最新用向量计算空间角
142 用空间向量研究距离、夹角问题(基础知识+基本题型)(含解析)--2022高二数学上
1.4.2用空间向量研究距离、夹角问题(基础知识+基本题型)知识点一、用向量方法求空间角(1)求异面直线所成的角已知a ,b 为两异面直线,A ,C 与B ,D 分别是a ,b 上的任意两点,a ,b 所成的角为θ,则||cos ||||AC BD AC BD θ⋅=⋅。
要点诠释:两异面直线所成的角的范围为(00,900]。
两异面直线所成的角可以通过这两直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角。
(2)求直线和平面所成的角设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ,则有||sin |cos |||||θϕ⋅==⋅a u a u 。
(3)求二面角如图,若PA α⊥于A ,PB β⊥于B ,平面PAB 交l 于E ,则∠AEB 为二面角l αβ--的平面角,∠AEB+∠APB=180°。
若12⋅n n 分别为面α,β的法向量,121212,arccos ||||n n n n n n ⋅〈〉=⋅则二面角的平面角12,AEB ∠=〈〉n n 或12,π-〈〉n n ,即二面角θ等于它的两个面的法向量的夹角或夹角的补角。
①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。
②当法向量1n ,2n 的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于1n ,2n的夹角的补角12,π-〈〉n n 的大小。
知识点二、用向量方法求空间距离1.求点面距的一般步骤:①求出该平面的一个法向量;②找出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即可求出点到平面的距离。
即:点A 到平面α的距离||AB n d n ⋅= ,其中B α∈,n是平面α的法向量。
2.线面距、面面距均可转化为点面距离,用求点面距的方法进行求解。
用空间向量求空间角课件(共22张PPT)
向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,
第6节 利用空间向量求空间角
则A(0,0,1),B(0,1,0),C(-2,1,0),D(0,0,0).
所以A→B=(0,1,-1),
则D→Cc=os(〈-A→2B,,1,D→C0〉). =|A→A→BB|··D|→D→CC|=
1 2×
= 5
1100,
故异面直线
AB
与
CD
所成角的余弦值为
10 10 .
索引
3.如图所示,在棱长为 2 的正方体 ABCD-A1B1C1D1 中,E 是棱 CC1 的中点,A→F
A.20°
B.40°
C.50°
D.90°
解析 如图所示,⊙O 为赤道平面,⊙O1 为 A 点处的日晷的晷面所在的平面, 由点 A 处的纬度为北纬 40°可知∠OAO1=40°,
又点 A 处的水平面与 OA 垂直,晷针 AC 与⊙O1 所在的面垂直, 则晷针 AC 与水平面所成角为 40°. 故选 B.
范围
(0,π)
0,π2
求法
cos β=|aa|·|bb|
|a·b| cos θ=|cos β|= |a||b|
索引
2.求直线与平面所成的角
设直线 l 的方向向量为 a,平面 α 的法向量为 n,直线 l 与平面 α 所成的角为θ,
|a·n| 则 sin θ= |cos〈a,n〉| = |a||n| .
A.π2
B.π3
π
π
C.4
D.6
解析 以 A 为原点,AB,AC,AA1 所在直线分别为 x 轴、y 轴、z 轴建立如图所 示的空间直角坐标系, 则 A(0,0,0),A1(0,0, 2),B( 2,0,0),C(0, 2,0),
索引
∴D
22,
22,0,
第8讲 向量法求空间角
30
聚焦必备知识 突破核心命题 限时规范训练
训练 2 (2022·全国甲卷)在四棱锥 P -ABCD 中,PD⊥底面 ABCD,CD ∥AB,AD=DC=CB=1,AB=2,DP= 3.
(1)证明:BD⊥PA; (2)求 PD 与平面 PAB 所成的角的正弦值.
31
聚焦必备知识 突破核心命题 限时规范训练
则cos θ=__□1__|c_o_s__〈__u_,__v_〉__|___=_□_2__||uu_|·|_vv_||__.
2.直线与平面所成的角 如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,
直线AB的方向向量为u,平面α的法向量为n,则sin θ=_□_3_|_co_s__〈__u_,__n_〉__|
∴A→B1=(-2 2, 3, 2), C→B1=(- 2, 3, 2),C→B=(0, 3,0).
28
聚焦必备知识 突破核心命题 限时规范训练
设平面 BCC1B1 的法向量为 n=(x,y,z),
则nn··CC→→BB1==00,,即-3y=2x+0, 3y+ 2z=0,
令 x=1,则 y=0,z=1,∴n=(1,0,1).
AC 所在直线为 y 轴,AA1 所在直线为 z 轴建立空间直角坐标系,如图所示,
则 A(0,0,0),A1(0,0,2),B( 3,1,0),C1(0,2,2),∴A→1B=( 3,1,
-2),A→C1=(0,2,2),
∴|cos〈A→1B,A→C1〉|
=
(
3)2+31×2+0+(1-×22)-2×2×202+22+22=14,
12
聚焦必备知识 突破核心命题 限时规范训练
设平面 A′BCD′的法向量为 n=(x,y,z),
2024届高考一轮复习数学课件(新教材人教A版强基版):向量法求空间角(一)
以D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建 立空间直角坐标系(图略),正方体的棱长为2,
则A1(2,0,2),D1(0,0,2),E(0,2,1),A(2,0,0),
∴—D1→E =(0,2,-1),
—A1→F =—A1→A +A→F=—A1→A +λA→D=(-2λ,0,-2).
