八年级数学下册矩形经典习题
八年级数学《矩形》重点知识总结及经典例题
八年级数学《矩形》重点知识总结及经典例题学习目标1.了解矩形的概念及与平行四边形的关系.2.掌握矩形的性质及识别方法.3.能灵活地运用矩形的有关知识的计算和证明.学法指导矩形是特殊的平行四边形,平行四边形具有的性质矩形也具有,并且它还具有自己的特殊性.基础知识讲解1.矩形的概念有一个角为直角的平行四边形叫矩形.由概念可知,矩形首先是平行四边形,只是增加一个角是直角这个特殊条件.2.矩形的性质(1)具有平行四边形的一切性质.(2)矩形的四个内角是直角.(3)矩形的对角线相等且互相平分.(4)矩形即是中心对称图形又是轴对称图形.3.矩形的识别方法(1)有一个内角是直角的平行四边形是矩形.(2)对角线相等且互相平分的平行四边形为矩形.4.矩形的识别方法运用时应注意以下几点(1)用有一个内角是直角的平行四边形来判定一个四边形是否是矩形时须同时满足两个条件;一是有一个角是直角,二是平行四边形,也就是说有一个角是直角的四边形不一定是矩形,必须加上平行四边形这个条件才是矩形.(2)用“对角线相等的平行四边形是矩形”来判定一个四边形是否是矩形时也必须满足两个条件:一是对角线相等,二是平行四边形.重点难点重点:矩形的定义,性质及识别方法.难点:矩形的性质及识别方法的灵活运用.易错误区分析运用矩形的识别方法来判断四边形是否是矩形时易忽略满足的条件例1.对角线相等的四边形是矩形,这个结论正确吗?错解:这个结论正确正解:这个结论不正确分析:对角线相等的平行四边形才是矩形.典型例题例1.如图12-2-1所示:已知矩形ABCD的两条对角线AC,BD相交于O,∠AOD=120°,AB=4cm,求矩形对角线长.分析:注意到矩形的对角线相等且平分这个特性,不难求解.解∵ABCD 为矩形∴AC =BD ,且OA=21AC ,OB=21BD ,∴OA=OB , ∵∠AOD=120°,∴∠AOB=60° ∴△AOB 为等边三角形∴OB =OA =AB =4,∴BD =2OB =2×4=8cm .例2.如图12-2-2所示:□ABCD 中AC ,BD 直交于O ,EF ⊥BD 垂足为O ,EF 分别交AD ,BC 于点E ,F ,且AE=EO=21DE.求证:□ABCD 为矩形分析:观察给出的已知图象的特征,要证□ABCD 为矩形,显然只要证AC =BD 即可,若Rt △DOE 的斜边上的中线OM ,易证△AOE ≌△DOM ,∴OA =OD 问题得证.证明:取DE 的中点M ,连结OM ,∴在Rt △DOE 中,OM=21DE=DM , ∴OE=AE=21DE ,∠OME=∠OEA ∴OM =OE ,DM =AE ,∠OMD =∠OEM ,∴△OMD ≌△OEA ,∴OA=OD ,在□ABCD 中,∵OA=21AC ,OD=21BD , ∴AC =BC ∴□ABCD 为矩形.例3.已知:如图所示,E 是已知矩形ABCD 的边CB 延长线上的一点,CE =CA ,F 是AE 的中点.求证:BF ⊥FD分析:由于CE =CA ,F 是AE 的中点,若连结CF ,则CF ⊥AE .所示∠AFC =90°.所以要证BF ⊥FD ,只须再证∠CFB =∠AFD .易知,只要证△AFD ≌△BCF .证法一:连结CF .因为CE =CA ,F 是AE 中点,所以CF ⊥AE .所以∠AFD+∠DFC =90°,因为四边形ABCD 为矩形,所以AD =BC ,∠ABC =∠BAD =90°. 又∵F 是Rt △ABE 斜边BE 的中点,所以BF =AF ,所以∠FAB =∠FBA ,所以∠FAD=∠FBC .所以△FAD ≌△FBC .所以∠CFB=∠AFD ,所以∠CFB+∠DFC =90°,即BF ⊥FD .证法二:如图所示:延长BF交DA延长线于点G,连结BD.因为四边形ABCD是矩形,所以AD BC,AC=BD,所以∠AGF=∠EBF,∠GAF=∠BEF.因为F是AE的中点,所以AF=FE.所以△AGF≌△EBF所以GF=BF,AG=BE.所以GD=EC.因为CA=CE,CA=BD,所以BF⊥DF.例4.已知如图:矩形ABCD中,E为CD的中点.求证:∠EAB=∠EBA.分析:证角相等.若两角在同一个三角形中,可证三角形为等腰三角形.证明:∵四边形ABCD为矩形∴∠D=∠C=90°,AD=BC∵E为DC的中点,∴△ADE≌△BCE ∴AE=BE ∴∠EAB=∠EBA.例5.如图:已知矩形ABCD中,CF⊥BD于F,∠DAB的平分线AE与FC的延长线相交于点E,判断CA与CE的大小关系,并说明理由.分析:要判断CA与CE的大小关系,如果能证到∠EAO=∠E即可得CA=CE解:OA=CO过点A作AM⊥DB,可得AM∥EF,∠MAE=∠E∴∠DAM=∠DBA=∠OAB,∴∠MAE=∠EAO∴∠EAO=∠E ∴CE=CA创新思维例1.如图所示△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在这一边的对边上,那么符合要求的矩形可以画两个:矩形ACBD和矩形AEFB.解答问题(1)设图(2)中矩形ACBD和矩形AEFB的面积分别为S1,S2,则S1 S2.(填“>”“<”“=”)(2)如图(3)中△ABC为钝角三角形,按短文中的要求把它补成矩形,则符合要求的矩形可以画个,利用图(3)把它画出来.(3)过图(4)△ABC 是锐角三角形且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画 个,利用图(4)把它画出来. (4)在(3)中所画的矩形中,哪一个的周长最小?为什么?分析:本题主要考查矩形的性质和计算.解:(1)如图甲过点C 作CG ⊥AB 于G ,则CG=AE .∵S 1=2S △ABC =2×21×AB ·CG=AB ·CG ,S 2=AE ·AB=CG ·AB ∴S 1=S 2 (2)有2个如图乙(3)有3个如图丙(4)设矩形BCED ,ACHQ ,ABGF 的周长分别为L 1,L 2,L 3,BC =a ,AC =b ,AB =c .易知,这些矩形的面积相等,令其面积为S ,则有L 1=a a s 22+,L 2=b s 2+2b ,L 3cs 2+2c , ∵L 1-L 2=s a 2+2a-(b b s 22+)=2(a-b )ab s ab -,而ab ﹥s ,a ﹥b ∴L 1-L 2﹥0,即L 1﹥L 2.同理L 2>L 3.∴以AB 为边的矩形周长最小.例2.如图△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角线于点F.(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?证明你的结论.分析:先证∠OCE =∠OEC 就有EO =CO ,同理有FO =CO ,即有EO =FO .当0运动到AC 的中点时,四边形AECF 对角钱互相平分.∠EcF =90°.则四边形AECF 为矩形.证明:(l )∵MN ∥BC ,∴∠1=∠3 又∵CE 为∠ACB 的角平分线,∴∠1=∠2,∴∠2=∠3,∴OE =OC ,同理可证OF =OC ,∴OE=OF(2)当O 运动到AC 的中点时,四边形AECF 为矩形,因为AO =OC ,OE =OF.解:由矩形的特征,AC =EF ,由AE ∥CF ,CE ∥AF 知BECD 是平行四边形,故AE =CF ,从而AC =FE .中考练兵1.如图所示,在矩形ABCD 中,点E ,F 分别在AB ,CD 上BF ∥DF ,若AD =12cm ,AB =7cm ,且AE :EB=5:2,则阴影部分的面积为 .分析:由已知可判断四边形EBFD 是平行四边形.由平行线之间的距离处处相等,可知BE 边上的高与AD 的长相等.因此求BE 的长是关键.本题还可运用平移的方法,将△AED沿AB方向平移,使DE与BF重合,得空白部分所组成的图形是长12cm,宽5cm的矩形,可求其面积,然后将矩形ABCD的面积,减去空白部分的面积,即可得阴影部分的面积.也可通过矩形的面积减去二个全等三角形的面积,而得出阴影部分面积。
华师大版八年级下册数学第19章 矩形、菱形与正方形含答案(学生专用)
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A.4B.3C.2D.12、顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是()A.矩形B.菱形C.正方形D.不确定3、已知一个四边形的对角线互相垂直,那么顺次连接这个四边形的四边中点所得的四边形是()A.矩形B.菱形C.等腰梯形D.正方形4、平行四边形ABCD的两条对角线相等,则平行四边形ABCD一定是().A.菱形B.矩形C.正方形D.等腰梯形5、如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.6cmB.8cmC.10cmD.12cm6、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是()A.7B.8C.9D.107、下列性质中,矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.4个内角相等D.一条对角线平分一组对角8、学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;丙同学说:判定四边形的对角线相等,并且互相垂直平分;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.上述四名同学的说法中,正确的是()A.甲、乙B.甲、丙C.乙、丙、丁D.甲、乙、丙、丁9、用两个完全相同的直角三角形拼下列图形:(1)平行四边形,(2)矩形,(3)菱形,(4)正方形,(5)等腰三角形,(6)等边三角形,一定可以拼成的图形是( )A.(1)(4)(5)B.(2)(5)(6)C.(1)(2)(3)D.(1)(2)(5).10、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为()A.平行四边形B.矩形C.菱形D.正方形11、如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE 折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2B.2或3C.3或4D.4或512、如图,是△EBD以正方形ABCD的对角线BD为边的正三角形,EF⊥DF,垂足为F,则∠AEF的度数是()A.15°B.30°C.45°D.60°13、平面内有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是()A.90°B.180°C.270°D.360°14、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为()A.1.2B.1.3C.1.4D.2.415、下列条件中,能判定一个四边形为矩形的条件是( )A.对角线互相平分的四边形B.对角线相等且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形二、填空题(共10题,共计30分)16、已知矩形的面积是,其中一边长为,则对角线长为________.17、如图,矩形中,,,是边上一点,将沿翻折,点恰好落在对角线上的点处,则的长为________.18、如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为________.19、如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于________度20、已知菱形的边长为4,∠A=60°,则菱形的面积为________.21、如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=2cm.则图中阴影部分面积为________ .22、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为________.(填一般式)23、如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为________24、如图,在中,,点的坐标为,点在轴上,轴.将沿翻折得到,直线过点,则四边形的面积为________.25、如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B 在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为________.三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,科博会上某公司展示了研发的绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线EL且AE=25 cm,手臂AB=BC =60 cm,末端操作器CD=35 cm,AF∥直线EL.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD=60°,求末端操作器节点D到地面直线EL的距离.(结果保留根号)28、如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.29、如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)30、在矩形中,已知,在边上取点,使,连结,过点作,与边或其延长线交于点.猜想:如图①,当点在边上时,写出线段与的大小关系。
人教版八年级数学下册矩形的性质和判定 同步练习
初中数学试卷矩形的性质和判定同步练习1.矩形的对边,对角线且,四个角都是,即是图形又是图形。
2.矩形的面积是60,一边长为5,则它的一条对角线长等于。
3.如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
4. 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________.5. 矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.6.如图,已知在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为。
