强度大,抽拔力和 抽拔距受到限制,适宜小批量生产。 (2)机动:依靠注射机的开模动力,开模前将活动型芯抽出 特点:模具结构复杂、制模周期长 但劳动条件改善,适宜大批量生产 (3)液压和气动:靠液压系统或气动系统抽出 有的注射机本身带抽芯油缸,比较方便。

注塑成型工艺第九章侧向分型与抽芯机构

注塑成型工艺第九章侧向分型与抽芯机构

规模将持续增长。
竞争格局日益激烈
02
随着市场的不断扩大,竞争者将不断增加,竞争格局将日益激
烈。
品牌和服务成为竞争焦点
03
在激烈的市场竞争中,品牌和服务将成为企业赢得市场份额的
关键因素。
THANK YOU
和卡滞。
安全防护设计
应确保操作人员安全,避免在 操作过程中发生意外伤害。
03
抽芯机构的工作原理
抽芯机构的分类
滑块抽芯机构
通过滑块在模具中的移动,实 现侧向分型与抽芯。
斜导槽抽芯机构
利用斜导槽控制滑块移动,实 现侧向分型与抽芯。
液压抽芯机构
利用液压系统推动滑块移动, 实现侧向分型与抽芯。
气压抽芯机构
选择合适的驱动方式
根据生产需求和设备条件,选择合适 的驱动方式,如气压、液压或电动等。
设计合理的斜导槽
为了确保滑块的稳定移动,需设计合 理的斜导槽角度和长度。
考虑耐磨性和强度
滑块和斜导槽需具备一定的耐磨性和 强度,以确保长期稳定运行。
04
侧向分型与抽芯机构的维护与 保养
侧向分型与抽芯机构的日常维护
01
02
03
每日检查
检查侧向分型与抽芯机构 的运行状态,确保其正常 工作。
清理
清理侧向分型与抽芯机构 表面灰尘和杂物,保持清 洁。
检查润滑
检查并补充润滑油,保证 机构润滑良好。
侧向分型与抽芯机构的定期保养
定期清洗
根据需要定期清洗侧向分 型与抽芯机构,去除积聚 的污垢和杂质。
检查紧固件
检查并紧固侧向分型与抽 芯机构的紧固件,确保其 牢固可靠。
侧向分型与抽芯机构的应用场景
侧向分型与抽芯机构广泛应用于各种注塑成型领域,如汽车零部件、家电产品、 包装容器等。

第11讲 侧向分型与抽芯机构

第11讲  侧向分型与抽芯机构

a.弹簧式先复位机构
原理:在合模之初,即可通过弹簧使推出机构复位,从而避免干涉。 特点:结构简单,安装容易,复位力小,弹性差,适于复位力不大 的场合.
弹簧式先复位机构
11.2.2 斜导柱式侧向抽芯机构的应用形式
3)先复位机构
b.三角滑块式优先复位机构
楔杆三角滑块式先复位机构
11.2.2 斜导柱式侧向抽芯机构的应用形式
11.2.1 斜导柱式侧向抽芯机构设计 2. 斜导柱设计
3)受力分析
F弯=F脱/cosα F开=F脱/ctgα
式中:F弯—抽芯时导柱所受弯曲力; F开—抽芯所需开模力; F脱—抽芯所需的力;
说明:F脱一定时,α增大,则F弯增大,F开增大。 即:α增大斜导柱所变的弯曲力和所需的开模力都增 加,斜导柱受力情况变坏。
(2)措施:
脱模动作应滞后于侧抽芯动作。
11.2.2 斜导柱式侧向抽芯机构的应用形式
(3)模具结构
1)主型芯浮动
塑件留在动模的侧向抽芯结构
11.2.2 斜导柱式侧向抽芯机构的应用形式
2) 哈夫模
哈夫模安装在定模一侧,主型芯、斜导柱固定在动模 一侧,斜导柱与滑块斜孔间有较大间隙c。 动作过程: ① 开模时,分型运动滞 后于开模运动,使塑 件与主型芯松动。 ② 侧向分型后,塑件可 以从型芯上用手取下。 特点:无推出机构,结 构简单,操作麻烦。
侧型方法与滑槽设计 1) 要求:运动平稳,有一定导向精度。 2)导滑槽结构
a. 整体式滑槽 结构紧凑,加工 困难,精度不易保证,用于小 型模具 b. 滑槽镶块嵌入 导滑部分易加 工,精度易保证(常用) c. 平面固定 装配方便(常用) d. 底部中间镶块导向 可减小导 滑加工面 e. 滑块中部导滑 用于滑块上下 方向均无支承场合 f. 燕尾槽导滑 加工困难,导滑 精度高

