电子教案:人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数教案
高中数学第二章基本初等函数(Ⅰ)2.1指数函数教案新人教A版必修1(2021学年)
福建省福清市海口镇高中数学第二章基本初等函数(Ⅰ)2.1 指数函数教案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省福清市海口镇高中数学第二章基本初等函数(Ⅰ)2.1 指数函数教案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省福清市海口镇高中数学第二章基本初等函数(Ⅰ)2.1 指数函数教案新人教A版必修1的全部内容。
2.1 指数函数2.1.1 指数与指数幂的运算(2课时)三维目标定向〖知识与技能〗(1)了解根式的概念,方根的概念及二者的关系;(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简.〖过程与方法〗通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用.〖情感、态度与价值观〗通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系. 教学重难点根式、分数指数幂的概念及其性质。
教学过程设计一、问题情境设疑问题1、根据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001 ~ 2020年,各年的GDP 可望为2000年的多少倍?问题2、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P与死亡年数t 之间的关系5730)21(tP ,考古学家根据这个式子可以知道,生物死亡t年后,体内碳14含量P的值.二、核心内容整合(一)根式(1)平方根:)0(2>=a a x ;立方根:a x =3。
人教版高中数学必修1第二章基本初等函数(I)-《2.1指数函数》教案(2)
2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象,根据图象理解和掌握指数函数的性质.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.通过观察,进而研究指数函数的性质.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象及性质.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征. 2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a=(a>0且a≠1来表示).学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.形成概念理解概念指数函数的定义一般地,函数xy a=(a>0且a≠1)叫做指数函数,其中x是自变量,函数的定义域为R.回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22xy+=(2)(2)xy=-(3)2xy=-(4)xyπ=(5)2y x=学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分由特殊到一般,培养学生的观察、归纳、概括的能(6)24y x =(7)x y x = (8)(1)x y a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x 当时,等于若当时,无意义若a<0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数, 如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式, 所以不是指数函数 .析,教师点拨指导. 力. 使学生进一步理解指数函数的概念.深化 概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象,用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50- 1.00-00.000.50 1.00 1.50 2.002x y = 18-141212 4再研究xy a =(0<a <1)的图象,学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评.通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的用计算机完成以下表格并绘出函数1()2xy =的图象.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2x y =上的点(x ,y )xy x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.问题:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.x2.50- 2.00- 1.50- 1.00- 0.00 1.00 1.50 2.00 2.501()2x y =14121 2 4思维过程.培养学生的归纳概括能力.从图上看x y a =(a >1)与x y a -=两函数图象的特征——关于y 轴对称.应用 举例例1:(P 66 例6)已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.例1分析:要求(0),(1),(3)f f f -的值,,,xa x π13只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.解:将点(3,π),代入()xf x a =得到(3)f π=,即3a π=, 解得:13a π=,于是3()x f x π=,所以0(0)1f π==, f(1)=31π=3π , 11(3)f ππ--==.学生思考、解答、交流,教师巡视,注意个别指导,发现带有普遍性的问题,应及时提到全体学生面前供大家讨论.巩固所学知识,培养学生的数形结合思想和创新能力.归纳总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善.通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系. 形成概念概念图象特征a >10<a <1向x 轴正负方向无限延伸:函数的定义域为师:引导学生观察指数函数的图象,归纳出图象的特征.生:从渐进线、对称轴、特殊点、图象通过分析图象,得到图象特深化 R图象关于原点或y 轴不对称:非奇非偶函数 函数图象都在x 轴上方:函数的值域为R +函数图象都过定点(0,1):0a =1 自左向右,图象逐渐上升:增函数 自左向右,图象逐渐下降:减函数 在第一象限内的图象纵坐标都大于1:x >0,x a >1在第一象限内的图象纵坐标都小于1:x >0,x a <1在第二象限内的图象纵坐标都小于1:x <0,x a <1 在第二象限内的图象纵坐标都大于1:x <0,x a >1问题:指数函数x y a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.的升降等方面观察指数函数的图象,归纳出图象的特征.师:帮助学生完善.师:画出几个图象提出问题.生:画出几个底数不同的指数函数图象,得到指数函数x y a =(a >0且a ≠1),当底数越大时,在第一象限的函数图象越高.(底大图高)征,从而进一步 得到指数函数的性质。