7.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .8.平行四边形没有而矩形具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角相等9.下列叙述错误的是()A.平行四边形的对角线互相平分B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形10.下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线是否相等B.用曲尺测量对角线是否互相垂直C.用曲尺测量门框的三个角是否都是直角D.测量两条对角线是否互相平分11.矩形ABCD对角线相交于点O,如果△ABC周长比△AOB周长大10cm,则AD长是()A.5cmB.7.5cmC.10cmD.12.5cm12.下列图形中对称轴有2条的图形是()A.平行四边形B.等边三角形C.矩形D.直角三角形二、解答题:13.如图,已知矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求此矩形的面积.14.平行四边形ABCD,E是CD的中点,△ABE是等边三角形.求证:四边形ABCD是矩形.15.如图,矩形ABCD中,EF⊥EB,EF=EB,ABCD周长为22cm,CE=3cm.求:DE的长.16.如图,矩形ABCD中,DE=AB,CF⊥DE.求证:EF=EB.17.如图,矩形ABCD中,点E、F分别在AB、CD上,BF//DE,若AD=12cm,AB=7cm,且AE:EB=5:2,求阴影部分.18.如图,矩形ABCD中,对角线AC、BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积.19.矩形ABCD中,E是CD上一点,且AE=CE,F是AC上一点FH⊥AE于H,FG⊥CD于G.求证:FH+FG=AD.20.在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.求证:四边形AFCE是矩形21.平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P.求证:四边形ABCD为矩形.参考答案1.相等;互相平分;相等;直角;轴对称;中心对称;2.12;3.48;4.22或26;5.10,5;6.(2,4),(3,4),(8,4);7.6.5;8.A 9.B 10.C 11.C 12.C 13.163cm 2;14.证明:∵AE =BE (等边△),∠DEA =∠EAB =60º=∠ABE =∠CEB (内错角相等). DE =CE (E 中点);∴△ADE ≌△BCE (两边夹一角相等),∠C =∠D (对应角相等), ∠C +∠D =180º(同旁内角互补),∠C =∠D =90º,同理∠A =∠B =90º;所以 平行四边形ABCD 是矩形.(四个角是直角).15.∵四边形ABCD 是矩形,∴AD=BC ,DC=AB ,∠D=∠C=90°,∵EF ⊥EB ,∴∠FEB=90°,∴∠DEF+∠CEB=90°,∠CEB+∠CBE=90°,∴∠DEF=∠CBE , 在△DEF 和△CBE 中,∠D =∠C ,∠DEF =∠CBE ,EF =EB ,∴△DEF ≌△CBE (AAS ), ∴DE=BC ,DF=CE=3cm ,∵矩形ABCD 的ABCD 周长为22cm ,∴2(BC+DE+EC )=22,∴DE+DE+3=11,∴DE=4.16.∵∠AED=∠FDC ,∠DAE=∠DFC=90°∴∠ADE=∠FCD又∵DE=AB=CD ∴△ADE ≌△FCD ∴DF=AE ∴EF=DE-DF=AB-AE=BE 。
人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】
第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。
(完整版)八年级数学《矩形》练习题
(完整版)八年级数学《矩形》练习题一、选择题1. 矩形的四个角都是:A. 直角B. 锐角C. 钝角D. 无角2. 矩形的对角线之间的关系是:A. 相等且垂直B. 相等且平行C. 相等但不垂直D. 不相等但垂直3. 若矩形的长为12cm,宽为8cm,那么它的面积是:A. 20cm²B. 48cm²C. 80cm²D. 96cm²4. 若矩形的周长为30cm,宽为4cm,那么它的长是:A. 8cmB. 9cmC. 10cmD. 11cm二、填空题1. 矩形的对边是_______。
2. 矩形的并联边是_______。
3. 矩形的一个维数称为_______。
4. 矩形的面积公式是_______。
5. 矩形的周长公式是_______。
三、解答题1. 若矩形的面积是45cm²,且长是5cm,求宽。
解:设矩形的宽为x,则根据面积公式,有5x = 45。
对上述等式两边同时除以5,得到x = 9。
所以矩形的宽为9cm。
2. 若矩形的长为12cm,宽为6cm,求其周长和对角线之间的角的大小。
解:矩形的周长为2(长 + 宽),代入数值得周长为2(12 + 6) = 36cm。
对角线之间的角都是直角,大小为90°。
3. 画出一个矩形,并标注其长、宽、对边和对角线。
[示意图]四、应用题1. 一个矩形的面积是30cm²,且长比宽多2cm,求矩形的长和宽。
解:设矩形的宽为x,根据面积的条件,有x(x+2) = 30。
展开得x² + 2x - 30 = 0。
左侧为二次方程,可以因式分解为(x+6)(x-5) = 0。
因为长比宽多2cm,所以宽为5cm,长为7cm。
2. 一个矩形的周长为28cm,长和宽的比值为5:3,求矩形的长和宽。
解:设矩形的长为5x,宽为3x,根据周长的条件,有2(5x+3x) = 28。
化简得8x = 28,解得x = 3.5。
华师大版数学八年级下册_《矩形的判定》拓展训练
《矩形的判定》拓展训练一、选择题(本大题共10小题,共40.0分)1.(4分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.(4分)在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD3.(4分)如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD 为矩形,则OB的长度为()A.4B.3C.2D.14.(4分)如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形5.(4分)如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2B.2C.3D.36.(4分)如图,要使▱ABCD成为矩形,需添加的条件是()A.AB=BC B.AO=BO C.∠1=∠2D.AC⊥BD7.(4分)如图,在Rt△ABC中,∠ACB=90°,点E,点F分别是AC,BC的中点,D是斜边AB上一点,则添加下列条件可以使四边形DECF成为矩形的是()A.∠ACD=∠BCD B.AD=BD C.CD⊥AB D.CD=AC8.(4分)如图,在△ABC中,∠C=90°,AC=6,BC=8,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.1.2B.2.4C.2.5D.4.89.(4分)如图,l1∥l2,BE∥CF,BA⊥l1,DC⊥l2,下面给出四个结论:①BE=CF;②AB =DC;③S△ABE=S△DCF;④四边形ABCD是矩形.其中说法正确的有()A.1个B.2个C.3个D.4个10.(4分)如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME ⊥AB于E,MF⊥AC于F,N为EF的中点,则MN的最小值为()A.4.8B.2.4C.2.5D.2.6二、填空题(本大题共5小题,共20.0分)11.(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.12.(4分)在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件时,四边形PEMF为矩形.13.(4分)如图,在四边形ABCD中,AD∥BC,AB⊥BC,AB=4cm,AD>AB,CD=5cm,点P从点C出发沿边CB以每秒1cm的速度向点B运动,秒后四边形ABPD是矩形.14.(4分)如图,在矩形ABCD中,BC=20cm,点P在BC边上由点B向点C运动,点Q 在DA边上由点D向点A运动,两点同时运动同时停止,若点P与点Q的速度分别为3cm/s 和1cm/s,则经过s后,四边形ABPQ成为矩形.15.(4分)如图,在△ABC,AB=AC,点D为BC的中点,AE是∠BAC外角的平分线,DE∥AB交AE于E,则四边形ADCE的形状是.三、解答题(本大题共5小题,共40.0分)16.(8分)如图,在平行四边形ABCD中,过点D做DE⊥AB于E,点F在边CD上,DF =BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形ABCD的面积.17.(8分)如图,在▱ABCD中,各内角的平分线相交于点E,F,G,H.(1)求证:四边形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.18.(8分)如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.(1)求证:四边形DBCE是平行四边形;(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.19.(8分)如图,在四边形ABCD中,∠B=∠C,点E,F分别在边AB,BC上,AE=DF =DC.(1)求证:四边形AEFD是平行四边形;(2)当∠FDC与∠EFB满足数量关系时,四边形AEFD是矩形.20.(8分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD (1)若存在四边形ADEF,判断它的形状,并说明理由.(2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.(3)当△ABC满足什么条件时四边形ADEF不存在.《矩形的判定》拓展训练参考答案与试题解析一、选择题(本大题共10小题,共40.0分)1.(4分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【分析】由矩形的判定方法即可得出答案.【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.2.(4分)在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD【分析】由AB=CD,AD=BC,得出四边形ABCD是平行四边形,再由对角线相等即可得出A正确;由AO=CO,BO=DO,得出四边形ABCD是平行四边形,由∠A=90°即可得出B正确;由∠B+∠C=180°,得出AB∥DC,再证出AD∥BC,得出四边形ABCD是平行四边形,由对角线互相垂直得出四边形ABCD是菱形,C不正确;由∠A+∠B=180°,得出AD∥BC,由HL证明Rt△ABC≌Rt△BAD,得出BC=AD,证出四边形ABCD是平行四边形,由∠A=90°即可得出D正确.【解答】解:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形,∴A正确;∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵∠A=90°,∴四边形ABCD是矩形,∴B正确;∵∠B+∠C=180°,∴AB∥DC,∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,∴C不正确;∵∠A=∠B=90°,∴∠A+∠B=180°,∴AD∥BC,如图所示:在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,∴四边形ABCD是平行四边形,又∵∠A=90°,∴四边形ABCD是矩形,∴D正确;故选:C.【点评】本题考查了矩形的判定、平行四边形的判定、菱形的判定、全等三角形的判定与性质;熟练掌握矩形的判定方法是解决问题的关键.3.(4分)如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD 为矩形,则OB的长度为()A.4B.3C.2D.1【分析】根据矩形的性质得到OA=OC,OB=OD,AC=BD,求出OA=OB即可.【解答】解:假如平行四边形ABCD是矩形,OA=OC,OB=OD,AC=BD,∴OA=OB=3.故选:B.【点评】本题主要考查了矩形的性质,平行四边形的性质等知识点的理解和掌握,能根据矩形的性质推出0A=OB是解此题的关键.4.(4分)如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形【分析】由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形;如果AD平分∠BAC,那么∠EAD=∠F AD,又有DF∥BA,可得∠EAD=∠ADF,∴∠F AD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故以上答案都正确.【解答】解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠F AD,又有DF∥BA,可得∠EAD=∠ADF,∴∠F AD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D 正确.故选:C.【点评】本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.5.(4分)如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2B.2C.3D.3【分析】先证明△BCF是等边三角形,得出CF=BC=2,∠BCF=60°,求出CD,再证明四边形BCDE是矩形,即可求出面积.【解答】解:连接CF,如图所示:∵DE是AC的中垂线,∴AF=CF,∠CDE=90°,∴∠ACF=∠A=30°,∴∠CFB=∠A+∠ACF=60°,∵AF=BF,∴CF=BF,∴△BCF是等边三角形,∴CF=BC=2,∠BCF=60°,∴CD=CF•cos30°=,∠BCD=60°+30°=90°,∵BE⊥DF,∴∠E=90°,∴四边形BCDE是矩形,∴四边形BCDE的面积=BC•CD=2×=2;故选:A.【点评】本题考查了矩形的判定与性质、线段垂直平分线的性质、三角函数以及等边三角形的判定与性质;证明等边三角形和矩形是解决问题的关键.6.(4分)如图,要使▱ABCD成为矩形,需添加的条件是()A.AB=BC B.AO=BO C.