模具设计——侧向分型与抽芯机构

模具设计——侧向分型与抽芯机构
图b为细小的侧型芯在固定部 分经适当放大镶入侧滑块后 再用圆柱销定位的形式;
图c为小的侧型芯从侧滑块的 后端镶入后再使用螺塞固定 的形式,在多个侧向圆形小 型芯镶拼组合的情况下,经 常采用这种形式;
图d也是多个小型芯镶拼组合 的形式,把各个型芯镶入一 块固定板后,用螺钉和销钉 将其从正面与侧滑块连接和 定位的形式,
圆形截面制造方便,装配容易, 应用广泛。
矩形截面制造不便,不易装配, 但强度较高,承受作用力大,
对于圆形斜导柱工作直径:
斜导柱的截面形状
10.3.2 斜导柱的设计
d、斜导柱的倾斜角的确定 综上所述,在确定斜导柱倾斜角时,通常抽芯距长时α
可取大些,抽芯距短时,可适当取小些; 抽芯力大时,可取小些。抽芯力小时,可取大些。 从斜导柱的受力情况考虑,希望α值取小一些;从减小
导滑槽的设计
最常用的是T形槽和燕尾糟。图10.10a为整体式形槽, 结构紧凑,用T形铣刀铣削加工,加工精度要求较高; 图10.10b、c是整体的盖板式,不过前者导滑槽开在 盖板上,后者导滑槽开在底板上;盖板也可以设计成 局部的形式,甚至设计成侧型芯两侧的单独压块,前 者如图10.10d所示,后者如图10.10e所示,这种结 构解决了加工困难的问题;在图10.10f的形式中,侧 滑块的高度方向仍由T形槽导滑,而其宽度方向由中间 所镶人的镶块导滑;图10.10g是整体燕尾槽导滑的形 式,导滑精度较高,但加工更困难。
影响抽芯力大小的因素
(1)成型塑件侧向凹凸形状的表面积愈大,即被塑料熔体包 络的侧型芯侧向表面积愈大,包络表面的几何形状愈复杂, 所需的抽芯力愈大。
(2)包络侧型芯部分的塑件壁厚愈大、塑件的凝固收缩率愈 大,则对侧型芯包紧力愈大,所需的抽芯力也增大。

侧向分型及抽芯机构

侧向分型及抽芯机构
斜导柱固定端与模板之间的配合采用H7/m6,与滑块之间的配合采用 0.5~1mm的间隙。斜导柱的材料多为T8、T10等碳素工具钢,也可以采用 20钢渗碳处理,热处理要求HRC≥55,表面粗糙度Ra≤0.8μm。
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
Pcosa=Q’+F1sina+F2 式中 F1=Pf F2=P1f
一、斜导柱(销)分型与抽芯机构
特点:结构简单、制造方便、安全可靠、应用广泛等特点。
工作原理如图所示:
第十章 侧向分型与抽芯机构
§10.3 斜导柱侧向分型与抽芯机构
1、斜导柱的设计 (1)斜销的结构如图
(2)斜销倾斜角a的确定 斜销倾斜角a与斜销所受的弯 曲离抽拔力开模力等有关的重 要参数,从受力图上可知如图。
§10.7 齿条齿轮侧向分型与抽芯机构
特点:抽拔力大、抽芯距长、抽芯方向灵活但结构复杂,加工困难。
1.齿条固定在定模的斜向抽芯机构如图。
第十章 侧向分型与抽芯机构
§10.7 齿条齿轮侧向分型与抽芯机构
2.齿条固定在推出机构上的斜向抽芯机构
第十章 侧向分型与抽芯机构
§10.7 齿条齿轮侧向分型与抽芯机构
第十章 侧向分型与抽芯机构
§10.6 斜滑块侧向分型与抽芯机构
(一)、滑块导滑的斜滑块分型与抽型机构
特点:结构简单、制造方便、安 全可靠等。
适用对象:侧向凸凹较浅,抽芯 距较小,成型面积较大,所需抽 拔力较大的模具。 工作原理(如图)
第十章 侧向分型与抽芯机构
§10.6 斜滑块侧向分型与抽芯机构
(3)斜销直径d的计算
斜销主要承受弯曲力,可根据最大许用弯曲应力验算:
M=PI1

