碱性成纤维细胞生长因子

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碱性成纤维细胞生长因子(bFGF)神经再生
1975年Gospodarowicz首先报道运用理化方法从牛的大脑和垂体中分离纯化出碱性成纤维细胞生长因子(Basic Fibroblast Growth Factor,bFGF)。

80年代,bFGF的氨基酸序列得到澄清。

90年代,国内外相继运用基因工程方法成功获得重组bFGF,有力推动了关于bFGF的研究。

系列研究证实,bFGF能刺激和调节血管内皮细胞、上皮细胞、成肌细胞、成骨细胞和神经胶质细胞等多种起源于中胚层、神经外胚层的细胞分化增殖,在胚胎发育、组织愈合中起重要作用。

神经方面,关于bFGF的研究集中在中枢神经,发现其神经活性广泛,能保护神经元,促进突起增生,提示在周围神经再生方面的研究意义。

现参考近年来bFGF与神经再生的相关文献作一综述。

一、内源性bFGF正常情况下的表达和神经损伤后的变化
(一)中枢神经:正常情况下,内源性bFGF以微量分布于脑、垂体和下丘脑等器官,已证实星形胶质细胞、垂体滤泡及部分神经细胞能分泌bFGF,在海马皮质、中脑、纹状体和小脑颗粒细胞均有其受体。

神经损伤后,早期就能观察到内源性bFGF表达增多,是神经损伤后早期反应之一。

叶诸榕用原代培养的大鼠大脑星形胶质细胞作成机械损伤模型,观察发现bFGF在损伤后2小时开始表达,12小时达高峰,2天后开始回落,星形胶质细胞胞体肥大,突起粗大。

崔建忠运用Northern杂交、组织学方法动态观察大鼠颅脑弥漫性损伤后bFGF的基因表达和组织学改变,结果发现轻度损伤后12小时,重度损伤后4小时,bFGF基因表达增加,均于第3天达到高峰。

Grothe〔1〕研究脊髓神经节bFGF及其Ⅰ型受体(FGFR-1)的表达时发现,正常情况下,bFGF和FGFR-1的mRNA在脊神经节均有表达,原位杂交显示星形胶质细胞产生bFGF,而感觉神经元表达FGFR-1,提示旁分泌作用;坐骨神经损伤后,L4~6感觉神经元bFGF的表达在1天内即上调,7天达高峰,28天后恢复,FGFR-1的变化则不明显。

(二)周围神经:Grothe〔1〕和Meisinger〔2〕1997年报道了bFGF及其受体在周围神经的表达和损伤后变化的研究结果,而此前该领域未见报道。

该研究发现,正常情况下,大鼠坐骨神经FGFR-1 mRNA表达高于bFGF mRNA。

坐骨神经损伤后,FGFR-1和bFGF的mRNA 在损伤远、近端均于不同的时相点上调,并有时间依赖性;bFGF的表达具有自身正反馈特点,且不影响FGFR-1。

这一实验说明,与在中枢神经一致,内源性bFGF表达增多同样是外周神经损伤后的早期反应。

神经损伤后bFGF表达上调的意义是什么?不少学者将bFGF运用于神经细胞培养和神经损伤模型,发现bFGF具有广泛的促神经再生作用,提示bFGF表达增多是神经损伤后的修复反应,且可能具有始动意义。

二、外源性bFGF促进神经再生
(一)中枢神经
(1)离体试验:端礼荣在原代培养的大鼠胚胎中脑神经细胞中加入bFGF,观察发现细胞微团集落形成率明显增加,不同剂量的bFGF表现量效关系,图像分析见神经细胞突起增多,连接丰富呈网状。

Miyagawa运用bFGF于原代培养的海马神经元轴突损伤模型,观察发现实验组较对照组轴突增生、突起增多。

Himmelseher〔3〕进一步研究了不同浓度的bFGF对如上模型的作用,结果未用bFGF的对照组神经元存活65%,运用不同剂量bFGF的试验组神经元变性均减少,10 mg/L组存活神经元达85%,神经突起亦增多、增长。