∠1=∠2D.AC⊥BD【分析】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.【解答】解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AO=BO,∴OA=OC=OB=OD,即AC=BD,∴平行四边形ABCD是矩形,故本选项正确;C、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=BC,∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;故选:B.【点评】本题考查了对矩形的判定定理的应用,注意:矩形的判定定理有:①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形.7.(4分)如图,在Rt△ABC中,∠ACB=90°,点E,点F分别是AC,BC的中点,D是斜边AB上一点,则添加下列条件可以使四边形DECF成为矩形的是()A.∠ACD=∠BCD B.AD=BD C.CD⊥AB D.CD=AC【分析】添加AD=BD后利用三角形中位线定理和平行四边形的判定得出四边形DECF 是平行四边形,再根据∠ACB=90°,得出四边形DECF成为矩形.【解答】解:添加AD=BD,∵点E,点F分别是AC,BC的中点,AD=BD,∴ED∥BC,DF∥AC,∴四边形DECF是平行四边形,∵∠ACB=90°,∴平行四边形DECF是矩形,故选:B.【点评】本题考查了矩形的判定,根据三角形中位线定理解答是解题的关键.8.(4分)如图,在△ABC中,∠C=90°,AC=6,BC=8,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.1.2B.2.4C.2.5D.4.8【分析】连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【解答】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=6,BC=8,∴AB=10,∴PC的最小值为:.∴线段EF长的最小值为4.8.故选:D.【点评】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.9.(4分)如图,l1∥l2,BE∥CF,BA⊥l1,DC⊥l2,下面给出四个结论:①BE=CF;②AB =DC;③S△ABE=S△DCF;④四边形ABCD是矩形.其中说法正确的有()A.1个B.2个C.3个D.4个【分析】根据题意可以分别判断各个小题中的结论是否成立,从而可以解答本题.【解答】解:∵l1∥l2,BE∥CF,∴四边形BCFE是平行四边形,∴BE=CF,故①正确,∵l1∥l2,BA⊥l1,DC⊥l2,∴AB=DC,故②正确,∵BE∥CF,∴∠AEB=∠DFC,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AE=DF,∵AB=DC,∴S△ABE=S△DCF,故③正确,∵l1∥l2,BE∥CF,BA⊥l1,DC⊥l2,∴四边形ABCD是矩形,故④正确,故选:D.【点评】本题考查矩形的判断、平行线之间的距离,解答本题的关键是明确题意,利用矩形的性质和平行线的性质解答.10.(4分)如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME ⊥AB于E,MF⊥AC于F,N为EF的中点,则MN的最小值为()A.4.8B.2.4C.2.5D.2.6【分析】过点A作AM⊥BC于点M′,根据勾股定理求出BC的长,再由三角形的面积公式求出AM′的长.根据题意得出四边形AEMF是矩形,故可得出AM=EF,MN=AM,当MN最小时,AM最短,此时M与M′重合,据此可得出结论.【解答】解:过点A作AM⊥BC于点M′,∵在△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∴AM′==.∵ME⊥AB于E,MF⊥AC于F,∴四边形AEMF是矩形,∴AM=EF,MN=AM,∴当MN最小时,AM最短,此时点M与M′重合,∴MN=AM′==2.4.故选:B.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AM的最小值是关键.二、填空题(本大题共5小题,共20.0分)11.(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM 的值最小,根据面积关系建立等式求出其解即可.【解答】解:∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP.BC=AB.AC,∴AP.BC=AB.AC.∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=;故答案为:.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.12.(4分)在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件AB=BC时,四边形PEMF为矩形.【分析】根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.【解答】解:AB=BC时,四边形PEMF是矩形.∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.【点评】此题考查了矩形的判定和性质的综合应用,是一开放型试题,是中考命题的热点.13.(4分)如图,在四边形ABCD中,AD∥BC,AB⊥BC,AB=4cm,AD>AB,CD=5cm,点P从点C出发沿边CB以每秒1cm的速度向点B运动,3秒后四边形ABPD是矩形.【分析】当DP⊥BC时,四边形ABPD是矩形,利用勾股定理解答即可.【解答】解:当DP⊥BC时,四边形ABPD是矩形,此时:AB=DP=4,CD=5,在Rt△DPC中,CP=,所以3秒后四边形ABPD是矩形,故答案为:3【点评】此题考查矩形的判定,关键是利用勾股定理解答.14.(4分)如图,在矩形ABCD中,BC=20cm,点P在BC边上由点B向点C运动,点Q 在DA边上由点D向点A运动,两点同时运动同时停止,若点P与点Q的速度分别为3cm/s 和1cm/s,则经过5s后,四边形ABPQ成为矩形.【分析】根据矩形的性质得出AD=BC,得出方程,求出方程的解即可.【解答】解:∵四边形ABCD是矩形,BC=20cm,∴AD=BC=20cm,要使四边形ABPQ是矩形,必须AQ=BP,即20﹣t=3t,解得;t=5,故答案为;5.【点评】本题考查了矩形的性质和解一元一次方程,能根据矩形的性质得出方程是解此题的关键.15.(4分)如图,在△ABC,AB=AC,点D为BC的中点,AE是∠BAC外角的平分线,DE∥AB交AE于E,则四边形ADCE的形状是矩形.【分析】首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.【解答】证明:∵AB=AC,∴∠B=∠ACB,∵点D为BC的中点,∴∠ADC=90°,∵AE是∠BAC的外角平分线,∴∠F AE=∠EAC,∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.故答案为矩形.【点评】此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.三、解答题(本大题共5小题,共40.0分)16.(8分)如图,在平行四边形ABCD中,过点D做DE⊥AB于E,点F在边CD上,DF =BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形ABCD的面积.【分析】(1)先求出四边形BFDE是平行四边形,再根据矩形的判定推出即可;(2)根据勾股定理求出DE长,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∵DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵AF平分∠DAB,∴∠DAF=∠F AB,∵平行四边形ABCD,∴AB∥CD,∴∠F AB=∠DF A,∴∠DF A=∠DAF,∴AD=DF=5,在Rt△ADE中,DE=,∴平行四边形ABCD的面积=AB•DE=4×8=32,【点评】本题考查了平行四边形的性质,矩形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.17.(8分)如图,在▱ABCD中,各内角的平分线相交于点E,F,G,H.(1)求证:四边形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.【分析】(1)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;(2)根据含30°角的直角三角形的性质,得到BG=AB=3,AG=3=CE,BF=BC =2,CF=2,进而得出EF和GF的长,可得四边形EFGH的面积.【解答】解:(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(2)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG=3=CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=2,∴EF=3﹣2=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.【点评】本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.18.(8分)如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.(1)求证:四边形DBCE是平行四边形;(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.【分析】(1)根据EC=BD,EC∥BD即可证明;(2)根据等腰三角形三线合一的性质得出∠BEA=90°,根据有一个角是直角的平行四边形是矩形推出即可.【解答】(1)证明:∵E是AC中点,∴AE=EC,∵DB=AE,∴EC=BD又∵DB∥AC,∴四边形DECB是平行四边形.(2)△ABC满足AB=BC时,四边形DBEA是矩形理由如下:∵DB=AE,又∵DB∥AC,∴四边形DBEA是平行四边形(一组对边平行且相等的四边形是平行四边形),∵AB=BC,E为AC中点,∴∠AEB=90°,∴平行四边形DBEA是矩形,即△ABC满足AB=BC时,四边形DBEA是矩形.【点评】本题考查了矩形的判定,平行四边形的判定与性质,等腰三角形三线合一的性质,题目难度不大,熟练掌握平行四边形的判定与性质以及平行四边形与矩形的联系是解题的关键.19.(8分)如图,在四边形ABCD中,∠B=∠C,点E,F分别在边AB,BC上,AE=DF =DC.(1)求证:四边形AEFD是平行四边形;(2)当∠FDC与∠EFB满足数量关系∠FDC=2∠EFB时,四边形AEFD是矩形.【分析】(1)想办法证明∠DFC=∠B,推出DF∥AB,即可解决问题;(2)当∠FDC=2∠EFB时,四边形AEFD是矩形,想办法证明∠DFE=90°【解答】(1)证明:∵DF=DC,∴∠DFC=∠C,∵∠B=∠C∴∠DFC=∠B,∴AE∥DF,∵AE=DF,∴四边形AEFD是平行四边形.(2)解:结论:当∠FDC=2∠EFB时,四边形AEFD是矩形;∵2∠DFC+∠FDC=180°,∠FDC=2∠EFB,∴2∠DFC+2∠EFB=180°,∴∠DFC+∠EFB=90°,∴∠DFE=180°﹣90°=90°,∵四边形AEFD是平行四边形,∴四边形AEFD是矩形.故答案为:∠FDC=2∠EFB.【点评】此题主要考查了平行四边形的判定与性质的应用,要熟练掌握,解答此题的关键是要明确:平行四边形对应边相等,对应角相等,对角线互相平分.20.(8分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD (1)若存在四边形ADEF,判断它的形状,并说明理由.(2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.(3)当△ABC满足什么条件时四边形ADEF不存在.【分析】(1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD =60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;(2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF是矩形,求出∠DAF=90°,根据矩形的判定推出即可;(3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.【解答】(1)证明:∵△ABD、△BCE和△ACF是等边三角形,∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,∴∠DBE=∠ABC=60°﹣∠EBA,在△DBE和△ABC中,∴△DBE≌△ABC,∴DE=AC,∵AC=AF,∴DE=AF,同理AD=EF,∴四边形ADEF是平行四边形;(2)解:当∠BAC=150°时,四边形ADEF是矩形,理由是:∵△ABD和△ACF是等边三角形,∴∠DAB=∠F AC=60°,∵∠BAC=150°,∴∠DAF=90°,∵四边形ADEF是平行四边形,∴四边形ADEF是矩形;(3)解:这样的平行四边形ADEF不总是存在,理由是:当∠BAC=60°时,∠DAF=180°,此时点D、A、F在同一条直线上,此时四边形ADEF就不存在.【点评】本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,难度适中。
浙教版八年级数学初二下册:矩形习题精选(含答案)
矩形习题精选1. 如图,矩形ABCD 的对角线相交于点O ,OF ⊥BC ,CE ⊥BD ,OE :BE=1:3,OF=4,求∠ADB的度数和BD 的长。
2. 如图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为36cm ,求此矩形的面积。
3. 折叠矩形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,如图,若AB=2,BC=1,求AG 。