以 D 为原点,DA,DC,DD1 所在直线分别为 x 轴、y 轴、z 轴,建
立如图所示的空间直角坐标系,则 D1(0,0, 3),A(1,0,0),D(0,0,0),
B1(1,1, 3),所以A—D→1=(-1,0, 3),D—→B1=(1,1, 3).
设异面直线 AD1 与 DB1 所成的角为 θ,所以
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)两直线的方向向量所成的角就是两条直线所成的角.( × )
(2) 直 线 的 方 向 向 量 和 平 面 的 法 向 量 所 成 的 角 就 是 直 线 与 平 面 所 成 的
角.( × )
(3)两异面直线所成角的范围是 0,π2,直线与平面所成角的范围是
√ 0,π2.(
)
(4)直线的方向向量为u,平面的法向量为n,则线面角θ满足sin θ=
cos〈u,n〉.( × )
教材改编题
1.已知向量 m,n 分别是直线 l 和平面 α 的方向向量和法向量,若 cos〈m,n〉
=-12,则直线 l 与平面 α 所成的角为
√A.30°
C.120°
B.60° D.150°
A.
2 2
B.
15 5
√C. 46
6 D. 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
空间向量法求空间角图示原理
学习目标:
• (1)、理解向量法求空间角的原理 • (2)、熟练掌握向量法求空间角
原理分析
1.异面直线所成角
rr 设直线l, m 的方向向量分别为a, b
若两直线
l
,
m
所成的角为
(0
≤
≤
2
)
,
则
rr ab
cos r r
ab
l
a
m
l
a
b m
2. 线面角
r
r
设直线l的方向向量为 a,平面 的法向量为 u ,且
直线l 与平面 所成的角为 ( 0≤ ≤ ),则
2
rr
au
u
a
sin r r au
lau来自3、二面角法向量法 将二面角转化为二面角的两个面的法向量的夹角。
如图,向量
n
,m
,
则二面角
l
的大小
=〈m, n 〉
m, n
m
n
注意法向量的方向:同进 同出,二面角等于法向量 夹角的补角;一进一出, 二面角等于法向量夹角
L
rr
uv
若二面角 l 的大小为 (0 ,) 则 cos r r .
uv
向量法求空间的距离和角
所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
立体几何中的向量方法求空间角和距离
基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。
利用向量方法求空间角 知识点+例题+练习
教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。
2022年高考复习 利用空间向量求空间角
核心考点
3.二面角
(2)平面 α 与 β 相交于直线 l,平面 α 的法向量为 n1,平面 β 的法向量为 n2,〈n1,n2〉=θ,则二面角 α -l -β 为 θ 或 π-θ.设二面角大小为 φ,则 |cos φ|=|cos θ|=||nn11|·|nn22||,如图(2)(3).
易错 提示
利用公式求二面角的平面角时,要注意〈n1,n2〉与二面角大 小的关系,是相等还是互补,需要结合图形进行判断.
常考题型
例 2 (2019·合肥一检)如图,在多面体 ABCDEF 中,四边形 ABCD 是正方形, BF⊥平面 ABCD,DE⊥平面 ABCD,BF=DE,M 为棱 AE 的中点. (2)若 DE=2AB,求直线 AE 与平面 BDM 所成角的正弦值.
∵DE⊥平面 ABCD,四边形 ABCD 是正方形,∴DA,DC,DE 两两垂直,如图,
不妨取 z=1,可得 n=(1,0,1).又―M→N =(1,2,-1),可得―M→N ·n=0.
因为 MN平面 BDE,所以 MN∥平面 BDE.
常考题型
例 1 如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,∠BAC=90°.点 D,E,N 分别为棱 PA, PC,BC 的中点,M 是线段 AD 的中点,PA=AC=4,AB=2.
则 P(0,- 3,2),A(0,- 3,0),B(1,0,0),C(0, 3,0),
所以―P→B =(1, 3,-2),―A→C =(0,2 3,0).
―→ ―→
设 PB 与 AC 所成角为 θ,则 cos θ=||―PP→BB |·|―AAC→C ||=2
6 2×2
= 3
6 4.
即 PB 与 AC 所成角的余弦值为 46.