由上述试验可见,bFGF能促进培养的神经细胞增生,神经细胞损伤后运用bFGF,变性死亡减少,神经突起增生,说明bFGF在体外具有促进、保护神经细胞的作用。

Malgrane 〔4〕研究大鼠背根神经节神经元对神经毒性药物的反应时发现:bFGF不但能刺激轴突再
生,而且提前24小时运用可以显著减少神经毒性物质的作用,这从另一个角度说明了bFGF 对神经细胞的保护、维持作用。

(2)在体实验:bFGF保护中枢神经细胞、促进突起增长的效应在体内亦得到证实。

汪春风运用bFGF治疗成年大鼠大脑皮质损伤模型,于损伤术中和术后分次给予bFGF,术后40天取材作体视学分析,结果实验组存活神经元显著多于对照组。

Miyamoto〔5〕分别运用bFGF、神经生长因子(Nerve Growth Factor,NGF)于大鼠大脑单侧伞穹窿部切断模型,发现bFGF和NGF均能刺激海马乙酰胆碱酯酶阳性纤维生长,NGF组仅为细纤维而bFGF组粗、细纤维均有。

Nakahara〔6〕将经基因修饰后可分泌bFGF的成纤维细胞移植于大鼠脊髓损伤模型中央灰质处,发现2周至6月后,背侧区的感觉神经、去甲肾上腺素能神经均有纤维长入移植细胞,提示bFGF具有诱神经活性。

(二)周围神经:bFGF及其受体在周围神经的表达尚不清楚,Aebischer、Laquerriere即已尝试运用填充bFGF的小管套接坐骨神经缺损,术后4周行组织学、电生理检查,发现实验组有神经纤维生长,而对照组没有。

虽然有神经纤维生长并不就说明神经成功再生,但已提示了bFGF直接或间接促进轴突生长的可能。

故bFGF的作用效能、分子生物学作用机制,值得深入研究。

雪旺细胞(Schwann s cell,SC)分裂增殖是周围神经再生的重要环节,增殖的SC 吞噬变性产物,形成索带引导再生轴突长向远侧,并分泌多种神经营养、趋化因子,使轴突迅速、准确生长。

体外培养的SC移植到神经再生室中能促进神经生长已为试验证实。

在培养SC的工作中,Rater、Dong、龚炎培均发现bFGF能促进SC分裂增殖,龚氏运用流式细胞计观察FGF、NGF、纤连蛋白和神经再生条件液对SC体外细胞动力学的影响,发现8天后FGF组SC增殖最显著,达8倍以上,而NGF对SC分裂增殖不起作用。

虽然SC超常增殖的意义学者们尚无定论,但对SC增殖期已过的陈旧性神经损伤,促进SC增殖对神经再生很可能有重要意义。

因此,应进一步验证bFGF能否促进在体SC增殖及增殖后的继发效应。

血管发生对神经损伤后创口愈合、神经再生的意义重大,然其初始介质仍未完全阐明。

Baffour〔7〕在兔下肢急性缺血模型运用bFGF,发现治疗组肌肉活力、肌内血氧含量、每平方毫米毛细血管数和每肌纤维毛细血管数均明显高于对照组。

提示bFGF能促进微循环重建。

Nissen〔8〕收集术后创口内液体分析发现,血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)浓度术毕无变化,后7天逐渐升高,而bFGF 浓度术毕即升达高峰,3天后降至血浆浓度;各时相点创室内液均对内皮细胞有趋化性,能引发神经、血管反应,术毕采取的创室内液,经VEGF的抗体中和后仍具趋化性和促血管发生能力,术后3至6天采取的创室内液,经VEGF的抗体中和后趋化性和促血管发生能力显著降低。