人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数导学案(2)
数知识:作为实数变量x的函数,有时,尤其是在科学中,术语指数函数更一般性的用于形如的指数函数欧拉数e 的指数函数。
指数函数的一般形式为(a>0且≠1) (x∈R),从上面我们关于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得a>0且a≠1如图所示为a的不同大小影响函数图形的情况。
在函数中可以看到(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过指数函数线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。
(7)函数总是通过(0,1)这点,(若,则函数定过点(0,1+b))(8)指数函数无界。
(9)指数函数是非奇非偶函数(10)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。
2公式推导e的定义:()'指数函数======特殊地,当a=e时,()'=(ln x)'=1/x。
方法二:设,两边取对数ln y=xln a两边对x求导:y'/y=ln a,y'=yln a=a^xln a特殊地,当a=e时,y'=(a^x)'=(e^x)'=e^xln e=e^x。
eº=13函数图像指数函数(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y 轴左边“底大图低”。
(如右图)。
(4)与的图像关于y轴对称。
4幂的比较比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。
比较两个幂的大小时,除了上述一般方法之外,还应注意:(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。
高中数学第二章基本初等函数(Ⅰ)2.1指数函数教案新人教A版必修1
指数函数教学目标:知识目标:理解指数函数的定义,掌握指数函数的图象、性质及其简单应用.能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论的思想以及从特殊到一般的数学讨论的方法,增强识图用图的能力.情感目标:通过本节课的学习,使学生获得研究指数函数的规律和方法,使学生领会数学的抽象性和严谨性,提高学生自主学习的能力,养成积极主动,勇于探索,不断创新的学习习惯和品质;培养他们实事求是的科学态度,积极参与和勇于探索的精神。
教学重点:指数函数的图象和性质教学难点:指数函数图象和性质的发现过程,及指数函数图象与底的关系.教学方法:自主探究,小组合作式教学法.教学手段:采用多媒体辅助教学.教学过程:一、课前准备与思考二、创设情景,引出课题前面我们学习过函数的概念、函数的有关性质及指数的运算,今天我们将在此基础上学习一类新的基本函数.问题1:合同书乙方:____________(一)甲方在一个月内每天给乙方10万元,乙方第一天只需给甲方2分钱,以后每天给甲方的钱是前一天的两倍。
(二)合同有效期从签订之日起到30天后终止本合同既为公司提供了执行依据,同时也为乙方提供了维护自身权益的法律保障,具有法律效益,不得违约。
甲方:乙方:年月日动画演示:用表格的形式作出每天收到钱数和要出的钱数,最后得出出钱数与天数的关系式是:.问题2:《庄子。
天下篇》中写到:“一尺之棰,日取其半,万世不竭”。
请写出取x次后,木棰的剩留量与y与x的函数关系式,则与的关系为y=()x.思考:你能从以上的两个例子中得到的关系式里找到什么异同点吗?共同点:变量与构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同.大家能给这样的函数起个名字吗?(想让学生对数学的形式化有一认识)(指数函数)这就是我们今天所要研究的一个新的基本函数——指数函数.(引出课题)三、发现问题探索研究(一)指数函数的概念:函数叫做指数函数.其中是自变量.函数的定义域为.在以前我们学过的函数中,一次函数用形如的形式表示,反比例函数用形如的形式表示,二次函数用的形式表示.这些函数对其一般形式上的系数都有相应的限制.给定一个函数要注意它的实际意义与研究价值.探究1:为什么指数函数对底数有这样的要求呢?若,当时,恒等于0,没有研究价值;当时,无意义;若,例如当时,无意义,没有研究价值;若,则,是一个常量,也没有研究的必要.很好,所以有规定(对指数函数有一初步的认识).探究2:判断下列函数是否是指数函数(二)指数函数的图象与性质:学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图象及性质,然后利用其图象和性质去解决数学问题和实际问题.思考1:你能类比前面讨论函数性质的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、图象、单调性、奇偶性.思考2:如何来画指数函数的图象呢?画函数图象通常采用:列表、描点、连线.有时,也可以利用函数的有关性质画图. 思考3:画出指数函数、的图象并观察图象有什么特征?函数的图象位于轴的上方,向左无限接近轴,向上无限延伸, 从左向右看,图象是上升的,与轴交于(0,1)点.函数的图象位于轴的上方,向右无限接近轴,向上无限延伸,从左向右看,图象是下降的,与轴交于(0,1)点.思考4:选取底数的若干个不同的值,在同一平面坐标系内作出相应的指数函数的图象.观察图象,你能发现他们有哪些共同特征?教师演示课件,以不同的底,作出函数的图象,描绘出其几何特征,将函数的图象和性质对应起来.利用几何画板,通过改变的值,让学生观察图象的变化规律.思考6:通过你们画的图象以及老师的演示,你们能发现怎样的规律呢?底数分和两种情况.很好,那么,你们能否归纳总结一下它们的性质吗?引导学生观察函数的图象特征,并总结函数的性质.思考7:从特殊到一般,指数函数有哪些性质?并类比得出的性质.师生共同归纳:指数函数的图象与性质:强调:利用函数图象研究函数性质是一种直观而形象的方法,记忆指数函数性质时可以联想它的图象,记住性质的关键在于要脑中有图.四、例练结合共同提高:通过前面几个环节,学生已基本掌握了本节课指数函数的相关知识,此时我将带领学生体验运用新知识去解决问题的乐趣,进入本节课的下一个环节——例练结合,共同提高。
高中数学第二章基本初等函数§2.1.1指数(第1—2课时)教案新人教A版必修1
第二课时
提问: 1.习初中时的整数指数幂,运算性质?