4. 已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形。
5. 如图,在矩形ABCD 中,E 是AD 上一点,F 是AB 上一点,EF CE =,且,2EF CE DE cm ⊥=,矩形ABCD 的周长为16cm ,求AE 与CF 的长.OFEDCBAGEDCBA6.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.7.已知:如图所示,ABCD为菱形,通过它的对角线的交点O作AB、BC的垂线,与AB、BC,CD,DA分别相交于点E、F、G、H,求证:四边形EFGH为矩形。
参考答案1.30°,162.723.(5^1/2—1)/24.因为BG. CG AE DE 分别为四个角的角平分线,所以∠GBC+∠GCB=90°所以∠G=90°同理,可证得∠E ∠GFE ∠GHE 都为90°所以四边形FGHE为矩形5.3 √266.提示:证明△FBE和△ECD全等(ASA)于是BE=CD=BA7.△ABO △ADO △BCO △DCO 都为等全等的三角形,易证得OE=OH=OF=OD所以,∴四边形EFGH为平行四边形EG=HF故EFGH为矩形。
2020-2021学年人教版八年级下册数学 18.2.1矩形 同步习题(含解析)
18.2.1矩形同步习题一.选择题1.矩形具有而一般平行四边形不具有的性质是()A.对角线互相平分B.对角相等C.对边相等D.对角线相等2.如图,在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD的长为()A.5B.C.D.3.若直角三角形斜边上的高和中线长分别是4cm,6cm,则它的面积是()A.12cm2B.24cm2C.15cm2D.48cm24.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,DE=3BE.求AE的长()A.B.3C.D.5.如图,矩形ABCD的对角线AC、BD交于点O,M、N分别为BC、OC的中点,AB=6,∠ACB=30°则MN的长为()A.3B.4C.5D.66.如图所示,矩形ABCD中,BC=2AB,E为BC上的一点,且AE=AD,则∠EDC的度数是()A.30°B.75°C.45°D.15°7.如图,矩形ABCD的对角线AC、BD相交于点O,E是边BC的中点,AO=,AD=4,则OE的长为()A.1B.C.2D.8.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2B.4.5C.5.2D.5.59.如图,长方形ABCD中,F是BC上(不与B、C重合)的任意一点,图中面积相等的三角形有()A.3对B.4对C.5对D.6对10.如图,矩形ABCD中,∠BOC=120°,BD=12,点P是AD边上一动点,则OP的最小值为()A.3B.4C.5D.6二.填空题11.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠OAD=55°,则∠OBA的度数为.12.如图,在矩形ABCD中,AC,BD交于点O,M,N分别为AB,OA的中点.若MN=2,CD=4,则∠ACB的度数为.13.如图,四边形OABC是矩形,点A的坐标为(4,0),点C的坐标为(0,2),把矩形OABC 沿OB折叠,点C落在点D处,则点D的坐标为.14.如图,点E是矩形ABCD内任一点,若AB=4,BC=7.则图中阴影部分的面积为.15.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD 于F,则PE+PF的值为_____.三.解答题16.如图,在矩形ABCD中,点F是BC边上一点,DE⊥AF于E,且DE=DC,求证:△ABF ≌△DEA.17.如图,矩形ABCD中,AB=1,BC=2,点E在AD上,点F在BC边上,FE平分∠DFB.(1)判断△DEF的形状,并说明理由;(2)若点F是BC的中点,求AE的长.18.如图,已知E是矩形ABCD一边AD的中点,延长AB至点F,连接CE,EF,CF,得到△CEF.且CD=1,AF=2,CF=3.(1)求BC的长;(2)求证:CE⊥EF.参考答案一.选择题1.解:A、矩形、平行四边形的对角线都是互相平分的.,故本选项不符合;B、矩形、平行四边形的对角都是相等的,故本选项不符合;C、矩形、平行四边形的对边都是相等的,故本选项不符合;D、矩形的对角线相等,平行四边形的对角线不一定相等,故本选项符合;故选:D.2.解:∵矩形ABCD中,两条对角线AC与BD相交于点O,OA=2,∴AC=2AO=4,又∵AB=3,∠ABC=90°,∴BC==,∴AD=BC=,故选:D.3.解:∵直角三角形斜边上中线长6cm,∴斜边=2×6=12(cm),∴面积=×12×4=24(cm2).故选:B.4.解:∵DE=3BE,∴BD=4BE,∵四边形ABCD是矩形,∴BO=DO=BD=2BE,∴BE=EO,又∵AE⊥BO,∴AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABO=60°,∴∠ADB=30°,又∵AE⊥BD,∴AE=AD=3,故选:B.5.解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∠ABC=90°,∵∠ACB=30°,∴∠BAC=60°,∴△ABO是等边三角形,∴BO=AB=6,∵M、N分别为BC、OC的中点,∴MN=BO=3,故选:A.6.解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=∠ADC=90°,∵BC=2AB,AE=AD,∴AE=2AB,∴∠AEB=30°,∵AD∥BC,∴∠DAE=∠AEB=30°,∵AD=AE,∴∠ADE=75°,∴∠EDC=15°,故选:D.7.解:∵四边形ABCD是矩形,∴AO=CO,AC=2AO=2,∠ADC=90°,∴CD===2,∵E是边BC的中点,∴OE是△BCD的中位线,∴OE=CD=1,故选:A.8.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.9.解:∵四边形ABCD是矩形,∴AD∥BC,S△ABD=S△BCD=S矩形ABCD,∴S△ABD=S△AFD=S矩形ABCD,S△ABF=S△BFD,∴S△ADF=S△BCD,S△ABE=S△DEF,故选:C.10.解:∵四边形ABCD是矩形,∴OA=OB=OC=OD=BD=6,∵∠BOC=120°=∠AOD,∴∠OAD=∠ODA=30°,当OP⊥AD时,OP有最小值,∴OP=OD=3,故选:A.二.填空题11.解:∵矩形ABCD中,对角线AC,BD相交于点O,∴∠DAB=90°,DB=AC,OD=OB=OA=OC,∵∠OAD=55°,∴∠ODA=∠OAD=55°,∴∠OBA=90°﹣∠ADB=90°﹣55°=35°,故答案为:35°.12.解:∵四边形ABCD是矩形,∴AB=CD=4,AO=CO,BO=DO,AC=BD,∴AO=BO,∵M,N分别为AB,OA的中点,∴BO=2MN=4,∴AO=BO=AB=4,∴△ABO是等边三角形,∴∠BAC=60°,∴∠ACB=30°,故答案为:30°.13.解:设BD与OA交于点E,作DF⊥OA于点F,∵点A的坐标为(4,0),点C的坐标为(0,2),∴OC=2,OA=4,∵四边形ABCD是矩形,∴BC∥OA,∴∠CBO=∠AOB,由翻折变换的性质可知,∠DBO=∠CBO,∴∠OBD=∠AOB,∴BE=OE,在Rt△EAB中,设BE=OE=x,则AE=4﹣x,由勾股定理得22+(4﹣x)2=x2,解得x=,即BE=,∴OE=BE=,在Rt△ODE中,OD=OC=2,DE=BD﹣BE=4﹣=,由OE•DF=OD•DE得וDF=×2×,∴DF=,在Rt△ODF中,由勾股定理得OF2=OD2﹣DF2=22﹣()2=,∴OF=,∴点D的坐标为(,﹣),故答案为:(,﹣).14.解:∵四边形ABCD是矩形,∴AD=BC=7,设两个阴影部分三角形的底为AD,BC,高分别为h1,h2,则h1+h2=AB,∴S△EAB+S△ECD=AD•h1+BC•h2=AD(h1+h2)=AD•AB=矩形ABCD的面积=×7×4=14;故答案为:14.15.解:连接OP,∵四边形ABCD是矩形,∴∠DAB=90°,AC=2AO=2OC,BD=2BO=2DO,AC=BD,∴OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC=14S矩形ABCD=14×6×8=12,在Rt△BAD中,由勾股定理得:BD=22226810 AB AD+=+=,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴×AO×PE+×DO×PF=12,∴5PE+5PF=24,PE+PF=24 5,故答案为:24 5.三.解答题16.证明:如图,连接DF,∵四边形ABCD是矩形,∴DC⊥CF,又∵DE=DC,DE⊥AF,∴DF平分∠CFE,∴∠CFD=∠DFE,∵CB∥AD,∴∠CFD=∠ADF,∠AFB=∠DAE,∴∠DF A=∠ADF,∴AF=AD,在△ABF和△DEA中,,∴△ABF≌△DEA(ASA).17.解:(1)△DEF是等腰三角形,理由如下:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC,∠C=90°,∴∠BFE=∠DEF,∵FE平分∠DFB,∴∠BFE=∠DFE,∴∠DEF=∠DFE,∴DE=DF,∴△DEF是等腰三角形;(2)∵AB=1,BC=2,∴CD=1,AD=2,∵点F是BC的中点,∴FC==1,Rt△DCF中,∠C=90°,∴DF=,∴DE=DF=,∴AE=AD﹣DE=2﹣.18.(1)解:∵四边形ABCD是矩形,CD=1,∴AB=1,∠ABC=∠FBC=90°,∵AF=2,∴BF=1,∵Rt△CBF中,∠FBC=90°,BF=1,CF=3,∴根据勾股定理得CF2=BC2+BF2,∴BC===,∴BC的长是;(2)证明:矩形ABCD中,AD=BC=,∵E是AD的中点,∴AE=DE=,∵Rt△AEF中,∠A=90°,AE=1,AF=2,∴根据勾股定理得,EF==,∵Rt△CDE中,∠D=90°,CD=1,DE=1,∴根据勾股定理得,EC==,∵△CEF中,EC=,EF=,CF=3,∴CE2+EF2=CF2,∴△CEF是直角三角形,∴CE⊥EF.。
华师大版八年级下册数学第19章 矩形、菱形与正方形含答案
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为A.1B.C.D.2、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④3、下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线相等C.平行四边形的对角线相等D.对角线互相垂直的四边形是菱形4、如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9B.9C.27D.275、如图,是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13B.19C.25D.1696、如图,已知平行四边形ABCD的对角线的交点是0,直线EF过O点,且平行于AD,直线GH过0点且平行于AB,则图中平行四边形共有()A.15个B.16个C.17个D.18个7、如图,四边形ACED为平行四边形,DF垂直平分BE甲乙两虫同时从A点开始爬行到点F,甲虫沿着A﹣D﹣E﹣F的路线爬行,乙虫沿着A﹣C﹣B﹣F的路线爬行,若它们的爬行速度相同,则()A.甲虫先到B.乙虫先到C.两虫同时到D.无法确定8、如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为()A. B. C. D.39、下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形10、如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则DE的长度为()A. B. C.3 D.11、如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是()A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→矩形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形12、如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形 C.若AD⊥BC且AB=AC,则四边形AEDF是菱形 D.若AD平分∠BAC,则四边形AEDF是矩形13、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3 :4B.5 :8C.9 :16D.1 :214、如图,在△ABC中,∠A=∠B=45 ,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.1615、如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠,折叠后顶点D 恰好落在边OC上的点F处.若点D的坐标为,则点E的坐标为()A. B. C. D.二、填空题(共10题,共计30分)16、工人师傅在做矩形零件时,常用测量平行四边形的两条对角线是否相等来检查直角的精确度,这是根据________.17、阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作E F∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).请回答:BC+DE的值为________参考小明思考问题的方法,解决问题:如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数________18、如图,O是边长为4的正方形ABCD的中心,将一块足够大,圆心角为直角的扇形纸板的圆心放在点O处,并将纸板的圆心绕点O旋转,则正方形ABCD被纸板覆盖部分的面积为 ________。
人教版八年级数学下册第02课 矩形的性质与判定 同步练习题