斜导槽侧向分型与抽芯机构

斜导槽侧向分型与抽芯机构

滑块定位
滑块的定位方式主要有“滚珠+弹簧”和“挡块+弹簧”两 大类 。
滑块定位
滑块定位装置
滑块冷却
倾斜滑块
导滑槽
滑块在导滑槽中滑动必须顺利、平稳,才能保证滑块在模 具生产中不发生卡滞或跳动现象 。 滑块滑离导滑槽的长度应不大于滑块长度的1/4 。
导滑形式
压板(线条)
压板的作用是压住滑 块的肩部,使滑块在给定 的轨道内滑动。压块通常 用两个螺钉加两个销钉固 定。
斜顶设计要点
①斜顶的安装固定1
斜顶设计要点
①斜顶的安装固定2
斜顶设计要点
②复位与定位
斜顶设计要点
③斜推杆上端面应比动模镶件低0.05~0.1mm。
斜顶设计要点
④斜顶上端面侧向移动时,不能与制品内的其他结 构(如圆柱、加强筋或型芯等)发生干涉。
斜顶设计要点
⑤沿抽芯方向制品内表面有下降弧度时,斜推杆侧 移时会损坏制品。解决方法是斜顶座底部导轨做斜 度,使斜推杆延时推出。
抽拨距的确定
抽拨距的确定
抽拨距的确定
抽拨力的计算
Ft=pA(μcosα-sinα)
一般情况下,模外冷却的塑件p取24~39Mpa;模内冷却的 塑件p约取8~12Mpa。 从上式可以看出;脱模力的大小随塑件包容型芯的面积增加 而增大,随脱模斜度的增大而减小。
机动式分型抽芯机构
(一)弹性元件侧向分型抽芯机构
斜导柱侧向抽芯机构设计原则
⑤滑块完成抽芯运动后,仍应停留在导滑槽内,留 在导滑槽内的长度不应小于滑块全长的3/4,否则滑 块在开始复位时容易倾斜而损坏模具。
⑥模具要尽量避免定模抽芯,因为这样会使模具结 构更复杂。若确因塑料制品的结构必须将滑块做在 定模时,定模板、动模板开模前必须先抽出侧向型 芯,此时必须采取顺序脱模机构,即所谓的弹前模。

侧抽芯机构

侧抽芯机构
1 斜导柱设计
侧向分型与侧抽芯机构
Text in here
斜导柱长度及开模行程计算
L L1 L2 L3 L4 L5 D h d S tan tan (8~15) 2 cos 2 sin
当抽拔方向与开模方向垂直时,斜导柱 的有效长度:
L4
S sin
活动型芯与滑块的连接形式
三. 侧向分型与侧抽芯机构设计
2 滑块、导滑槽及定位装置设计
侧向分型与侧抽芯机构
Text in here
滑块的导滑形式
三. 侧向分型与侧抽芯机构设计
2 滑块、导滑槽及定位装置设计
侧向分型与侧抽芯机构
Text in here
滑块的导滑长度
滑块的定位装置
三. 侧向分型与侧抽芯机构设计
3 楔紧块的设计
侧向分型与侧抽芯机构
Text in here
滑块的滑块锁紧楔形式
三. 侧向分型与侧抽芯机构设计
4 斜滑块设计要点
侧向分型与侧抽芯机构
斜滑块的组合形式
三. 斜滑块侧向分型与侧抽芯机构设计
4 斜滑块设计要点
侧向分型与侧抽芯机构
斜滑块的导滑形式
三. 斜滑块侧向分型与侧抽芯机构设计
4 斜滑块设计要点
侧向分型与侧抽芯机构
Text in here
斜导柱长度及开模行程计算
3)当抽拔方向偏向定模角度为时
斜导柱的有效长度
L4
S cos sin
最小开模行程
H S (cot cos sin )
三. 侧向分型与侧抽芯机构设计
1 斜导柱设计
侧向分型与侧抽芯机构
Text in here
斜导柱弯曲力计算