利用向量法求空间角
的夹角n
与 和 的夹角
m
n
互补
相等
a
m
a
m
o
a´
•
o
a´
•
b´
b´
n
cos =
b
b
cos ,
n
cos =
−cos ,
用向量法求异面直线所成角
设两异面直线a、b的方向向量分别为 m 和 n ,
所以,异面直线a、b所成的角的余弦
值为
cos cos m, n
⋅ AB = 0, ⋅ SA = 0
− + = 0
∴ቊ
2 − = 0
取x=1,则y=1,z=2; 故
∴ sin =
(3)由(2)知面SAB的法向量1
又∵OC⊥平面AOS,
令
则有
=(1,1,2)
∴ OC
是平面AOS的法向量,
2 = OC = (0,1,0)
cos < 1 , 2 >=
于是我们有 SA=(2,0,-1);
OS=(0,0,1);
(1).cos < SA, OB>=
OB=(1,1,0);
y
O
AB=(-1,1,0);
SA ⋅ OB
=
SA ⋅ OB
=
A
2
5⋅
10
5
C
2
B
x
所以异面直线SA与OB所成的角的余弦值为
10
5
(2)设平面SAB的法向量
显然有
= (, , )
二、知识讲解与典例分析
例1:在Rt△AOB中,∠AOB=90°,现将△AOB沿着平面AOB的法
利用向量法求空间角教案
利用向量法求空间角-经典教案教案章节:一、向量法求空间角的概念教学目标:1. 了解向量法求空间角的概念。
2. 掌握向量法求空间角的基本方法。
教学内容:1. 向量法求空间角的概念介绍。
2. 向量法求空间角的计算方法。
教学步骤:1. 引入向量法求空间角的概念,解释空间角的概念。
2. 讲解向量法求空间角的计算方法,通过示例进行演示。
3. 进行练习,让学生巩固向量法求空间角的方法。
教学评估:1. 通过课堂提问,检查学生对向量法求空间角概念的理解。
2. 通过练习题,检查学生对向量法求空间角计算方法的掌握。
二、向量法求空间角的计算方法教学目标:1. 掌握向量法求空间角的计算方法。
2. 能够应用向量法求解空间角的问题。
教学内容:1. 向量法求空间角的计算方法介绍。
2. 向量法求空间角的计算实例。
教学步骤:1. 复习向量法求空间角的概念,引入计算方法。
2. 讲解向量法求空间角的计算步骤,通过示例进行演示。
3. 进行练习,让学生巩固向量法求空间角的计算方法。
教学评估:1. 通过课堂提问,检查学生对向量法求空间角计算方法的理解。
2. 通过练习题,检查学生对向量法求解空间角问题的能力。
三、向量法求空间角的练习题教学目标:1. 巩固向量法求空间角的计算方法。
2. 提高学生应用向量法求解空间角问题的能力。
教学内容:1. 向量法求空间角的练习题。
教学步骤:1. 给出向量法求空间角的练习题,让学生独立完成。
2. 对学生的答案进行讲解和指导,解决学生在解题过程中遇到的问题。
3. 进行练习,让学生进一步巩固向量法求空间角的计算方法。
教学评估:1. 通过练习题,检查学生对向量法求解空间角问题的能力。
2. 通过学生的解题过程,了解学生对向量法求空间角计算方法的掌握情况。
四、向量法求空间角的拓展与应用教学目标:1. 了解向量法求空间角的拓展与应用。
2. 能够应用向量法解决实际问题中的空间角问题。
教学内容:1. 向量法求空间角的拓展与应用介绍。
用向量方法求空间中的角 课件
错解:以点 C 为原点,分别以, , 1 的方向为x 轴、y 轴、z
轴正方向建立空间直角坐标系,如图.
设 BC=2,CC1=a(a>0),
则 A(4,0,0),A1(4,0,a),B(0,2,0),B1(0,2,a).
由 A1B⊥B1C,得1 ·1 = 2 − 4 = 0,
∴a=2.
用向量方法求空间中的角
空间中的角的向量求法
设直线 l,m 的方向向量分别为 a,b,平面 α,β 的法向量分别为 u,v,
则
(1)两条直线 l,m 的夹角为 0 ≤ ≤
则 cos = |cos <a,b>|=
|·|
;
||||
π
2
,
(2)直线 l 与平面 α 所成的角为 0 ≤ ≤
θ=sin φ.
|·|
或cos
||||
3.二面角
剖析:(1)二面角的取值范围是[0,π].
(2)用向量求二面角的平面角有两种方法:
①几何法:若 AB,CD 分别在二面角 α-l-β 的两个半平面内,且是
与棱 l 垂直的异面直线,则二面角的大小就是向量与的夹角(
或其补角)(如图①).
示的空间直角坐标系,又 E,F 分别为 BC,PC 的中点,
所以 A(0,0,0),B
3, −1,0 ,
3, 1,0 , 0,2,0 , 0,0,2 ,
3 1
( 3, 0,0),
, ,1 ,
2 2
所以 = ( 3, 0,0), =
3 1
, ,1
2 2
.
设平面 AEF 的一个法向量为 m=(x1,y1,z1),
设 n=(x,y,z)是平面 A1ABB1 的一个法向量,则
最新3.2.3空间向量法求角
S
B
C
A
x
Dy
例 三 如 所 示 , A B CD是 一 直 角 梯 形 , A B C= 9 0 0 ,
S A 平 面 A B C D ,S A A B B C 1 ,A D 1 ,求 面 S C D 与 面 S B A
2z
所 成 二 面 角 的 余 弦 值 .