初中数学试卷第02课矩形的性质与判定同步练习题【例1】如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.【例2】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【例3】如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.【例4】如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.【例5】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.课堂同步练习一、选择题:1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE第1题图第2题图第4题图2、如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则DC的长是()A.4cmB.6cmC.8cmD.10cm3、若顺次连接四边形ABCD各边的中点所得到的四边形是矩形,则该四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°5、如图.矩形ABCD中.E在AD上.且EF⊥EC.EF=EC.DE=2.矩形的周长为16.则AE的长是()A.3B.4C.5D.7第5题图第6题图第7题图6、如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G 点,若∠AEB=55°,则∠DAF=( )A.40°B.35°C.20°D.15°7、如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为( )A.9:4B.3:2C.4:3D.16:98、如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为( )A.3B.4C.5D.6第8题图第9题图9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )A.3B.3.5C.2.5D.2.810、如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE.其中正确的结论的个数有( )A.1B.2C.3D.4第10题图第11题图第12题图11、在矩形ABCD中,点A关于∠B的角平分线的对称点为E,点E关于∠C的角平分线的对称点为F,若AD=,AB=3,则S △ADF=()A.2B.3C.3D.12、如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.则结论正确的个数为( )A.1B.2C.3D.4二、填空题:13、若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为cm.14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4 cm,则四边形CODE的周长为。
人教版八年级下册数学 18.2矩形、菱形的性质定理和判定定理及其证明 习题精选(含答案)
矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。
2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。
3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。
4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。
5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。
6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。
7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。
B.一组对边平行且有一个角是直角的四边形是矩形。
C.对角线互相垂直的平行四边开是矩形。
D.一个角是直角且对角线互相平分的四边形是矩形。
8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。
10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。
11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。
12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。
人教版 八年级数学下册 18.2.1 矩形 培优练习(含答案)
人教版 八年级数学下册 18.2.1 矩形 培优练习(含答案)1.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AD =2,则AC 的长是( )A .2B .4C .23D .432.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形3.下列命题是假命题的是( ) A.不在同一直线上的三点确定一个圆 B.矩形的对角线互相垂直平分 C.正六边形的内角和是720° D.角平分线上的点到角两边的距离相等4.矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为( )cm . A.12 B.10 C.7.5 D.55.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB 。
添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.BE ⊥DCC.∠ADB=90°D.CE ⊥DE 6.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形 7.以下四个命题正确的是( ) A. 任意三点可以确定一个圆 B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等8.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形;BC O DAOD C B A A B C DEF EDA④四边形BCDF的周长为532;⑤AE的长为145cm.A.2个B.3个 C.4个D.5个9.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8 B.5 C.6 D.7.2二、填空题(共有7道小题)10.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=4,则AC的长为。
人教版数学八年级下《18.2.1矩形》课时练习含答案
八年级下册18.2.1矩形课时练习一.选择题(共15小题)1.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)答案:B知识点:坐标与图形性质;矩形的性质解析:解答:解:如图可知第四个顶点为:即:(3,2).故选B.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.本题考查学生的动手能力,画出图后可很快得到答案.2.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A. B.C. D.答案:A知识点:函数的图像;分段函数;矩形的性质解析:解答:解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个选项.故选A.分析:根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.本题考查了分段函数的画法,是难点,要细心认真.3.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE 的长是()A.1.6B.2.5C.3D.3.4答案:D知识点:线段垂直平分线的性质;勾股定理;矩形的性质解析:解答:解:连接EC,由矩形的性质可得AO=CO,又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,设AE=x,则ED=AD﹣AE=5﹣x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,即x2=(5﹣x)2+32,解得x=3.4.故选D.分析:利用线段的垂直平分线的性质,得到EC与AE的关系,再由勾股定理计算出AE的长.本题考查了利用线段的垂直平分线的性质.矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.4.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50B.50或40C.50或40或30D.50或30或20答案:C知识点:等腰三角形的性质;勾股定理;矩形的性质解析:解答:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:①如图(1):△AEF中,AE=AF=10cm;S△AEF=•AE•AF=50cm2;②如图(2):△AGH中,AG=GH=10cm;在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;根据勾股定理有:BH=8cm;∴S△AGH=AG•BH=×8×10=40cm2;③如图(3):△AMN中,AM=MN=10cm;在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;根据勾股定理有DN=6cm;∴S△AMN=AM•DN=×10×6=30cm2.故选C.分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,①如图(1),②如图(2),③如图(3),分别求得三角形的面积.题主要考查了等腰三角形的性质.矩形的性质.勾股定理等知识,解题的关键在于能够进行正确的讨论.5.菱形具有而矩形不具有性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等答案:C知识点:菱形的性质;矩形的性质解析:解答:解:A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.分析:由于菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,据此进行比较从而得到答案.本题考查矩形与菱形的性质的区别:矩形的对角线互相平分且相等,菱形的对角线互相平分.垂直且平分每一组对角.6.在矩形ABCD中,AB=1,AD=3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③B.③④C.①②④D.②③④答案:D知识点:矩形的性质;角平分线的性质;等腰三角形的性质;等边三角形的性质。
人教版数学八年级下册:《18.2.2矩形的判定》练习含答案
《矩形的判定》练习题一、选择——基础知识运用1.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD2.检查一个门框是否为矩形,下列方法中正确的是()A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分C.测量门框的三个角,是否都是直角D.测量两条对角线,是否互相垂直3.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是()A.正方形B.矩形C.菱形D.都有可能4.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形;⑥一组对边平行,另一组对边相等且有一角为直角的四边形是矩形.其中,正确的个数是()A.2个B.3个C.4个D.5个5.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对)二、解答——知识提高运用6.已知,平行四边形ABCD中,AB=5,AD=12,BD=13.求证:平行四边形ABCD是矩形。
7.如图所示,在□ABCD中,E为AD的中点,△CBE是等边三角形,求证:□ABCD是矩形。
8.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点,求证:四边形PQMN是矩形。
9.如图,□ABCD与□ABEF中,BC=BE,∠ABC=∠ABE,求证:四边形EFDC是矩形。
【初中数学】人教版八年级下册第2课时 矩形的判定(练习题)