提示bFGF是血管发生的始动介质,VEGF则起着继发而持续的作用。

Seghzzi 研究小鼠角膜血管发生时,发现形成毛细血管的内皮细胞表达VEGF mRNA和蛋白,外源性bFGF或上调内源性bFGF能增加VEGF的表达。

说明VEGF的表达受bFGF调控,运用bFGF能促进血管发生,改善血供。

而血供的改善显然有利于创口愈合和神经再生。

综上所述,bFGF促进神经再生的作用是多方面的:(1)保护神经元;(2)促进轴突再生;
(3)促进SC增殖;(4)促进血管发生,改善血供微循环等。

借助分子生物学、免疫学等的新技术,各方面的研究还在不断深入。

但另一方面,强调神经营养性之外,神经支配的效应器应如何减缓退变?有关效应器营养性的研究仍不多见,值得注意,因为效应器不可逆性退变,同为神经损伤、尤其陈旧性损伤修复困难的主要障碍。

三、bFGF与周围神经再生
近10余年来,新兴的、跨学科的神经生物学发展迅速,对周围神经再生的研究从细胞、
亚细胞发展到分子水平,提出了一些新的概念和理论。

认为神经不同于一般组织,神经细胞胞体位于中枢,而轴突延伸很长,组成周围神经,神经损伤的性质是细胞损伤。

损伤后不仅轴突断裂,还引起近端神经元坏死,远段神经变性,失神经支配的感觉、运动效应器退变萎缩,因此神经损伤不仅是损伤局部一个水平有病变,还包括神经元、效应器,是三个水平的病变,只注重损伤局部的处理是片面的。

成功的神经再生要求:(1)保护近端神经元;(2)再生轴突快速、准确长向远段;(3)效应器未发生不可逆性退变;(4)再生轴突与效应器形成功能性突触。

SC、基底膜和神经营养因子(Neurotrophic Factor,NTF)是发挥以上作用的物质要素。

NTF是指能保护神经元,和/或促进轴突再生的物质,已提出NGF、睫状神经节营养因子(CNTF)、脑源性营养因子(BDNF)、bFGF等20余种。

至今,NGF由于:(1)体内有特异受体;(2)体内外作用均有效;(3)制备的抗体能阻断活性,唯一得到证实,而bFGF 及其受体在周围神经的表达及损伤后变化的研究正在开展,其在体运用的效能、抗体阻断的实验亦待进行,所以是一种潜在的、未完全证实的NTF,但在试验中已经展现了较NGF促神经再生活性广泛的特点,除与NGF一样能保护神经元、促进轴突生长外,还能刺激SC 增殖,促进毛细血管形成改善损伤神经及周围组织的血供,因而又是很有潜力的,预计随着以上两方面研究的进展,bFGF作为一种NTF的性质将很快澄清,为神经损伤患者带来新的希望。

bFGF
求助编辑
早在1940年,Hoftman等在脑和垂体的抽提物中发现一种能够促进成纤维细胞生长的物质。

1974年该物被分离纯化,并命名为成纤维细胞生长因子(fibroblast growth factor, FGF)。

接着,人们又分离出一种与之高度同源的物质,由于它含有较多的酸性氨基酸碱基,等电点为酸性(5.6),故命名为酸性FGF(aFGF)。

先发现的FGF因对酸和热敏感,等电点呈碱性(9.6),则称为碱性FGF(bFGF)。

aFGF和bFGF与后发现的int-2、FGF-5、角质细胞生长因子(KGF/FGF-7)、hst-1/kfgf、FGF-6基因表达产物……共9个成员组成FGF家族〔1,2〕。

目录
八、bFGF的发现获得的殊荣
一、bFGF的一般性质
二、bFGF的分布
三、bFGF的作用机制
四、bFGF的生物学功能
五、bFGF对神经组织的生物学效应
六、存在的问题和临床应用前景
七、bFGF在美容方面的应用
八、bFGF的发现获得的殊荣
展开
简介
随着bFGF的高度纯化(Bohlen,1984)、测序(Esch,1985,Simpson,1987)和DNA克隆成功(Araham,1986,Gospodarowicz,1984)引入肝素-琼脂糖亲和层析提纯bFGF,可得到纯度达90%以上,由此bFGF研究进入了新阶段。