0
( (
x, x,
y, y,
z) z)
( 2,0,0) 0 (0, 1,1) 0
∴
x y
0 z
令
y
n
1,
CP
n
0
(0, 1,
1)
∴cosm,n m n
3
,∵二面角为锐角∴二面角 A-PB-C 的余弦值为
3
| m || n | 3
3
练习3:
正三棱柱 A B CA 1B 1C 1中,D是AC的中点, 当 AB1BC1时,求二面角 DBC1C 的余弦值.
.如图,PA⊥平面 ABC,AC⊥BC,PA=AC=z1, BC= 2 ,求二面角 A-PB-C 的余弦值.
解:建立坐标系如图,
y
则 A(0,0,0),B( 2 ,1,0),C(0,1,0),P(0,0,1),
AP =(0,0,1), AB (
2,1, 0), CB (
2,
0,
x
0),
CP
(0,
xA
Dy
2
2
设平面S C D 的 法 向 量 n 2 ( x ,y ,z ) ,由 n 2 C D ,n 2 S D ,得 :
x
y 2
0
y 2
z
高中数学课件-第8讲 向量法求空间角
第8讲 向量法求空间角1.掌握空间向量的应用.2.会用空间向量求空间角.考试要求01聚焦必备知识知识梳理1.异面直线所成的角设异面直线l1,l2所成的角为θ,其方向向量分别是u,v,则cos θ=___________________=_________.2.直线与平面所成的角如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则sin θ=________________=_________.3.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n1和n2,则平面α与平面β的夹角即为向量n1和n2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n1,n2〉|=__________.提醒常用结论1.思考辨析(在括号内打“ √”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(3)两个平面的法向量所成的角是这两个平面的夹角.( )夯基诊断×××√A(2)设M,N分别是正方体ABCD -A′B′C′D′的棱BB′和B′C′的中点,则直线MN与平面A′BCD′所成角的正弦值为________.(3)两个平面的法向量分别为n1=(0,-1,1),n2=(1,0,-1),则两个平面夹角的余弦值为________.02突破核心命题考 点 一异面直线所成的角D用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系.(2)用坐标表示两异面直线的方向向量.(3)利用向量的夹角公式求出向量夹角的余弦值.反思感悟A考 点 二直线与平面所成的角例2 (2023·全国甲卷)如图,在三棱柱ABC -A1B1C1中,A1C⊥平面ABC,∠ACB=90°,AA1=2,A1到平面BCC1B1的距离为1.(1)证明:A1C=AC;(2)已知AA1与BB1的距离为2,求AB1与平面BCC 1B 1所成角的正弦值.解:(1)证明:∵A1C⊥平面ABC,BC,AC⊂平面ABC,∴A1C⊥BC,A1C⊥AC.又∠ACB=90°,∴AC⊥BC.∵A1C∩AC=C,A1C,AC⊂平面ACC1A1,∴BC⊥平面ACC1A1.∵BC⊂平面BCC1B1,∴平面ACC1A1⊥平面BCC1B1.如图,过点A1作A1D⊥CC1于点D,∵平面ACC1A1⊥平面BCC1B1,向量法求直线与平面所成角的主要方法(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.反思感悟因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,PD,AD⊂平面PAD,所以BD⊥平面PAD.又PA⊂平面PAD,所以BD⊥PA.(2)由(1)知,DA,DB,DP两两垂直,如图,以点D为原点建立空间直角坐标系,考 点 三 平面与平面的夹角例3 (2023·新课标Ⅰ卷)如图,在正四棱柱ABCD -A1B1C1D1中,AB=2,AA1=4.点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P A2C2D2为150°时,求B 2P.别为x,y,z轴,建立空间直角坐标系.因为AB=2,AA1=4,AA2=1,BB2=DD2=2,CC2=3,所以A2(2,2,1),B2(0,2,2),C2(0,0,3),D2(2,0,2),反思感悟利用空间向量求平面与平面夹角的解题步骤(1)证明:EF∥平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D -AO -C的正弦值.所以AO⊥平面BEF.又AO⊂平面ADO,所以平面ADO⊥平面BEF.(3)以B为原点,BA所在直线为x轴,03限时规范训练(五十四)(1)求异面直线A1B与AC1夹角的余弦值;(2)求平面A1BD与平面A1AD夹角的正弦值.。
利用空间向量求空间角
利用空间向量求空间角1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题.2.了解向量方法在研究立体几何问题中的应用.知识点一 利用空间向量求异面直线所成角设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a||b |(其中φ为异面直线a ,b 所成的角).[典例] 如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值.[解] (1)证明:因为四边形ABCD 是菱形,所以AC ⊥BD .因为PA ⊥平面ABCD ,所以PA ⊥BD .又因为AC ∩PA =A ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).所以PB ―→=(1,3,-2),AC ―→=(0,23,0).设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB ―→·AC ―→|PB―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. [方法技巧]向量法求两异面直线所成角的步骤(1)选好基底或建立空间直角坐标系; (2)求出两直线的方向向量v 1,v 2; (3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解. [提醒] 两异面直线所成角θ的范围是⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角. [针对训练]1.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55B.53C.255D.35解析:选A 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1), 可得向量AB 1―→=(-2,2,1),BC 1―→=(0,2,-1),由向量的夹角公式得cos 〈AB 1―→,BC 1―→〉=-2×0+2×2+1×(-1)0+4+1·4+4+1=15=55.2.