人教版八年级下册第2课时矩形的判定(356)1.如图,四边形ABCD的对角线AC,BD相交于点O,AD//BC,AC=BD.试添加一个条件:,使四边形ABCD为矩形.2.如图,已知平行四边形ABCD中,E是BC的中点,连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF,求证:四边形ABFC是矩形.3.如图,平行四边形ABCD中,延长边AB到点E,使BE=AB,连接DE,BD和EC,设DE交BC于点O,∠BOD=2∠A.求证:四边形BECD是矩形.4.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,M为EF的中点,则AM的最小值为()A.54B.52C.53D.655.矩形ABCD中,AB=2cm,BC=5cm,P,Q分别为AD,BC上的动点,点P从点D出发向点A运动,运动到点A停止,点Q同时从点B出发向点C运动,运动到点C停止,点P,Q的速度都是1cm/s,设点P,Q运动的时间为t s.(1)如图①,连接PQ,AQ,CP,当t=四边形ABQP是矩形;(2)如图②,当点P,Q运动1s时,连接AQ,CP,BP,DQ,AQ交BP于点H,CP交DQ于点F,得到四边形HPFQ.求证:四边形HPFQ是矩形6.如图,以△ABC(∠BAC≠60∘)的三边为边在BC的同一侧分别作三个等边三角形,即△ABD,△BCE,△ACF,请回答下列问题:(1)四边形ADEF是什么特殊形状的四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)为什么题中有条件∠BAC≠60∘?7.如图,在△ABC中,AB=AC,D为BC的中点,AE//BC,DE//AB.求证:四边形ADCE 为矩形.8.如图,在四边形ABCD中,AB//CD,∠BAD=90∘,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.9.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E,猜想四边形ADCE的形状,并给予证明.10.如图所示,四边形ABCD的对角线互相平分.如果要使它成为矩形,那么需要添加的条件可以是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD11.如图,在平行四边形ABCD中,请添加一个条件:,使得平行四边形ABCD成为矩形.12.如图,工人师傅砌门时,要想检验门框ABCD是否符合设计要求(即门框是不是矩形),在确保两组对边分别平行的前提下,只要测量出对角线AC,BD的长度,然后看它们是否相等就可以判断了.(1)当AC(填“等于”或“不等于”)BD时,门框符合要求;(2)这种做法的根据是.13.如图所示,四边形ABCD是平行四边形,AC,BD交于点O,∠1=∠2. 求证:四边形ABCD是矩形.参考答案1.【答案】:答案不唯一,如AD=BC等【解析】:四边形ABCD的对角线AC=BD,所以只需添加条件使四边形ABCD是平行四边形即可.因为AD//BC,所以可以添加AD=BC,即一组对边平行且相等的四边形是平行四边形2.【答案】:证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC,∴∠BAE=∠CFE,∠ABE=∠FCE.∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE,∴AB=CF.∵AB//CF,∴四边形ABFC是平行四边形.∵AF=AD,∴BC=AF,∴四边形ABFC是矩形3.【答案】:证明:在平行四边形ABCD中,AD=BC,AB=CD,AB//CD,则BE//CD.又∵AB=BE,∴BE=CD,∴四边形BECD为平行四边形,∴OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形4.【答案】:D【解析】:连接AP.∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90∘.又∵PE⊥AB于点E,PF⊥AC于点F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=12EF=12AP.∵AP的最小值为直角三角形ABC斜边上的高,等于125,∴AM的最小值是655(1)【答案】52【解析】:∵四边形ABCD是矩形,∴AD=BC=5,AD//BC,∠B=90∘,当AP=BQ时,四边形ABQP是矩形,即5−t=t,解得t=52(2)【答案】证明:在矩形ABCD中,AD=BC,AD//BC.∵当t=1时,PD=BQ=1cm,∴四边形DPBQ是平行四边形,∴BP//DQ.∵AD=BC,AD//BC,DP=BQ,∴AP=CQ,AP//CQ,∴四边形APCQ是平行四边形,∴AQ//CP,∴四边形HPFQ是平行四边形.∵在矩形ABCD中,∠ADC=∠ABQ=90∘,AD=BC=5cm,AB=CD=2cm,由勾股定理得:CP=√5cm,BP=2√5cm,∴BP2+CP2=BC2,∴∠BPC=90∘,∴四边形HPFQ是矩形6(1)【答案】解:四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形,∴AD=BD=AB,BC=BE=EC, ∠DBA=∠EBC=60∘∴∠DBE+∠EBA=∠ABC+∠EBA,∴∠DBE=∠ABC.在△DBE和△ABC中,∵BD=BA,∠DBE=∠ABC,BE=BC,∴△DBE≌△ABC,∴DE=AC.又∵△ACF是等边三角形,∴AC=AF,∴DE=AF.同理可证:AD=EF,∴四边形ADEF是平行四边形(2)【答案】∵四边形ADEF是矩形,∴∠DAF=90∘,∴∠BAC=360∘−∠DAF−∠DAB−∠FAC=360∘−90∘−60∘−60∘=150∘,∴当∠BAC=150∘时,四边形ADEF是矩形(3)【答案】当∠BAC=60∘时,以A,D,E,F为顶点的四边形不存在.理由如下:若∠BAC=60∘,则∠DAF=360∘−∠BAC−∠DAB−∠FAC=360∘−60∘−60∘−60∘=180∘.此时,A,D,E,F四点共线,∴此时以A,D,E,F为顶点的四边形不存在7.【答案】:证明:∵AE//BC,DE//AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC.∵AE//DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形8.【答案】:证明:四边形ABCD中,AB//CD,∠BAD=90∘,∴∠ADC=90∘.又∵△ABC中,AB=5,BC=12,AC=13,满足132=52+122,∴△ABC是直角三角形,且∠B=90∘,∴四边形ABCD是矩形9.【答案】:解:四边形ADCE是矩形.证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵AN是△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAN=12∠BAC+12∠MAC=90∘.∵CE⊥AN,AD⊥BC,∴∠ADC=∠AEC=90∘,∴四边形ADCE是矩形.10.【答案】:D【解析】:对角线互相平分的四边形是平行四边形,要想使其成为矩形,只需满足对角线相等或有一个角是直角即可11.【答案】:答案不唯一,如∠A=90∘12.【答案】:等于;对角线相等的平行四边形是矩形13.【答案】:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形【解析】:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形。
人教版八年级下册数学 18.2.1 矩形 同步测试题(含答案)
18.2.1 矩形同步测试题1.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°2.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变3.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD-DF4.如图,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论中不正确的是( )A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC5.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD折叠,得到△EBD,DE与BC 交于点F,∠ADB=30°,则EF=( )A. B.2 C.3 D.36.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是( )A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD7.(2016·菏泽)在▱ABCD中,AB=3,BC=4,连接AC,BD,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠BAD+∠BCD=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为( )A.14B.16C.17D.189.如图,在Rt△ABC中,∠ACB=90°,D,E分别为AC,AB边的中点,连接DE,CE.则下列结论中不一定正确的是( )A.ED∥BCB.ED⊥ACC.∠ACE=∠BCED.AE=CE10.如图,在矩形ABCD中,O为AC的中点,EF过O点且EF⊥AC分别交DC,AB于点F,E,点G是AE的中点,且∠AOG=30°,则下列结论正确的有( )①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.A.1个B.2个C.3个D.4个11.图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB 为直角三角时,AP= .12.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.13.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.14.如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD,△BCE,△ACF,连接DE,EF.请回答下列问题:(1)四边形ADEF是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEF是矩形?15.如图,在矩形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B 以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动,如果P,Q同时出发,用t(s)表示移动的时间(0≤t≤6).(1)当t为何值时,△QAP为等腰三角形?(2)求四边形QAPC的面积,并探索一个与计算结果有关的结论.参考答案1.【答案】D解:因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A,B 两选项为平行四边形具有的性质,C选项添加后也不一定是矩形,根据矩形的定义知D可以.故选D.2.【答案】C3.【答案】B4.【答案】A解:∵四边形ABCD是矩形,∴AD=BC,∠ADO=∠EDO=∠C=90°.∵AD=DE,∴BC=DE.在△BOC与△EOD中,∠BOC=∠DOE,∠C=∠EDO=90°,BC=DE,∴△BOC≌△EOD.故B选项正确.在△AOD和△EOD中,AD=DE,∠ADO=∠EDO=90°,OD=OD,∴△AOD≌△EOD.故C选项正确.由B,C知△AOD≌△BOC,故D选项正确.而A选项中两三角形明显不全等.5.【答案】A6.【答案】D7.【答案】B解:当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠BAD=∠ABC=∠BCD=90°,AC=BD,根据勾股定理求出AC,即可得出结论.8.【答案】D 9.【答案】C10.【答案】C解:根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GEO=60°,从而判断出△OGE是等边三角形,判断出③正确;设AE=2a,则OE=a,利用勾股定理求出AO的长,从而得到AC的长,再求出BC的长,然后利用勾股定理求出AB=3a,从而判断出①正确,②错误;再根据三角形的面积公式和矩形的面积公式列式判断出④正确.11.【答案】3或3或3解:当∠APB=90°时,分两种情况讨论.情况一:如图①,∵O为AB中点,∴PO=AB,AO=BO.∴PO=BO.∵∠1=120°,∴∠PBA=30°.∴AP=AB=3;情况二:如图②,∵AO=BO,∠APB=90°,∴PO=BO.∵∠1=120°,∴∠BOP=60°.∴△BOP为等边三角形.∴BP=AB=3.∴AP===3.当∠BAP=90°时,如图③,∵∠1=120°,∴∠AOP=60°,∴∠APO=30°,∴PO=2AO=6.∴AP===3.当∠ABP=90°时,如图④,∵∠1=120°,∴∠BOP=60°,∴∠BPO=30°,∴PO=2BO=6.∴BP===3.∴AP===3.12.证明:∵四边形ABCD为矩形,∴AC=BD.∴BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF.∴BE=CF.13.(1)证明:由折叠知AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°.∵四边形ABCD为矩形,∴AB=CD,AD∥BC.∴∠FAN=∠ECM,AM=CN.∴AM-MN=CN-MN,即AN=CM.在△ANF和△CME中,∴△ANF≌△CME(ASA).∴AF=CE.又∵AF∥CE,∴四边形AECF是平行四边形.(2)解:∵AB=6,AC=10,∴BC=8.设CE=x,则EM=BE=8-x,CM=10-6=4. 在Rt△CEM中,(8-x)2+42=x2,解得x=5. ∴四边形AECF的面积为CE·AB=5×6=30.14.解:(1)四边形ADEF是平行四边形.理由:∵△ABD,△BEC都是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°.∴∠DBE=60°-∠EBA,∠ABC=60°-∠EBA, ∴∠DBE=∠ABC.∴△DBE≌△ABC.∴DE=AC,又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可得△ABC≌△FEC,∴EF=BA=DA.∵DE=AF,DA=EF,∴四边形ADEF为平行四边形.(2)若四边形ADEF为矩形,则∠DAF=90°,∵∠DAB=∠FAC=60°,∴∠BAC=360°-∠DAB-∠FAC-∠DAF=360°-60°-60°-90°=150°.∴当△ABC满足∠BAC=150°时,四边形ADEF是矩形.15.解:(1)由题意得DQ=t cm,AP=2t cm,∴AQ=(6-t)cm.若△QAP为等腰三角形,则只能是AQ=AP,于是6-t=2t,∴t=2.故当t=2时,△QAP为等腰三角形.(2)S四边形QAPC=S矩形ABCD-S△CDQ-S△BPC=12×6-×12t-×(12-2t)×6=72-6t-36+6t=36(cm2).结论:在点P,Q的移动过程中,四边形QAPC的面积始终不变,为36 cm2.。
八年级数学下 平行四边形-矩形练习题
6
八年级下数学讲义
课堂小练-10 平行四边形 02 矩形
姓名: )
1.顺次连结四边形 ABCD 各边中点得到四边形 EFGH, 要使四边形 EFGH 是矩形, 可以添加的一个条件是 ( A.AD∥BC
2
B.AC=BD
C.AC⊥BD
D.AD=AB )
2.矩形的面积是 2cm ,一边与一条对角线的比为 3:5,则矩形的对角线长是( A.3cm B.4cm C.5cm
2 x
的面积为 3,则双曲线的解析式为 A. y
1 x
B. y
C. y
3 x
D. y 6 x
1
八年级下数学讲义
7.如图 (1) 将矩形纸片 ABCD 沿 AE 折叠, 使点 B 落在直角梯形 AECD 的中位线 FG 上, 若 AB= 3 , 则 AE 的长为( ) A. 2 3 B.3 C. 2 D. 3 3 2
0
,
AB=
。
17.如图,利用四边形的不稳定性改变矩形 ABCD 的形状,得到平行四边形 A1BCD1,若平行四 边形 A1BCD1 的面积是矩形 ABCD 面积的一半,则∠A1BC 的度数是 度.