an a a a a, a0 1 (a 0) ,0 0无意义
an
1 an
(a 0)
a m a n a m n ; (a m )n a mn
(an )m a mn, (ab) n a nb n
什么叫实数?
有理数,无理数统称实数 . 2.观察以下式子,并总结出规律:
三.学法与教具 1 .学法:讲授法、讨论法、类比分析法及发现法 2.教具:多媒体
四、教学设想:
第一课时
一、复习提问:
什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
归纳:在初中的时候我们已经知道:若
x2 a ,则 x 叫做 a 的平方根 . 同理,若 x3 a ,则 x 叫做 a
的立方根 .
3、教材对反函数的学习要求仅限于初步知道概念, 目的在于强化指数函数与对数函数这两种函数模
型的学习,教学中不宜对其定义做更多的拓展
.
4. 教材对幂函数的内容做了削减, 仅限于学习五种学生易于掌握的幂函数, 并且安排的顺序向后调
整,教学中应防止增加这部分内容,以免增加学生学习的负担
.
5. 通过运用计算机绘制指数函数的动态图象
思考: a n n ( n a ) n 是否成立,举例说明 .
课堂练习: 1. 求出下列各式的值
(1) 7 ( 2)7
(2) 3 (3a 3)3 ( a 1)
4
(3) (3a
3)4
2.若 a2 2a 1 a 1,求 a的取值范围 .
3.计算 3 ( 8)3 4 (3 2)4 3 (2 3)3
三.归纳小结:
即: a n
1
m
高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2指数函数及其性质教学设计新人教A版必修1
2.1.2 指数函数及其性质整体设计教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.学生学习情况分析指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.设计思想1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.2.在本节课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法.教学目标根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.重点难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.教学过程一、创设情境、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?学情预设学生可能说出很多或能算出具体数目.师:大家能否估计一下51号同学该准备的米有多重吗?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨.师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!设计意图用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?学生很容易得出y=2x(x∈N*)和y=2x(x∈N*).学情预设学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的取值范围.二、师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题中,也有一个与y=2x类似的关系式y=1.073x(x∈N*,x≤20).(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 设计意图引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y =2x ,y =1.073x 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.引导学生观察,两个函数中,底数是常数,指数是自变量.师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成y =a x 的形式.自变量在指数位置,所以我们把它称作指数函数.(2)让学生讨论并给出指数函数的定义(约6分钟).对于底数的分类,可将问题分解为:①若a <0,会有什么问题?(如a =-2,x =12,则在实数范围内相应的函数值不存在) ②若a =0,会有什么问题?(对于x ≤0,a x 都无意义)③若a =1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要)师:为了避免上述各种情况的发生,所以规定a >0且a ≠1.在这里要注意生生之间、师生之间的对话.①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a >0,且a ≠1;a =1为什么不行?②若学生只给出y =a x ,教师可以引导学生通过类比一次函数(y =kx +b ,k ≠0)、反比例函数(y =k x ,k ≠0)、二次函数(y =ax 2+bx +c ,a ≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设设计意图①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出a >0,且a ≠1,也为下面研究性质时对底数的分类做准备.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y =2×3x ,y =32x ,y =-2x.学情预设学生可能只是关注指数是否是变量,而不考虑其他的.设计意图加深学生对指数函数定义和呈现形式的理解.2.指数函数的性质(1)提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面?设计意图让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.设计意图①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透.(2)分组活动,合作学习(约8分钟)师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组);③每组都将研究所得到的结论或成果写出来以便交流.学情预设考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导.通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图(3)交流、总结(约10~12分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?