第4章-注塑成型模具-6-侧向分型与抽芯机构

第4章-注塑成型模具-6-侧向分型与抽芯机构
第六节 侧向分型与抽芯机构
一、概述 塑件上具有侧凹、侧孔时,且在成型时与开模方向不一致,塑件不能直接脱模的情况下,必须设置侧向分型和抽芯机构。
1.常用的侧向分型与抽芯机构 ①手动侧向分型与抽芯 开模后,利用人力把塑件的侧向型芯或活动型芯抽出,复位后进行下一次成型。 பைடு நூலகம்点:模具结构简单,加工制造成本低,用于产品试制或小批量生产、抽拔力小的场合。 缺点:机构操作不便,劳动强度大,生产率低。
动画
c.偏转杆先行复位机构
动画
d.连杆先行复位机构
动画
无推出装置的斜销装在定模边的模具
动画
②斜导柱安装在动模一侧,滑块在定模一侧; 这种布置由于滑块在定模一方,开模时必须先实现侧向抽芯,同时要把塑件留在动模一方。
动画
开模时先让型芯1与动模产生相对运动,而与定模相对静止,当动模移动距离ΔL1时,斜导柱机构完成侧向抽芯,然后型芯1与动模一起移动,并使塑件抱紧在型芯上。
②分段倾角弯销 在弯销上设计不同的两个倾角,开模时,初始抽拔力大,可以设计较小的倾角α1,而后设计较大的倾角α2,达到大的抽拔距。 注意点:分段倾角弯销的配合间隙要稍大些,一般为0.2~0.5mm。
③弯销中间开滑槽(滑块导板分型机构) 弯销及其导滑孔的加工比较困难,在弯销中间开设滑槽,可以不开导滑孔,用圆柱销与滑槽配合即可。
(一)弹簧分型抽芯机构 适用场合: 抽拔距小、抽拔力不大的场合。 优点: 机构简单;可采用弹簧,也可采用硬橡皮。
1.橡皮弹力外侧抽芯
动画
2.弹簧内侧抽芯
动画
弹簧使内外滑块同时抽芯
(二)斜导柱(斜销)抽芯机构 1.工作原理和基本结构
基本结构: 斜导柱2、滑块3、锁紧块1、定位钉5等;

第8章 侧向分型抽芯机构设计

第8章  侧向分型抽芯机构设计
芯力也大。铝合金中含铁量过低,铸件对钢质活动型芯会产生化学 粘附力,使抽芯力增大。
6)压铸工艺对铸件抽芯力有影响。压铸后,铸件留模时间长,包 紧力增大;压铸时模温高,铸件收缩小,包紧力小,持压时间长, 铸件致密性增加,包紧力增大。
二、抽芯力的计算 1)抽芯力和抽芯距离的确定
压铸时,金属液充填型腔;冷凝收缩后,对活动型
第8章 侧向分型抽芯机构设计 侧向分型抽芯机构是压铸模中最常用的机构。
当铸件上具有与开模方向不同的内外侧或侧凹等 阻碍压铸件直接脱模时,必须将成型侧孔或侧凹 的零件做成活动型芯。开模时,先使模具在侧向 分型,将活动型芯抽出,然后再从模具中推出压 铸件。合模时,又必须使推出机构及抽芯机构回 复到原来位置,以便进行下一循环的压铸。完成 这种动作的机构,叫做侧向分型抽芯机构,简称 抽芯机构。
抽芯机构的主要组成部分(见图) (1)成形元件 形成压铸件的侧孔,凹凸表面或曲面。如型芯、型块。 (2)运动元件 连接并带动型芯或型块并在模套导滑槽内运动。 (3)传动元件 连接并带动元件作抽芯或插芯动作。
如斜销、齿条、液压抽芯器等。 (4)锁紧元件 合模后压紧运动元件,防止压铸
时受到压力而产生后退位移。如锁紧块、楔紧 锥等。
三、液压抽芯 以压力油作为抽芯动力,
在模具上配制专门的抽芯液 压缸,通过活塞的往复运动 来实现抽芯与复位动作。这 种方式传动平稳,抽芯力较 大,抽芯距也较长。其缺点 是增加了操作工序而且需配 置专门的液压抽芯器及控制 系统等。
四 复合抽芯 下图为机械和液压 联合抽芯机构。
1一限位块;2—定模板; 3—斜销 4一矩形滑块 5、6一型芯;7一圆形滑块; 8-斜紧块;9-液压抽芯接头; 10-止转导向块
斜销抽芯机构的抽芯过程如图所示。 图(a)为合模状态。斜销与分型面成一倾角,固定于定模套板内,穿 进设在动模导滑槽中的滑块孔,滑块由楔紧块锁紧。 图(b)为开模 后,动模与定模分开,滑块随定模运动。由于定模上的斜销在滑块