18.如图,在矩形 ABCD 中,对角线 AC、BD 相交于点 O,点 E、F 分别是 AO、AD 的中点,若 AC=8,则 EF=
D.12cm )
3.矩形的边长为 10cm 和 15cm,其中一个内角平分线分长边为两部分,这两部分长分别为( A.4cm 和 11cm B.5cm 和 10cm C.6cm 和 9cm D.7cm 和 8cm
4.如图,矩形 ABCD 的周长为 20cm,两条对角线相交于 O 点,过点 O 作 AC 的垂线 EF,分别交 AD,BC 于 E, F 点,连接 CE,则△CDE 的周长为( A、5cm B、8cm ) C、9cm D、10cm
初二数学下册知识点《矩形的判定》经典150例题及解析
初二数学下册知识点《矩形的判定》经典150例题及解析副标题一、选择题(本大题共69小题,共207.0分)1.如图,点E、F、G、H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A. 一定不是平行四边形B. 一定不是中心对称图形C. 可能是轴对称图形D. 当AC=BD时,它为矩形【答案】C【解析】【分析】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.先连接AC,BD,根据EF=HG,EH=FG,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:如图,连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG,EH=FG,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形.故选C.2.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.3.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A. 若AD⊥BC,则四边形AEDF是矩形B. 若AD垂直平分BC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是菱形D. 若AD平分∠BAC,则四边形AEDF是菱形【答案】D【解析】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.由矩形的判定和菱形的判定即可得出结论.本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.4.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.5.下列命题中,真命题是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】【分析】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.【解答】解:A、两条对角线相等且相互平分的四边形为矩形,故本选项错误;B、对角线互相垂直的平行四边形是菱形,故本选项错误;C、对角线互相平分的四边形是平行四边形,故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形,故本选项错误,故选:C.6.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A. 当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B. 当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C. 当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D. 当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.7.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A. ∠A=∠BB. ∠A=∠CC. AC=BDD. AB⊥BC【答案】B【解析】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.由矩形的判定方法即可得出答案.本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.8.下列命题是真命题的是( )A. 四边都相等的四边形是矩形B. 菱形的对角线相等C. 对角线互相垂直的平行四边形是正方形D. 对角线相等的平行四边形是矩形【答案】D【解析】解:A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选:D.根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论.此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB 【答案】C【解析】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.由矩形和菱形的判定方法即可得出答案.本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.10.下列关于矩形的说法,正确的是()A. 对角线相等的四边形是矩形B. 对角线互相平分的四边形是矩形C. 矩形的对角线互相垂直且平分D. 矩形的对角线相等且互相平分【答案】D【解析】解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选:D.根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.本题主要考查学生对矩形的判定与性质这一知识点的理解和掌握,都是一些基础知识,要求学生应熟练掌握.11.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.12.已知四边形ABCD,下列说法正确的是()A. 当AD=BC,AB∥DC时,四边形ABCD是平行四边形B. 当AD=BC,AB=DC时,四边形ABCD是平行四边形C. 当AC=BD,AC平分BD时,四边形ABCD是矩形D. 当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B【解析】解:∵一组对边平行且相等的四边形是平行四边形,∴选项A不正确;∵两组对边分别相等的四边形是平行四边形,∴选项B正确;∵对角线互相平分且相等的四边形是矩形,∴选项C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴选项D不正确;故选:B.由平行四边形的判定方法得出选项A不正确、选项B正确;由矩形和正方形的判定方法得出选项C、选项D不正确.本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.13.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法.其中正确的个数是( )①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确.故选A.14.如图,l1∥l2,BE∥CF,BA⊥l1,DC⊥l2,下面给出四个结论:①BE=CF;②AB=DC;③S△ABE=S△DCF;④四边形ABCD是矩形.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:∵l1∥l2,BE∥CF,∴四边形BCFE是平行四边形,∴BE=CF,故①正确,∵l1∥l2,BA⊥l1,DC⊥l2,∴AB=DC,故②正确,∵BE∥CF,∴∠AEB=∠DFC,在△ABE和△DCF中,∴△ABE≌△DCF(AAS),∴S△ABE=S△DCF,故③正确,∵l1∥l2,BE∥CF,BA⊥l1,DC⊥l2,∴四边形ABCD是矩形,故④正确,故选:D.根据题意可以分别判断各个小题中的结论是否成立,从而可以解答本题.本题考查矩形的判断、平行线之间的距离,解答本题的关键是明确题意,利用矩形的性质和平行线的性质解答.15.如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是( )A. 当AB=CD,AO=DO时,四边形ABCD为矩形B. 当AB=AD,AO=CO时,四边形ABCD为菱形C. 当AD∥BC,AC=BD时,四边形ABCD为正方形D. 当AB=CD时,四边形ABCD为平行四边形【答案】C【解析】【分析】本题考查了矩形,菱形,正方形和平行四边形的判定,注意:对角线垂直且相等的平行四边形是正方形,对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形.根据对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形判断即可.【解答】A.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AO=DO,∴AC=BD,∴四边形ABCD为矩形,故A正确;B.∵AB∥CD,∴∠BAO=∠DCO,又∵AO=CO,∠AOB=∠COD,∴△AOB≌△COD,∴AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD为菱形,故B正确;C.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD为矩形,故C错误;D.∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,故D正确.故选C.16.对角线互相平分且相等的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】B【解析】解:对角线互相平分且相等的四边形是矩形.故选:B.根据对角线相等的平行四边形是矩形,以及平行四边形的判定:对角线互相平分的四边形是平行四边形,即可得出结论.此题主要考查矩形的判定:对角线相等的平行四边形是矩形.以及平行四边形的判定:对角线互相平分的四边形是平行四边形,较为简单.17.如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是()A. 四边形ACEF4B. 四边形ACEF是矩形,它的周长是C. 四边形ACEF是平行四边形,它的周长是D. 四边形ACEF是矩形,它的周长是【答案】B【解析】解:∵DE=AD,DF=CD,∴四边形ACEF是平行四边形,∵四边形ABCD为菱形,∴AD=CD,∴AE=CF,∴四边形ACEF是矩形,∵△ACD是等边三角形,∴AC=1,∴EF=AC=1,过点D作DG⊥AF于点G,则AG=FG=AD×∴AF=CE=2AG∴四边形ACEF的周长为:AC+CE+EF+AF故选B.首先判断其是平行四边形,然后判定其是矩形,然后根据菱形的边长求得矩形的周长即可.本题考查了菱形的性质、平行四边形的判定与性质及矩形的判定与性质的知识,解题的关键是了解有关的判定定理,难度不大.18.如图.四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB、EC、DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A. AB=BEB. BE=DEC. ∠ADB=90°D. CE⊥DE【答案】B【解析】【分析】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.先证明四边形BCDE为平行四边形,再根据矩形的判定进行解答.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A.∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B.∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C.∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D.∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选B.19.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A. AB∥DCB. AC=BDC. AC⊥BDD. AB=DC【答案】C【解析】解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形)故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.故选:C.根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH为矩形,需要∠EFG=90度.由此推出AC⊥BD.本题考查了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.难度一般.20.顺次连接菱形各边的中点所形成的四边形是()A. 等腰梯形B. 矩形C. 菱形D. 正方形【答案】B【解析】解:∵E,F是中点,∴EH∥BD,同理,EF∥AC,GH∥AC,FG∥BD,∴EH∥FG,EF∥GH,则四边形EFGH是平行四边形.又∵AC⊥BD,∴EF⊥EH,∴平行四边形EFGH是矩形.故选:B.根据三角形的中位线定理以及菱形的性质即可证得.本题主要考查了矩形的判定定理,正确理解菱形的性质以及三角形的中位线定理是解题的关键.21.依次连接菱形的各边中点,得到的四边形是()A. 矩形B. 菱形C. 正方形D. 梯形【答案】A【解析】解:如右图所示,四边形ABCD是菱形,顺次连接各边中点E、F、G、H,连接AC、BD,∵E、H是AB、AD中点,∴EH∥BD,同理有FG∥BD,∴EH∥FG,同理EF∥HG,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,又∵EF∥AC,∴∠BME=90,∵EH∥BD,∴∠HEF=∠BME=90°,∴四边形EFGH是矩形.故选:A.先连接AC、BD,由于E、H是AB、AD中点,利用三角形中位线定理可知EH∥BD,同理易得FG∥BD,那么有EH∥FG,同理也有EF∥HG,易证四边形EFGH是平行四边形,而四边形ABCD是菱形,利用其性质有AC⊥BD,就有∠AOB=90°,再利用EF∥AC以及EH∥BD,两次利用平行线的性质可得∠HEF=∠BME=90°,即可得证.本题考查了三角形中位线定理、平行四边形的判定、矩形的判定、平行线的性质、菱形的性质.解题的关键是证明四边形EFGH是平行四边形以及∠HEF=∠BME=90°.22.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()【答案】D【解析】【分析】本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【解答】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM.因为AP的最小值即为直角三角形ABC∴AM故选D.23.以下条件不能判别四边形ABCD是矩形的是()A. AB=CD,AD=BC,∠A=90°B. OA=OB=OC=ODC. AB=CD,AB∥CD,AC=BDD. AB=CD,AB∥CD,OA=OC,OB=OD 【答案】D【解析】【分析】本题考查了平行四边形和矩形的判定的应用有关知识,先根据平行四边形的判定得出四边形ABCD是平行四边形,再根据矩形的判定逐个判断即可.【解答】解:如图:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B.∵OA=OB=OC=OD,∴AC=BD,四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确,故选D.24.