〔〕如过定点(0,1),y =a x 与y =⎝ ⎛⎭⎪⎫1a x 的图象关于y 轴对称学情预设①首先选一个从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.设计意图①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.教师通过几何画板中改变参数a的值,追踪y=a x的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.师生共同总结指数函数的图象和性质,教师可以边总结边板书.0<a<1a>1(0,+∞)过定点(0,1)1.例:已知指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.解:因为f(x)=a x的图象经过点(3,π),所以f(3)=π,即a 3=π.解得13πa =,于是f (x )=3πx . 所以f (0)=1,f (1)=3π,f (-3)=1π. 设计意图通过本题加深学生对指数函数的理解.师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.设计意图让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.2.练习:(1)在同一平面直角坐标系中画出y =3x 和y =⎝ ⎛⎭⎪⎫13x 的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:①y =112xy ⎛⎫= ⎪⎝⎭. 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?学情预设学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.设计意图①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.②总结本节课中所用到的数学思想方法.③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通.4.作业:课本习题2.1A 组 5.教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.指数函数及其性质的应用整体设计三维目标1.知识与技能理解指数函数的图象和性质,会利用性质来解决问题.2.过程与方法能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.重点难点教学重点:指数函数的图象和性质.教学难点:指数函数的性质应用.教学过程第2课时指数函数及其性质的应用(1)作者:王建波导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).应用示例例1 比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;图1二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图1.在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法三:利用函数单调性,(1)1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x在R上是增函数,而2.5<3,所以1.72.5<1.73;(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x在R上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思考在上面的解法中,你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习强化来实现.例活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=21121(1)x x x x a a a a x -=--.因为a >1,x 2-x 1>0,所以21>1x x a-,即21x x a --1>0. 又因为1x a >0,所以y 2-y 1>0,即y 1<y 2.所以当a >1时,y =a x,x ∈R 是增函数.同理可证,当0<a <1时,y =a x 是减函数. 证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=2211x x x x a a a -=. 因为a >1,x 2-x 1>0,所以21>1x x a->1,即y 2y 1>1,y 1<y 2. 所以当a >1时,y =a x ,x ∈R 是增函数.同理可证,当0<a <1时,y =a x是减函数.例1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;……经过x 年 人口约为13(1+1%)x亿;经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 y =13(1+1%)x ,当x =20时,y =13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N ,平均增长率为p ,则对于经过时间x 后总量y =N (1+p )x (x ∈N ),像y =N (1+p )x 等形如y =ka x (k ∈R ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.知能训练1.函数y =a |x |(a >1)的图象是( )图2解析:当x ≥0时,y =a |x |=a x 的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B2.下列关系中正确的是( )A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:D3.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( )A .(0,1)B .⎝ ⎛⎭⎪⎫12,1 C .(-∞,0) D .(0,+∞) 解析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0). 答案:C4.若集合A ={y |y =2x,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .AB B .AB C .A =B D .A ∩B =∅解析:A ={y |y >0},B ={y |y ≥0},所以A B .答案:A5.对于函数f (x )定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=10x时,上述结论中正确的是__________. 