现今资料表明,bFGF的生物学作用极其广泛,它在血管形成、促进创伤愈合与组织修复、促进组织再生和神经组织生长发育过程中起着十分重要的作用。

现就bFGF的一般性质、分布、对神经组织的作用和机制以及临床应用前景等作一综述,以促进bFGF的开发和临床应用。

编辑本段一、bFGF的一般性质
bFGF是含155个氨基酸的促有丝分裂的阳离子多肽,其氨基酸序的55%和aFGF 相同,分子量为16~18.5 KD。

bFGF分子结构中有4个半胱氨基酸,以此形成分子的三维空间结构。

由丝氨酸取代半胱氨酸的重组bFGF的生物学活性不变,而单链多肽则易于在大肠杆菌中表达〔3〕。

bFGF基因位于人的第5对染色体上,为单拷贝基因,呈不连续状态,其功能区被两个内含子隔开分为三个外显子区域。

bFGF基因长度大于38 kb,第一个内含子位于第60、61位密码间,第二个内含子位于第94、95位密码子之间。

bFGFmRNA有4.6 kb和2.2 kb两种形式,有bFGFmRNA反转录的cDNA序列已清楚,在bFGFcDNA 可读框架中可见到一个常见的AUG起始密码、UGA终止密码。

在AUG前面有起始密码CUG存在,它可启动氨基末端的延长。

bFGF羧基末端较氨
基末端稳定,如果氨基末端截取少于25个氨基酸时并不影响其生物学活性。

bFGF 活性比aFGF大30~100倍〔4〕。

bFGF在生物进化上具有很强的保守性,各种动物的FGF都有很高的同源性。

人和牛bFGF氨基酸顺序同源性达98.7%。

bFGF有很强的肝素亲和力,在其114~123位氨基酸为高亲和力区,其它部位则有低亲和力区。

抗bFGF与受体结合的单克隆抗体对其与肝素结合力无影响,取消有羟基端42位氨基酸,肝素亲和力即消失,而且可丧失部分生物学活性。

bFGF基因中未发现信号肽顺序,用bFGF的cDNA转染3 T3细胞,能观察到bFGF对单个细胞的趋化作用,且用抗bFGF的mcAb可中和这一活性,说明bFGF可经自分泌方式释放
〔5〕。

编辑本段二、bFGF的分布
主要分布于垂体、脑和神经组织及视网膜、肾上腺、胎盘等〔17〕,尤以垂体含量最高,能纯化大量的bFGF(0.5 mg/kg),其它组织含量很少,约为其1/10~1/50。

bFGF不存在或以极低浓度存在于血清和体液中。

bFGF作为细胞分裂原,主要作用在起源于中胚层和神经外胚层的骨骼肌细胞、成纤维细胞和骨细胞等,其受体也相应的分布于上述细胞表面。

FGF存在两类受体:一类是亲和力受体,属跨膜性酪氨酸蛋白激酶类受体;另一类是低亲和力受体,即肝素样受体,为硫酸乙酰肝素蛋白多糖类物质〔6〕。

它们是一条单链多肽,约110~150 KD,受体数目约2×103~8×104/细胞,受体对bFGF的亲和力KD=18~80 pm。

受体至少有4种形式,由细胞外区、跨膜区、胞浆区的近膜区和酪氨酸激酶区组成,由于每种FGF受体均能和FGF家族每个成员结合,而不同FGF受体的表达存在着组织细胞特异性。