下列说法中错误的是()A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的矩形是正方形D. 两条对角线相等的菱形是正方形【答案】B【解析】【分析】本题主要考查的是平行四边形的判定,矩形的判定,正方形的判定的有关知识,根据矩形的对角线相等且平分,和正方形的对角线互相垂直、相等、平分进行判定即可得出结论.平行四边形的判定方法共有五种,在四边形中如果有:①四边形的两组对边分别平行;②一组对边平行且相等;③两组对边分别相等;④对角线互相平分;⑤两组对角分别相等.则四边形是平行四边形.【解答】解:A.对角线互相平分的四边形是平行四边形,故A选项正确;B.对角线相等的平行四边形才是矩形,故B选项错误;C.对角线互相垂直的矩形是正方形,故C选项正确;D.两条对角线相等的菱形是正方形,故D选项正确,综上所述,B符合题意,故选B.25.如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A. 四边形AEDF是平行四边形B. 如果∠BAC=90°,那么四边形AEDF是矩形C. 如果AD平分∠BAC,那么四边形AEDF是菱形D. 如果AD⊥BC且AB=AC,那么四边形AEDF是正方形【答案】D【解析】【分析】本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理,和正方形的判定定理等知识点.两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故A选项正确.B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B选项正确.C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故C选项正确.D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故D选项错误.故选:D.26.下列说法正确的是()A. 对角线相等且互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线互相垂直的四边形是平行四边形D. 对角线相等且互相平分的四边形是矩形【答案】D【解析】解:对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选:D.分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.本题主要考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.27.下列命题中,假命题是()A. 有一组对角是直角且一组对边平行的四边形是矩形B. 有一组对角是直角且一组对边相等的四边形是矩形C. 有两个内角是直角且一组对边平行的四边形是矩形D. 有两个内角是直角且一组对边相等的四边形是矩形【答案】C【解析】【分析】本题考查了矩形的判定,熟练掌握矩形的判定方法是解决此类题目的关键.举反例往往是解决此类题目的重要的方法.利用矩形的定义或者是矩形的判定定理分别判断四个选项的正误即可.【解答】解:A、有一组对角是直角且一组对边平行即可得到两组对边平行或四个角均是直角,故此选项不符合题意;B、有一组对角是直角且一组对边相等可以得到其两组对边平行,有一个角是直角的平行四边形是矩形可知此选项不符合题意;C、有两个内角是直角且一组对边平行的四边形可能是直角梯形,故此选项符合题意;D、有两个内角是直角的且一组对边相等可以得到其两组对边相等,所以能判定其是一个平行四边形,根据有一个角是直角的平行四边形是矩形可知此选项不符合题意.故选C.28.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是矩形,则这个条件可以是()A. ∠ABC=90°B. AC⊥BDC. AB=CDD. AB∥CD【答案】A【解析】【分析】本题主要考查了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.因为在四边形ABCD中,对角线AC与BD互相平分,所以四边形ABCD是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.【解答】解:∵对角线AC与BD互相平分,∴四边形ABCD是平行四边形,要使四边形ABCD成为矩形,需添加一个条件是:AC=BD或有个内角等于90度.故选A.。
湘教版数学八年级下册_《矩形》基础训练
《矩形》基础训练一、选择题1.如图,在矩形ABCD中,对角线AC、BD相交于点O,且∠AOD=120°,AC=6,则图中长度为3的线段有()A.2条B.4条C.5条D.6条2.如图,四边形ABCD和四边形AEFG都是矩形,若∠BAG=20°,则∠DAE=()A.10°B.20°C.30°D.45°3.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分4.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()A.∠ABC=90°B.AC=BD C.∠OBC=∠OCB D.AO⊥BD5.矩形具有下列性质()A.对角线相互垂直B.对角线相等C.一条对角线平分一组对角D.面积等于两条对角线乘积的一半二、填空题6.如图,矩形ABCD中,AB=2,AD=1,点M在边CD上,若AM平分∠DMB,则DM的长是.7.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则BC的长为.8.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=5cm,BC=12cm,则EF=cm.9.在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB=.10.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.《矩形》基础训练参考答案与试题解析一、选择题1.如图,在矩形ABCD中,对角线AC、BD相交于点O,且∠AOD=120°,AC=6,则图中长度为3的线段有()A.2条B.4条C.5条D.6条【分析】由题意可得AO=BO=CO=DO=3,可证△ABO是等边三角形,可得AB=3=CD,则可得一共有6条线段长度为3.【解答】解:∵四边形ABCD是矩形∴OA=OC=OB=OD=AC=3,AB=CD∵∠BOC=120°,OA=OB∴∠OAB=∠OBA=60°∴△AOB是等边三角形∴AB=AO=3∴CD=3∴一共6条线段长度为3.故选:D.【点评】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键.2.如图,四边形ABCD和四边形AEFG都是矩形,若∠BAG=20°,则∠DAE=()A.10°B.20°C.30°D.45°【分析】由题意可得∠EAG=∠DAB=90°,即可得∠BAG=∠DAE=20°.【解答】解:∵四边形ABCD和四边形AEFG都是矩形∴∠EAG=∠DAB=90°∴∠EAG﹣∠DAG=∠DAB﹣∠DAG∴∠DAE=∠BAG=20°故选:B.【点评】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键.3.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分【分析】根据矩形的性质即可判断;【解答】解:因为矩形的对角线相等且互相平分,所以选项C正确,故选:C.【点评】本题考查矩形的性质,解题的关键是记住矩形的性质,属于中考基础题.4.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()A.∠ABC=90°B.AC=BD C.∠OBC=∠OCB D.AO⊥BD【分析】依据矩形的定义和性质解答即可.【解答】解:∵ABCD为矩形,∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;∴OB=OC,∴∠OBC=∠OCB,故C正确,与要求不符.当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.故选:D.【点评】本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.5.矩形具有下列性质()A.对角线相互垂直B.对角线相等C.一条对角线平分一组对角D.面积等于两条对角线乘积的一半【分析】根据矩形的性质即可判断;【解答】解:根据矩形的对角线相等,可知选项B正确,故选:B.【点评】本题考查矩形的性质、解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.二、填空题6.如图,矩形ABCD中,AB=2,AD=1,点M在边CD上,若AM平分∠DMB,则DM的长是2﹣.【分析】过点A作AE⊥BM于E,由题意可证△ADM≌△AME,可得DM=ME,AD=AE=1,根据勾股定理可求BE的长,即可求DM=ME的长.【解答】解:过点A作AE⊥BM于E∵四边形ABCD是矩形∴AD=BC=1,CD=AB=2,∵AM平分∠DMB∴∠AMD=∠AMB,且AM=AM,∠ADM=∠AEM∴△ADM≌△AME∴DM=ME,AD=AE=1在Rt△AEB中,BE==∴ME=2﹣=DM故答案为2﹣【点评】本题考查了矩形的性质,全等三角形的判定和性质,添加适当的辅助线构造全等三角形是本题的关键.7.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则BC的长为.【分析】由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=1,∴A=2OA=2,∴BC===;故答案为:.【点评】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.8.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=5cm,BC=12cm,则EF=cm.【分析】先由勾股定理求出BD,再得出OD,证明EF是△AOD的中位线,即可得出结果.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,OD=BD,AD=BC=12,∴BD===13,∴OD=,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF=OD=;故答案为:.【点评】本题考查了矩形的性质、勾股定理以及三角形中位线定理;熟练掌握菱形的性质,证明三角形中位线是解决问题的关键.9.在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB=40°.【分析】根据矩形的性质得出AC=2OA,BD=2BO,AC=BD,求出OB=0A,推出∠OAB=∠OBA,根据三角形内角和定理求出即可.【解答】解:∵四边形ABCD是矩形,∴AC=2OA,BD=2BO,AC=BD,∴OB=0A,∵∠AOB=100°,∴∠OAB=∠OBA=(180°﹣100°)=40°故答案为:40°.【点评】本题考查了三角形内角和定理,矩形的性质,等腰三角形的性质的应用,注意:矩形的对角线互相平分且相等.10.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD 条件,才能保证四边形EFGH是矩形.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.【点评】本题主要考查三角形的中位线定理和矩形的四个角都是直角的性质,熟练掌握定理和性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形经典习题
1.矩形ABCD 中,AB=6,BC=8,则AC=_____.矩形的面积为______.
2.已知一矩形长6cm ,宽2cm ,则它的对角线长______cm .
3.矩形两对角线夹角为120°,矩形宽为2,则矩形面积为_____.
4.如图所示,把两个大小完全相同的矩形拼成“L ”型图案,
则∠FAC=_____,∠FCA=_____.
5.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAD=_____.
6.矩形的面积是12cm 2,一边与一条对角线的比为3:5,则矩形的对角线长是( )
A .3cm
B .4cm
C .5cm
D .12cm
7.下列说法不能判定四边形是矩形的是( )
A .有一个角为90°的平行四边形
B .四个角都相等的四边形
C .对角线相等的平行四边形
D .对角线互相平分的四边形
8.在□ABCD 中增加下列条件中的一个,这个四边形就是矩形,则增加的条件是( )
A .对角线互相平分
B .AB=B
C C .∠A+∠C=180°
D .AB=12AC 9.四边形ABCD 的对角线AC ,BD 相交于点O ,能判断它为矩形的题设是( )
A .AO=CO ,BO=DO
B .AO=BO=CO=DO
C .AB=BC ,AO=CO
D .AO=CO ,BO=DO ,AC ⊥BD
10.下列说法正确的是( )
A .两组对角分别相等的四边形是矩形
B .有两个角是直角的四边形是矩形
C .有一个角是直角的平行四边形是矩形
D .有一个角是直角,且一组对边相等的四边形
是矩形
11.矩形ABCD 对角线AC 、BD 交于点O ,AB=5,12,cm BC cm =则△ABO 的周长为等于
.
12. 如图所示,四边形ABCD 为矩形纸片.把纸片ABCD 折叠, 使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,
则AF 等于 ( )
A.34
B.33
C.24
D.8
13. 如图所示,矩形ABCD 的对角线AC 和BD 相交于点O ,
过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,
则图中阴影部分的面积为 .
A B C D E F A B C D E O
14.已知矩形的周长为40cm ,被两条对角线分成的相邻两个三角形的周长
的差为8cm
,则较大的边长为 .
15矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB =2∠BOC , 若对角线 AC =6cm ,则周长
= ,面积= 。
16 已知:O 是矩形ABCD 对角线的交点,AE 平分∠BAD ,∠AOD=120°,
∠AEO= .
17.平行四边形ABCD 中,对角线AC 、BD 交于点O ,
点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )
A .3 cm
B .6 cm
C .9 cm
D .12 cm
18.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的
长为_______,短边长为_______.
19.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .
20.如图,E 为矩形ABCD 对角线AC 上一点,DE ⊥AC 于E ,∠ADE: ∠EDC=2:3,则∠BDE 为
_________.
21.矩形的两邻边分别为4㎝和3㎝,则其对角线为 ㎝,矩形面积为 cm 2.
22.矩形具备而平行四边形不具有的性质是( )
A .对角线互相平分
B .邻角互补
C .对角相等
D .对角线相等
23.如图,已知在四边形ABCD 中,AC DB 交于O ,E 、F 、G 、H 分别是四边的中点,
求证:四边形EFGH 是矩形.
24.如图所示,在矩形ABCD 中,AC ,BD 是对角线,过顶点C 作BD•的平行线与AB 的延长
线相交于点E ,求证:△ACE 是等腰三角形.
B
A
D C O H G O F
E
D
C
B A。