解析:因为f (x )=10x,且x 1≠x 2,所以f (x 1+x 2)=1212101010x x xx +=⋅=f (x 1)·f (x 2),所以①正确;因为f (x 1·x 2)=1212101010x x xx ⋅≠+=f (x 1)+f (x 2),②不正确;因为f (x )=10x是增函数,所以f (x 1)-f (x 2)与x 1-x 2同号, 所以f (x 1)-f (x 2)x 1-x 2>0,所以③正确.因为函数f (x )=10x图象如图3所示是上凹下凸的,可解得④正确.图3答案:①③④另解:④.∵10x 1>0,10x 2>0,x 1≠x 2,∴1210102xx +>1210102xx +>即121221010102x x x x ++>.∴f (x 1)+f (x 2)2>f ⎝⎛⎭⎪⎫x 1+x 22.拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系. (1)①y =3x,②y =3x +1,③y =3x -1;(2)①y =⎝ ⎛⎭⎪⎫12x ,②y =⎝ ⎛⎭⎪⎫12x -1,③y =⎝ ⎛⎭⎪⎫12x +1.活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.解:如图4及图5.观察图4可以看出,y =3x,y =3x +1,y =3x -1的图象间有如下关系:y =3x +1的图象由y =3x 的图象左移1个单位得到; y =3x -1的图象由y =3x 的图象右移1个单位得到; y =3x -1的图象由y =3x +1的图象向右移动2个单位得到.观察图5可以看出,y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫12x -1,y =⎝ ⎛⎭⎪⎫12x +1的图象间有如下关系:y =⎝ ⎛⎭⎪⎫12x +1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象左移1个单位得到;y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象右移1个单位得到; y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考.课堂小结思考本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本习题2.1 B组1,3,4.设计感想本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.第3课时指数函数及其性质的应用(2)作者:刘玉亭导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).推进新课新知探究提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:图象分布在一、二象限,与轴相交,落在x轴的上方都过点(0,1)第一象限的点的纵坐标都大于1第二象限的点的纵坐标都大于第一象限的点的纵坐标都大于0且小于1;第二象限的点①取值.即设x1,x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f(g(x))可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例例 1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如图6.图6比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如图7.图7比较可知函数y =2x -1、y =2x -2与y =2x的图象的关系为:将指数函数y =2x的图象向右平行移动1个单位长度,就得到函数y =2x -1的图象;将指数函数y =2x的图象向右平行移动2个单位长度,就得到函数y =2x -2的图象.点评:类似地,我们得到y =a x与y =ax +m(a >0,a ≠1,m ∈R )之间的关系:y =a x +m (a >0,m ∈R )的图象可以由y =a x 的图象变化而来.当m >0时,y =a x的图象向左移动m 个单位得到y =ax +m的图象; 当m <0时,y =a x 的图象向右移动|m |个单位得到y =a x +m的图象.上述规律也简称为“左加右减”.例2 已知定义域为R 的函数f (x )=2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R ,所以f (0)=0,f (-1)=-f (1),(2)在(1)的基础上求出f (x ),转化为关于k 的不等式,利用恒成立问题再转化.(1)解:因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1.所以f (x )=1-2xa +2x +1;。
人教A版数学必修一第二章 基本初等函数(Ⅰ) (2).docx
高中数学学习材料马鸣风萧萧*整理制作第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果____________________,那么x 叫做a 的n 次方根.2.式子na 叫做________,这里n 叫做__________,a 叫做____________. 3.(1)n ∈N *时,(na )n =____.(2)n 为正奇数时,n a n =____;n 为正偶数时,na n =______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:m na =__________(a >0,m 、n ∈N *,且n >1);(2)规定正数的负分数指数幂的意义是:m na =_______________(a >0,m 、n ∈N *,且n >1);(3)0的正分数指数幂等于____,0的负分数指数幂________________. 5.有理数指数幂的运算性质: (1)a r a s =______(a >0,r 、s ∈Q ); (2)(a r )s =______(a >0,r 、s ∈Q ); (3)(ab )r =______(a >0,b >0,r ∈Q ).一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的是( )A .①③④B .②③④C .②③D .③④ 2.若2<a <3,化简(2-a )2+4(3-a )4的结果是( ) A .5-2a B .2a -5 C .1 D .-1 3.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是( ) A .(-12)-1 B .122-C .1212-⎛⎫⎪⎝⎭D .2-14.化简3a a 的结果是( )A .aB .12a C .a 2D .13a 5.