已知在长方体ABCD -A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成角分别为60°和45°,求异面直线B 1C 和C 1D 所成角的余弦值.解:建立如图所示的空间直角坐标系,可知∠CB 1C 1=60°,∠DC 1D 1=45°,设B 1C 1=1,CC 1=3=DD 1.∴C 1D 1=3,则有B 1(3,0,0),C (3,1,3),C 1(3,1,0),D (0,1,3). ∴B 1C ―→=(0,1,3),C 1D ―→=(-3,0,3). ∴cos 〈B 1C ―→,C 1D ―→〉=B 1C ―→·C 1D ―→|B 1C ―→||C 1D ―→|=326=64.知识点二 直线与平面所成角如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n ·e ||n ||e |.[典例] (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC=4,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. AC ,且PO =2 3.连[解] (1)证明:因为PA =PC =AC =4,O 为AC 的中点,所以PO ⊥接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB .又因为OB ∩AC =O ,所以PO ⊥平面ABC . (2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23), AP ―→=(0,2,23).取平面PAC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧AP ―→·n =0,AM ―→·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,令y =3a ,得z =-a ,x =3(a -4),所以平面PAM 的一个法向量为n =(3(a -4), 3a ,-a ), 所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面PAM 所成角的正弦值为34. [方法技巧]利用向量法求直线与平面所成角的注意点(1)求出直线的方向向量与平面的法向量所夹的锐角后(求出是钝角时取其补角),取其余角即为直线与平面所成的角.(2)若求线面角的余弦值,要注意利用平方关系sin 2θ+cos 2θ=1求出其值.不要误认为直线的方向向量与平面的法向量所成夹角的余弦值即为所求. [针对训练]1.如图,正三棱柱ABC -A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 夹角的正弦值为________.解析:取B 1C 1中点O ,建立如图所示的空间直角坐标系.A 1O ―→=(3,0,0),设AB =AA 1=2,则A 1(-3,0,0),C 1(0,1,0),A (-3,0,2),O (0,0,0),A 1O ―→为平面BB 1C 1C 的法向量,AC 1―→=(3,1,-2),∴sin θ=|cos 〈A 1O ―→,AC 1―→〉|=⎪⎪⎪⎪⎪⎪⎪⎪A 1O ―→·AC 1―→|A 1O ―→||AC 1―→|=33·3+1+4=64. 答案:642.在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF 是矩形,ED⊥平面ABCD ,∠ABD =π6,AB =2AD .(1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值. 解:(1)证明:在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD , 从而BD 2+AD 2=AB 2,故BD ⊥AD ,因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD . 又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE . (2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD ,又由ED =BD ,设AD =1,则BD =ED = 3. 因为DE ⊥平面ABCD ,BD ⊥AD ,所以以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3), 所以AE ―→=(-1,0,3),AC ―→=(-2,3,0). 设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE ―→=0,n ·AC ―→=0,即⎩⎨⎧-x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为AF ―→=(-1,3,3),所以cos 〈n ,AF ―→〉=n ·AF ―→|n |·|AF ―→|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 知识点三 二面角(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ―→,CD ―→〉.(2)如图②和图③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉或π-〈n 1,n 2〉.[典例] (2019·惠州模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠ABC =60°,PA ⊥PB ,PC =2. (1)求证:平面PAB ⊥平面ABCD ;(2)若PA =PB ,求二面角A -PC -D 的余弦值. [解] (1)证明:取AB 的中点为O ,连接CO ,PO , ∵四边形ABCD 是边长为2的菱形,∴AB =BC =2. ∵∠ABC =60°,∴△ABC 是等边三角形, ∴CO ⊥AB ,OC = 3. ∵PA ⊥PB ,∴PO =12AB =1.∵PC =2,∴OP 2+OC 2=PC 2,∴CO ⊥PO . ∵AB ∩PO =O ,∴CO ⊥平面PAB .∵CO ⊂平面ABCD ,∴平面PAB ⊥平面ABCD . (2)∵OP 2+OA 2=12+12=(2)2=PA 2,∴PO ⊥AO . 由(1)知,平面PAB ⊥平面ABCD , ∴PO ⊥平面ABCD ,∴直线OC ,OB ,OP 两两垂直.以O 为坐标原点建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A (0,-1,0),B (0,1,0),C (3,0,0),D (3,-2,0),P (0,0,1), ∴AP ―→=(0,1,1),PC ―→=(3,0,-1),DC ―→=(0,2,0). 