模具设计-侧向分型与抽芯机构

模具设计-侧向分型与抽芯机构

引入仿真技术
利用仿真技术对抽芯机构进行模拟和优化, 提高设计效率。
创新驱动方式
采用新型驱动方式,如电动、气动等,提高 机构的响应速度和稳定性。
未来发展趋势与展望
智能化发展
随着智能化技术的不断发展, 未来抽芯机构将ห้องสมุดไป่ตู้加智能化, 实现自适应控制和自主学习。
绿色环保
未来模具设计将更加注重环保 和可持续发展,采用环保材料 和工艺,降低能耗和排放。
模具设计-侧向分型与抽 芯机构
• 侧向分型与抽芯机构概述 • 侧向分型与抽芯机构设计原理 • 侧向分型与抽芯机构分类 • 侧向分型与抽芯机构设计实例 • 侧向分型与抽芯机构优化与创新
01
侧向分型与抽芯机构概述
侧向分型与抽芯机构的定义
• 侧向分型与抽芯机构是指在模具设计中,用于实现侧向分型和 抽芯动作的机构。侧向分型是指模具在开模时能够从横向打开, 以便于取出塑件;抽芯机构则是指模具中用于将侧型芯从塑件 中抽出的机构。
侧向分型与抽芯机构的重要性
01
02
03
提高生产效率
侧向分型与抽芯机构能够 简化模具结构和操作过程, 缩短成型周期,提高生产 效率。
降低模具成本
通过优化侧向分型与抽芯 机构的设计,可以减少模 具的复杂性和制造成本。
提高塑件质量
侧向分型与抽芯机构能够 避免塑件在脱模过程中受 损,提高塑件的质量和外 观。
个性化定制
随着个性化消费需求的增加, 未来模具设计将更加注重个性 化定制,满足不同客户的需求 。
数字化转型
随着数字化技术的不断发展, 未来模具设计将更加数字化, 实现数字化建模、仿真和优化

THANKS
感谢观看
滑块通常采用高强度钢材制成,其长度和宽度根据模具的具体要求进行 设计。

按动力来源可将侧向分型抽芯机构分为哪几类

按动力来源可将侧向分型抽芯机构分为哪几类

按动力来源可将侧向分型抽芯机构分为哪几类?
侧向分型的抽芯机构按动力来源可分为手动、机动和液压或气压抽芯几种。

(1)手动抽芯
在推出塑件前或脱模后用手工方法将活动型芯取出。

模具结构较简单,但生产效率低,微信公众号:hcsteel劳动强度大,抽拔力有限,仅在特殊场合适用,如新产品试制、小批量塑件生产等。

(2)机动抽芯
机动抽芯是利用注塑机的开模力,通过传动机构改变运动方向,将侧向的活动型芯抽出。

机动抽芯机构的结构比较复杂,但抽芯不需人工操作,抽拔力较大,具有灵活、方便、生产效率高、容易实现全自动操作、无需另外添置设备等优点,在生产中被广泛采用。

机动抽芯结构可分为弹簧、斜销、弯销、斜导槽、斜滑块、楔块、齿轮齿条等多种抽芯形式。

(3)液压或气压抽芯
与机动抽芯不同,液压或气压抽芯是通过一套专用的控制系统来控制活塞的运动,其抽芯动作可不受开模时间和推出时间的影响。

一般注塑机没有抽芯油缸或汽缸,需另行设计液压或气动传动机构及抽芯系统。

液压传动比气压传动平稳,且可得到较大的抽拔力和较长的抽芯距离,但受模具结构和体积的限制,油缸的尺寸往往不能太大。

当塑件上有与开模方向不同的内外侧孔或侧凹时,塑件不能直接脱
模,必须将成型侧孔或侧凹的零件做成可动的活动型芯,在塑件推出前先将活动型芯抽出,然后再从模腔中脱出塑件。