下列各式成立的是( ) A.3m 2+n 2=()23m n + B .(ba)2=12a 12bC.6(-3)2=()133- D.34=1326.下列结论中,正确的个数是( ) ①当a <0时,()322a=a 3;②na n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞); ④若100a =5,10b =2,则2a +b =1.A .0B .1C .2D .3题 号 1 2 3 4 5 6 答 案二、填空题 7.614-3338+30.125的值为________. 8.若a >0,且a x=3,a y=5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+(-4)02+12-1-(1-5)0·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升 12.化简:413322333842a a b b ab a-++÷(1-23b a)×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.1.n a n 与(na )n 的区别(1)na n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶性限制,a ∈R ,但这个式子的值受n 的奇偶性限制:当n 为大于1的奇数时,na n =a ;当n 为大于1的偶数时,na n =|a |.(2)(na )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定:当n 为大于1的奇数时,(n a )n =a ,a ∈R ;当n 为大于1的偶数时,(na )n =a ,a ≥0,由此看只要(n a )n 有意义,其值恒等于a ,即(na )n =a . 2.有理指数幂运算的一般思路化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的公式、换元等简化运算过程.3.有关指数幂的几个结论 (1)a >0时,a b >0; (2)a ≠0时,a 0=1; (3)若a r =a s ,则r =s ;(4)a ±212a 12b +b =(12a ±12b )2(a >0,b >0); (5)( 12a +12b )(12a -12b )=a -b (a >0,b >0).第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n =a(n>1,且n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)na m (2)1a m n(3)0 没有意义5.(1)a r +s (2)a rs (3)a r b r 作业设计1.D [①错,∵(±2)4=16, ∴16的4次方根是±2; ②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |,∵2<a <3,∴原式=a -2+3-a =1.] 3.C [∵(-12)-1=-2, 122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12,∵2>22>12>-2,∴1212-⎛⎫ ⎪⎝⎭>122->2-1>(-12)-1.]4.B [原式=132aa =31322a a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a2,B 选项错;6(-3)2>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3, ∴①不正确;②中,若a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10. ∴2a +b =1.④正确.] 7.32解析 原式=(52)2-3(32)3+3(12)3 =52-32+12=32. 8.9 5 解析 22y x a +=(a x )2·()12y a=32·125=9 5. 9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()()11132122xy xyxy -⎡⎤⎢⎥⎣⎦·(xy )-1=13x ·2111136622y x yxy---=13x ·13x-=⎩⎪⎨⎪⎧1, x >0-1, x <0. (2)原式=12+12+2+1-22 =22-3.11.解 原式=(x -1)2-(x +3)2 =|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2 (-3<x <1)-4 (1≤x <3).12.解 原式=()111333212133338242aa b a b b a aa--÷++×13a13.解 ∵x -xy -2y =0,x >0,y >0, ∴(x )2-xy -2(y )2=0, ∴(x +y )(x -2y )=0, 由x >0,y >0得x +y >0, ∴x -2y =0,∴x =4y , ∴2x -xy y +2xy =8y -2y y +4y =65.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2.1 指数函数及其图像与性质
【教学目标】
1.知识与技能目标:
使学生理解指数函数的定义、图象及性质,培养学生正确使用几何画板工具。
2.过程与方法目标:
在实验活动过程中引领学生主动探索指数函数性质,启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会学习数学规律的方法。
3.情感态度与价值观:
让学生感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维及数学图形的和谐美。
【教学重、难点】
教学重点:理解指数函数的定义、图象及性质。
教学难点:指数函数性质的归纳与运用。
【教学方法】
我校汽修专业的学生数学基础比较薄弱,学生对数学普遍不感兴趣。
本节课概念性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。
因此本节课主要采用数学实验教学活动的方法,通过结合计算机软件工具,让学生在实验活动过程中来去体验、感悟知识,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。
【教学过程】
1.流程
(1)教学流程:
(2)学生认知流程:
2.教学过程设计
三、深入探究、引导发现(2)动眼观察,产生猜想:展示学生制作的6个函
数图像(图1,分开独立的6个图像;图2,将它们
放在同一坐标系下),让他们观察这6个指数函数图
像有何共同的特征:
图1
图2
思考:能将他们分分类吗?这个图象特征与底数a
是否存在关系?