设平面APC 的法向量为m =(x 1,y 1,z 1),由⎩⎪⎨⎪⎧ m ·AP ―→=0,m ·PC ―→=0,得⎩⎨⎧ y 1+z 1=0,3x 1-z 1=0,取x 1=1,得m =(1,-3,3), 设平面PCD 的法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·PC ―→=0,n ·DC ―→=0,得⎩⎨⎧3x 2-z 2=0,2y 2=0,取x 2=1,得n =(1,0,3), ∴cos 〈m ,n 〉=m ·n |m |·|n |=277,由图易知二面角A -PC -D 为锐二面角, ∴二面角A -PC -D 的余弦值为277.[方法技巧]利用法向量求二面角时的2个注意点(1)对于某些平面的法向量要注意题中条件隐含着,不用单独求.(2)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误.[针对训练]1.如图,PA ⊥平面ABC ,AC ⊥BC ,PA =AC =1,BC =2,则平面PAB 与平面PBC 的夹角的余弦值为________.P (0,0,1),AP ―→=解析:建立如图所示的空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),(0,0,1),AB ―→=(2,1,0),CB ―→=(2,0,0),CP ―→=(0,-1,1).设平面PAB 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧ m ⊥AP ―→,m ⊥AB ―→,即⎩⎪⎨⎪⎧m ·AP ―→=0,m ·AB ―→=0,∴⎩⎨⎧y =-2x ,z =0.令x =1,得m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎪⎨⎪⎧ n ⊥CB ―→,n ⊥CP ―→,即⎩⎪⎨⎪⎧n ·CB ―→=0,n ·CP ―→=0,∴⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=1,∴n =(0,1,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=-33.由图知所求二面角为锐角,∴平面PAB 与平面PBC 夹角的余弦值为33. 答案:332.(2019·江西五市联考)如图,在四棱锥P -ABCD 中,AD ∥BC ,AB ⊥AD ,AB =AD =AP =2BC =2,M 是棱PD 上的一点,PMPD =λ(0<λ<1).(1)若λ=13,求证:PB ∥平面MAC ;(2)若平面PAB ⊥平面ABCD ,平面PAD ⊥平面ABCD ,二面角D -AC -M 的余弦值为42121,求λ的值.解:(1)证明:连接BD 交AC 于点O ,连接MO . ∵AD ∥BC ,∴△BCO ∽△DAO , ∵AD =2BC ,∴DO =2BO .∵λ=13,∴DM =2MP ,∴PB ∥MO ,∵PB ⊄平面MAC ,MO ⊂平面MAC ,∴PB ∥平面MAC .(2)∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,AD ⊂平面ABCD ,且AD ⊥AB , ∴AD ⊥平面PAB ,∴AD ⊥PA ,同理可得AB ⊥PA ,可知AB ,AD ,AP 两两垂直,建2-2λ),∴AC ―→=立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2,1,0),M (0,2λ,(2,1,0),AM ―→=(0,2λ,2-2λ).易知平面ACD 的一个法向量为m =(0,0,1). 设平面MAC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AM ―→=0,得⎩⎪⎨⎪⎧2x +y =0,2λy +(2-2λ)z =0,令x =1,则y =-2,z =2λ1-λ,即n =⎝⎛⎭⎫1,-2,2λ1-λ为平面MAC 的一个法向量.由题意可知|m ·n ||m ||n |=42121,即⎪⎪⎪⎪2λ1-λ5+⎝⎛⎭⎫2λ1-λ2=42121,解得λ=23.[课时跟踪检测][A 级 基础题]1.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°解析:选C cos 〈m ,n 〉=m ·n |m ||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A .3030 B.3015 C .3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2),D 1N ―→=(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为⎪⎪⎪⎪⎪⎪⎪⎪B 1M ―→·D 1N ―→|B 1M ―→|·|D 1N ―→| =⎪⎪⎪⎪⎪⎪-1+41+1+4×1+4=3010.故选C.3.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∵DC 1―→,n=DC 1―→·n |DC 1―→|·|n |=(0,3,1)·(2,1,3)10×14=33535,∴DC 1与平面D 1EC 所成的角的正弦值为33535.4.在直三棱柱ABC -A 1B 1C 1中,AA 1=2,二面角B -AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( ) A.7 B . 6 C. 5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4,|AB 1―→|=22,|BC 1―→|=4,cos 〈AB 1―→,BC 1―→〉=AB 1―→·BC 1―→|AB 1―→|·|BC 1―→|=24,故tan 〈AB 1―→,BC 1―→〉=7. 5.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( ) A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1,GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.故选A.6.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1),A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.7.如图所示,在三棱锥P -ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为__________. 解析:因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB , 则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz , 则A (0,0,0),P (0,0,2),B (4,0,0),C (4,-2,0). 因为D 为PB 的中点,所以D (2,0,1). 故CP ―→=(-4,2,2),AD ―→=(2,0,1). 所以AD ―→,CP ―→=AD ―→·CP ―→|AD ―→|·|CP ―→|=-65×26=-3010.设异面直线PC ,AD 所成的角为θ, 则cos θ=|cos 〈AD ―→,CP ―→〉|=3010.