bFGF与受体亲和力显著大于aFGF。

编辑本段三、bFGF的作用机制
bFGF通过与靶细胞上的受体结合而发生作用,因此细胞内合成的bFGF需分泌至细胞外才能发挥生物学作用。

但bFGF的mRNA翻译产物缺少引导它们向细胞外分泌的信号序列,其分泌途径与经典途径不同,除了可能是细胞受损或死亡后释出〔7〕,还有自分泌和旁分泌起作用〔8〕。

bFGF与高亲和力受体结合时需低亲和力受体的参与,提示低亲和力受体的结合使高亲和力受体结合更容易、更牢固〔9〕。

bFGF与受体结合后可能通过以下途径将信号传至胞核:(1)激活腺苷酸环化酶与鸟苷酸环化酶,磷脂酶C(PLC-rl)磷酸化,又使磷脂酰肌醇-4,5二磷酸(PIP2)分解为甘油二酯(DG)和三磷酸肌醇(IP3),导致蛋白激酶C激活和Ca2+内流;(2)与受体结合后定位于细胞核,影响RNA聚合酶Ⅰ,加强核蛋白体基因的转录,以加速细胞由G0→G1和→G1→S期的转换,刺激细胞的DNA合成增强,促进细胞的分裂与增殖〔9〕;(3)bFGF与FGFR复合物的内部化。

编辑本段四、bFGF的生物学功能
bFGF的生物学效应分体内和体外两大部分。

体外作用十分强烈,成纤维细胞、骨细胞、软骨细胞、血管内皮细胞、肾上腺皮质和髓质细胞、神经元和神经胶质细胞等具有很强的促细胞分裂增殖活性〔10〕。

体外细胞培养中能在低浓度(1 mg·ml-1)发挥其作用。

bFGF是重要的促有丝分裂因子,也是形态发生和分化的诱导因子〔11〕。

其主要生物学作用有:(1)作为血管生长因子;(2)促进创伤愈合与组织修复;(3)促进组织再生;(4)参与神经再生等。

编辑本段五、bFGF对神经组织的生物学效应
1.bFGF在神经组织的表达
从多种神经外胚层和中胚层起源的组织(如大脑皮质、下丘脑、垂体和视网膜等)可提取、纯化出bFGF。

采用免疫组织化学方法测出神经元胞体、轴突与树突近端bFGF 浓度为40~120 pm*g-1〔12〕。

在星形胶质细胞和海马神经元、腰段脊髓神经元、神经胶质细胞及坐骨神经的雪旺氏细胞、郎飞氏结等也发现有bFGF的分布〔13,14〕。

在鹌鹑的胚胎期,发现神经管和神经嵴有bFGF表达,后期在脊索和脊索神经节根表达。

中枢神经损伤后,有关bFGF表达情况的研究较多。

Finklestine等(1988)发现脑损伤后bFGF明显增加,尤其病灶周围星形胶质细胞最为显著;Salley(1991)报道大脑损伤后3天,患侧皮层、室管膜和海马神经元中bFGF增加;Christine等(1994)诱发成年大鼠癫痫发作时,前脑神经元和胶质中bFGFmRNA显著增多。

但在周围神经有关神经损伤后bFGFmRNA的表达,尚未见文献报道。

2.bFGF作为神经营养因子
(1)是神经胶质细胞和雪旺氏细胞的促有丝分裂原。

bFGF有刺激神经胶质细胞的非有丝分裂活性,如促进星形胶质细胞的迁移和纤溶酶活剂的释放;调节胶质细胞纤维酸性蛋白(GFAP)的表达及谷氨酸和S-100蛋白的合成;改变星形胶质细胞的典型的细胞进程和细胞膜结构;促进星形胶质细胞的增殖并形成纤维状外形;也可促进少突胶质细胞的增殖,并增加其髓磷脂相关蛋白和类脂的含量。

(2)对体外培养神经元的作用
bFGF能延长培养液中多种中枢和外周神经元的存活,刺激胆碱乙酰化酶的合成以及突起的生长。

Aoyagi等〔15〕报道在培养的胎鼠海马神经元中加入bFGF,可使神经元成活时间增加和其轴突延长。

在培养的胎鼠海马神经元中加入bFGF10~30pg·ml-1,使原只能存活5~7天的神经元生命延长14天,数目增加4倍;当浓度增至200~500pg·ml-1时,可使原只30μm的突起延长至100μm。