引导学生大胆猜测:指数函数的图象按底数分成两
类。
教师:让学生自由发挥,说
说他们观察到的有共性的
图像特征。
学生:容易发现:
①都过点(0,1);
②图像都在x轴上方;
③有的图像呈上升趋势;有
的图像呈下降趋势。
教师:引导学生去观察图像
呈上升或下降这一图像特
征与它们的底数存在的关
系。
学生:发现呈上升趋势的3
个图象,底数都大于1;呈
下降趋势的3个图象,底数
都大于0小于1;从而对“指
数函数图像形按底数分成
两类”形成初步的认识。
教师:引导学生一起观察发
现:底数大于1的三个函数,
虽然它们的弯曲程度不同,
但是都呈上升的趋势;底数
大于0小于1的三个函数也
类似,形成“指数函数的图
象按底数分成两类,即底数
大于1的指数函数图像呈上
升趋势,底数大于0且小于
1的指数函数图像呈下降的
趋势”这一猜想。
学生很容易
观察它们呈上升
或下降的整体特
征,从而对指数函
数图像的分类形
成初步的认识。
让学生自己
去动手操作、观察
发现,并引导他们
对所发现的知识
进行归纳、分类,
目的在于让学生
成为数学课堂的
主人,同时努力达
到“使学习过程成
为学生愉悦的主
动认知过程”这一
目标。
4
()
3
x
y=
1
0.35x
y=
1
0.7x
y=
1
2.3x
y=
1
1
4x
y=
1
3
()
5
x
y=
三、深入探究、引导发现(3)验证猜想:使用几何画板让学生去观察:当取
底大于0小于1的任何一个值时,虽然弯曲程度在
变,但它们始终都呈单调递减趋势,底大于1也如
此。
由此验证了他们的猜想,也得到了指数函数的
两类图象:
(4)归纳指数函数的性质:
通过前面对图像特征的充分认识,引导学生一起将
这些图像特征转化成数学语言,即得到指数函数的
性质。
a>1 0<a<1
图
象
定义域R
值域(0,+∞)
定点恒过点(0,1),即当x=0时,函数值y=0
单调性在R上是增函数在R上是减函数
练习.画出下列函数的简图:
x
y3
)1(=,
x
y⎪
⎭
⎫
⎝
⎛
=
3
1
)2(
教师:动画展示,验证猜想。
教师:引导学生对当a>1
时的指数函数图象进行下
列三个方面归纳整理:
①经过的特殊点;
②图象的范围(左右、上
下方向)
③图象从左向右的变化趋
势(上升或下降)
从而得到指数函数的性质,
并整理成表格。
学生:完成当0<a<1时,
指数函数图像的性质。
学生:动手作图。
运用几何画
板来验证猜想,这
一过程也很好地
维护了数学知识
的严谨性。
由特殊到一
般,由感性到理
性,从而顺理成章
地总结出指数函
数的性质,这符合
人认识问题的一
般规律,学生很容
易接受.
让学生通过
对比完成0<a<
1的情况,体验成
功的喜悦,也加深
对知识的理解。
巩固指数函
数的图像的分类
及特征。
过程小结
这个环节中通过让学生动眼观察、动脑思考,并对猜想进行验证,在这一过程中不仅让学生的主体意识得以充分的体现,也让学生经历知识的产生和发展过程,感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维,从而有效的达到对知识的理解。
四、巩固提高灵活运用例2.判断下列函数()
+∞
∞
-,在内的单调性
(1)x
y5
=(2)x
y-
=3(3)32
x
y=
解:(1)因为底数1
5>
=
a,所以,函数x
y5
=在
()
+∞
∞
-,内是增函数。
(2)因为
x
x
x
y⎪
⎭
⎫
⎝
⎛
=
=
=-
-
3
1
)
3(
31,底数
1
3
1
<
=
a,所以,函数x
y-
=3在()
+∞
∞
-,内是减
函数。
(3)因为x
x
x
y)2
(
2
23
3
1
3=
⎪
⎪
⎭
⎫
⎝
⎛
=
=,底数
1
259
.1
2
3>
≈
=
a,所以,函数32
x
y=在
()
+∞
∞
-,内是增函数。
思考题:比较下列各题中两个值的大小:
(1)2
5-___1.2
5-(2)
2.0
3
1
⎪
⎭
⎫
⎝
⎛
___
4.0
3
1
⎪
⎭
⎫
⎝
⎛
师生:
(1)学生回答,教师板书;
(2)教师适当地提示,学
生完成.
(3)学生独立完成。
教师:引导学生结合例2(1)
(2)函数性质进行分析,
将单调性具体到对两个点
进行讨论。
例2的目的
在于考察学生对
本节课指数函数
的定义及性质的
理解程度,(1)的
解决学生应该没
有问题,(2)(3)
的解决需要结合
实数指数幂的运
算,但是有了例1
的铺垫,(2)(3)
也就容易解决了。
思考题也是
指数函数性质的
运用,有了例2
的铺垫,学生不难
理解,培养学生数
形结合分析问题
能力。
五、归纳总结新知梳理新知梳理:教师提问:
通过本节课的学习,你学到
了哪些知识?又掌握了哪
些方法?
对本节课知
识进行整理,让学
生领悟研究一个
函数的方法和模
式:从定义——图
象——性质的过
程。
【板书设计】【教学反思】。