答案:30108.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线FO 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.∴OF ―→=(-1,0,3),设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),DB ―→=(0,23,0),EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎨⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10. ∵直线FO 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:2[B 级 提升练]=∠CDP =90°.1.(2017·全国卷Ⅰ)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值. 解:(1)证明:由已知∠BAP =∠CDP =90°, 得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD . 又AP ∩PD =P ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF ⊥AD ,垂足为F .由(1)可知,AB ⊥平面PAD ,故AB ⊥PF ,可得PF ⊥平面ABCD . 以F 为坐标原点,FA ―→的方向为x 轴正方向,|AB ―→|为单位长度,建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A ⎝⎛⎭⎫22,0,0,P ⎝⎛⎭⎫0,0,22,B ⎝⎛⎭⎫22,1,0,C ⎝⎛⎭⎫-22,1,0. 所以PC ―→=⎝⎛⎭⎫-22,1,-22,CB ―→=(2,0,0),PA ―→=⎝⎛⎭⎫22,0,-22,AB ―→=(0,1,0). 设n =(x 1,y 1,z 1)是平面PCB 的法向量, 则⎩⎪⎨⎪⎧ n ·PC ―→=0,n ·CB ―→=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2).设m =(x 2,y 2,z 2)是平面PAB 的法向量, 则⎩⎪⎨⎪⎧m ·PA ―→=0,m ·AB ―→=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1). 则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33.由图知二面角A -PB -C 为钝角, 所以二面角A -PB -C 的余弦值为-33.2.(2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点. (1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 解:(1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC .(2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D -xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. ∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cos 〈n ,AE ―→〉|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.3.如图,EA ⊥平面ABC ,DB ⊥平面ABC ,△ABC 是等边三角形,AC =2AE ,M 是AB的中点.(1)求证:CM ⊥EM;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B -CD -E 的余弦值. 解:(1)证明:因为△ABC 是等边三角形,M 是AB 的中点, 所以CM ⊥AM .因为EA ⊥平面ABC ,CM ⊂平面ABC ,所以CM ⊥EA . 因为AM ∩EA =A ,所以CM ⊥平面EAM . 因为EM ⊂平面EAM ,所以CM ⊥EM .(2)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴,过M 且与直线BD平行的直线为z 轴,建立空间直角坐标系M -xyz ,如图所示. 因为DB ⊥平面ABC ,所以∠DMB 为直线DM 与平面ABC 所成的角,所以tan ∠DMB =BDMB=2,即BD =2MB ,所以BD =AC . 不妨设AC =2,又AC =2AE ,则CM =3,AE =1. 故B (0,1,0),C (3,0,0),D (0,1,2),E (0,-1,1).所以BC ―→=(3,-1,0),BD ―→=(0,0,2),CE ―→=(-3,-1,1),CD ―→=(-3,1,2). 设平面BCD 与平面CDE 的一个法向量分别为m =(x 1,y 1,z 1),n =(x 2,y 2,z 2),由⎩⎪⎨⎪⎧ m ·BC ―→=0,m ·BD ―→=0,得⎩⎨⎧3x 1-y 1=0,2z 1=0,令x 1=1,得y 1=3,所以m =(1,3,0).由⎩⎪⎨⎪⎧n ·CE ―→=0,n ·CD ―→=0,得⎩⎨⎧-3x 2-y 2+z 2=0,-3x 2+y 2+2z 2=0.令x 2=1,得y 2=-33,z 2=233. 所以n =⎝⎛⎭⎫1,-33,233. 所以cos 〈m ,n 〉=m ·n|m ||n |=0.所以二面角B -CD -E 的余弦值为0.。
用向量方法求空间角
练习2、如图,在三棱锥P-ABC中,AB=AC,D为BC旳中点,PO⊥ 平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2. (1)证明:AP⊥BC; (2)在线段AP上是否存在点M,使得二 面角A-MC-B为直二面角?若存在,求 出AM旳长;若不存在,请阐明理由.
m
a
m
a´
o•
n
b´
b
n
cos cos m, n
2.直线与平面所成角:
sin | cos n, AB |
A
n
B
O n
3.二面角:
B
A C l
D
n2
cos cos AB,CD AB CD
AB CD
n2
n1
n1
l
l
cos cos n1, n2
cos cos n1, n2
【解题指南】建立坐标系,(1)利用 AP BC来证0 明;(2)假 设存在满足条件旳点,求出两个半平面旳法向量,判断两法向 量是否能垂直即可.若垂直,则假设成立;若不垂直,则假设 不成立.
【规范解答】(1)如图以O为原点,以射线OD,OP分别为y轴, z轴旳正半轴,建立空间直角坐标系Oxyz, 则O(0,0,0),A(0,-3,0),B(4,2,0), C(-4,2,0),P(0,0,4).
AP 0,3,4,BC 8,0,0.
AP BC 0,
∴ AP 即BCA,P⊥BC.
(2)假设存在M,设 PM P其A,中λ∈[0,1), 则 PM=λ(0,-3,-4)=(0,-3λ,-4λ).