完成侧型芯抽出和复位动作的机构叫侧向分型抽芯机构。

第五章 侧向抽芯机构

第五章   侧向抽芯机构

5-4-4 设计要点1、斜导柱的固定(见图):(1)后模外侧抽芯时斜导柱的固定;(2)后模内侧抽芯时斜导柱的固定;(3)前模外侧抽芯时通常不用斜导柱,而用弯销或“T”形扣。

撞。

斜孔的直径要比斜导柱的直径大Φ1∽Φ1.5;目的是为了让铲基先离开,否则会锁死。

滑块的导向和定位主要设计为T形槽。

图样可参考宋玉恒先生著的《塑料注射模具设计实用手册》耐磨块材料:DF2(油钢)耐磨块的标厚:8、10、12。

且要用杯头螺丝固定。

5-4:机构组成1、动力零件:斜导柱、弯销、油缸;2、锁紧零件:铲基、弯销、“T”形扣;3、定位零件:波仔+弹簧、挡块+弹簧4、导滑零件:导滑耐磨板、压块5、成型零件:侧抽芯、滑块斜导柱倾斜角大小决定因素:抽芯距(抽芯距越大,倾斜角越大);滑块高度(滑块越高,倾斜角越小)前模能走胶杯,不用行位;后模能走行位,不用胶杯。

能用斜顶不用内行;能用外行不走斜顶。

先粗加工,再热处理,最后精加工。

上弹簧,下挡块,1-限位钉2-弹簧3-滑块2、如何实现延时抽芯(见图):加大滑块上的斜孔。

3、滑块的导向定位及配合精度(H7/f7)。

4、什么情况下用压块:( ?见鬼,什么是压块?I don’t know.)(1)滑块尺寸较大;(2)模具精度较高;(3)模具寿命较高;(4)滑块往模具中心方向抽芯。

5、滑块滑离导向槽的长度应不大于滑块长的三分之一;6、滑块的定位装置a、弹簧+滚珠;b、弹簧+挡块。

见图。

7、滑块的运水;8、滑块斜面上的耐磨块;( 滑块斜面面积大时,长度大80MM时要加)9、锁紧块的固定与定位;➢以下是斜导柱大小和数量,滑块肩部尺寸的经验确定法滑块宽度20-30 30-50 50-100 100-150 >150斜导柱直径1/4”—3/83/8”—1/2”1/2”—5/8”1/2”至5/8”5/8”至1”斜导柱数量 1 1 1 2 2滑块肩宽3~55~77~88~1210~15滑块肩高5~88~108~1210~1515~205-4-5弯销+滑块侧向分型机构( 弯销规格:20*20)该机构常用于前模行位、后模内行位、延时抽芯和抽芯距较长等场合,其原理和斜导柱相似,但加工较复杂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是侧向抽芯机构
注塑机上只有一个开模方向,因此注塑模也只有一个开模方向。

但很多塑料制品因为侧壁带有通孔、凹槽或凸台,模具上需要有多个抽芯方向,这些侧面抽芯必须在塑件脱模之前完成。

这种制品脱模之前先完成侧向抽芯,使制品能够安全脱模,在制品脱模后又能完全复位的机构称为侧向分型与侧向机构,
侧向分型与抽芯机构,简单的说就是与动、定模开模方向不一致的开模机构。

其基本原理是将模具开合的垂直运动,转变为侧向运动,从而将制品的侧向凹凸机构中的模具成型机构主要有斜导柱、弯销、斜向T型销、T型块和液压油缸等。

侧向分型机构与抽芯机构使模具结构变得更为复杂,提高了模具的制作成本。

一般来说。

模具每增加一个侧向抽芯机构,其成本大约增加30%左右。

同时,有侧向抽芯机构的模具,在生产过程中发生故障的概率也越高。

因此,塑料制品在设计时应尽量避免侧向凹凸机构。

第1页共1页。

相关文档
最新文档