Patner等(1988)在培养的雪旺氏细胞中加入bFGF后,5%~10%的细胞进入分裂期。

bFGF对培养中的胚鼠脑的额区、顶区、纹状体、丘脑的胆碱能神经元和多巴胺能、γ-氨基丁酸能神经元,大鼠小脑皮质神经元、交感节细胞、鸡胚脊髓前角神经元等都有营养和促进作用。

(3)体内神经营养作用
当bFGF用于损伤的大脑时,能促使海马神经元存活,而无bFGF时海马神经死亡。

在外周神经系统,当bFGF加入紧靠坐骨神经切断处,能够促进神经的髓鞘化,防止背根神经节神经元的死亡〔16〕。

Seivers(1987)、Gospodarowicz(1990)等也证实bFGF可使切断视神经后的视网膜后的视网膜节细胞成活。

将bFGF注入大鼠脑中,也可保持切断轴突的大脑皮层的胆碱能神经元的存活(Anderson,1988)。

Ferrari
等(1989)经体内实验证实,bFGF能提高中脑腹侧多巴胺能神经元移植物的成活。

(4)对周围神经再生的促进作用
在周围神经损伤修复的研究中,有资料表明,bFGF有明显的促进外周神经纤维再生的作用是比较肯定的,也已在体的神经“套管”模型实验中得到证实〔16〕。

自Lundborg(1982)建立神经再生模型后,有关加入某些因子对神经再生影响的研究很多。

Cuevas〔17〕等给切断坐骨神经灌注bFGF,可提高神经的再生率。

Laquerriere 等〔18〕在桥接大鼠7mm长坐骨神经缺损中使用bFGF,4周后发现神经再生成功。

Koshinaga等〔19〕研究了脊髓损伤后bFGF、aFGF的表达情况后认为,aFGF、bFGF 参与脊髓损伤的修复过程。

有研究表明bFGF的促神经再生作用可与NGF家族、睫状节神经营养因子(CNTF)、胰岛素样生长因子(IGFs)等的神经营养活性相互协同〔2〕。

(5)促进神经前体细胞分化
bFGF有对神经前体细胞的增殖分化作用。

Gensburgeror(1987)发现培养的大鼠神经元加入bFGF后,出现胆碱能成份分裂并增殖。

Dicico-Bloom(1990)观察到成神经细胞的分裂受bFGF的调节,分裂过程中出现轴突突起生长出生长锥、神经递质合成、递质小泡的转运等神经元特性。

此外,bFGF还可通过它的促血管生成作用来影响中枢神经和周围神经系统的发育。

编辑本段六、存在的问题和临床应用前景
bFGF是一种促细胞分裂的肝素结合蛋白,可诱导多种细胞的增殖与分化,对神经系统有重要作用。

在不同种间bFGF结构的高度守恒性,提示它在个体发育中起着原始的促进作用。

鉴于以往bFGF的研究多集中于中枢神经系统,在周围神经损伤后,bFGFmRNA的表达情况、bFGF受体表达的细胞、bFGF如何与受体识别以及结合后的变化?bFGF促周围神经再生的机制,生理状态下存在多种生长因子,它们的相互协调作用以及调节关系怎样?等,这些问题的阐明将为临床提高周围神经损伤后的修复效果提供理论依据。

此外,由于bFGF易被酶分解,其在体内作用的发挥需持续长时间与靶细胞受体结合,如研究一种既能让bFGF稳定不受蛋白酶降解,又能使bFGF 持久缓慢释放的载体,则解决了bFGF临床的一大难题。

虽然bFGF在体内含量甚微,但分布广泛,生理功能复杂多样。

bFGF生物活性的多效性以及神经营养的广谱性,为其从基础走向临床提供了保证,bFGF对于神经损伤再生的研究,是对于神经损伤治疗领域的一个新的探索和拓宽,目前在动物实验上已现成效。

国内第二代基因重组h-bFGF也已经问世〔4〕,它的出现,展示着bFGF临床应用的光明前景。

相关文档
最新文档