BM BP PM BP PA
=(-4,-2,4)+λ(0,-3,-4) =(-4,-2-3λ,4-4λ) AC=(-4,5,0), =B(C-8,0,0)
向量法求空间角
n1
n2
a
l
2
探究方法
四、教学过程的设计与实施
n1 , n2
n1 n2 cos cos n1 , n2 n1 n2
2
探究方法
n1 , n2
n1 n cos cos n1 , n2 2 n1 n2
n1 , n2
cos n1 n2 n1 n2
设平面 SCD 的法向量为 n (x, y, z),
平面 SAB 与平面 SCD 的所成
二面角的余弦值
6 3
∴cosθ =|cosα|
15 15 1 4 0 4 4 4 5 2 3 2 4 0 2
1
温故知新
四、教学过程的设计与实施 直线与平面所成的角 斜线与平面所成角的范围: 0, 2 直线的方向向量为 r ,平面的法向量为 n
n1 , n2 , cos
2、
n1 n2 n1 n2
AD、AB、AS 所在的直线分别为 x 轴, y 轴,z 轴建立空间直角坐标系 A-xyz, 则 A(0,0,0),S(0,0,1),D (
1 x z 0, 2 x y z 0.
取 z=1,得 n (2,1,1) ,
SA⊥平面ABCD,SA=AB=BC=1, AD
1 2
求平面SAB与SCD 所成二面角的余弦值.
z
y
x
解:由 SA⊥平面 ABCD,AB⊥AD,SA,AB,AD 两两互相垂直. A 为坐标原点,AD 所在的直线为 x 轴, 以 四、教学过程的设计与实施 AB 所在的直线为 y 轴 建立空间直角坐标系 A-xyz,则 1 1 S (0,0,1) , S ( ,0,0) , C (1,1,0) , SD ( ,0, 1) , SC (1,1, 1) , 2 2 设平面 SCD 的法向量为 n(x, y, z),则 nSD 0, nSC0, z 转化为坐标运算,得 1 x z 0, 2 x y z 0. 取 z=1,则 n (2,1,1) , y 1 . 2 0 (1) 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
A
y
x
设异面直线BD1与AF1所成的角的角为, 则 cos
30 10
所以直线BD1与AF1所成__的______角____的______余____弦______值________1__03__0 __________
(2)求直线和平面所成的角
例2:如图,在长方体AC1中,棱AB=BC=3,棱BB1=4,点
z
解:如图建立空间直角坐标系,取BC=CA=CC1=1
则B(1,0,0)
A(0,1,0)D1(1 2,1 2,1);
1 F1(0,2,1)
B1
BD1
(
1 2
,
1 2
,1)
;
AF(0,1,1); 2
3
cosB1D ,A1FB1 D A1F B1D A1F
4 30 6 5 10
B
22
C1
F1
A1
··D1
(1) 二面角及二面角的平面角: 从一条直线出发的两个半平面构成的图形叫二面角。 在二面角的棱上任取一点,过这点在二面角的两个面内
做垂直于棱的两条射线,这两条射线所成的角叫二面角的平 面角。
二面角的大小可用它的平面角来度量,二面角的平面 角是多少度,就说这个二面角是多少度。
二面角的范围是[0,π]
___________________________ _______________________
用向量计算空间角
___________________________ _______________________
一、几类空间角的定义及范围
1.异面直线所成角
直线a、b是异面直线,经过空间任意一点O,分别引直
线 a//ab,//b,我们把直线 a和 b所成的锐角(或直角)
叫做异面直线a和b所成的角。
l
图2 cos< n1 , n 2 > =
n1 n2 n1 n2
用向量法求空间角回避了在空间图形中寻找线线角、线
面角、二面角的平面角这一难点。体现了向量思想在立体几
何中的重要地位,更体现了“借数言形”的数学思想。
注意:建立坐标系后__各___个___点___的___坐____标___要___写___对,计算要准确。 _______________________
例3:长方体AC1中,棱AB=BC=3,BB1=4。 求二面角 B1―A1C―C1的余弦值。
z 解:如图,建立空间直角坐标系.
D (0,3,0); A1(0,0,4); B1(3,0,4); C (3,3,0); C (3,3,0); D1(0,3,4).
A1 B1
D1 C1
A1 B 1 =(3,0,0); B 1 C (0,3, 4)
(2)求二面角大小的公式: coscosn1,n2
其中 n1 , n 2 分别是二面角的两个半平面的法向量。
二面角余弦值 cos 的正负取决于二面角是锐二面角还是钝
二面角.
n1
n2
n1
n2
θ
θ
l
图1
如图1中,cosθ=
cos< n1 , n 2 > =
n1 n2 n1 n2
图2中, cosθ=
又∵所求二面角为锐二面角
B1D1 (-3,3,0)
__________________________________故______二____面_____角_ B1―A1C―C1的大小为 2 5 2
练习:
如图,已知:直角梯形OABC中,OA∥BC, ∠AOC=90°,SO⊥平面OABC,且 OS=OC=BC=1,OA=2.求: ⑴OS与平面SAB所成角的正弦值; ⑵二面角B-AS-O的余弦值; ⑶异面直线SA和OB所成角的余弦值.
异面直线所成角的范围是
0,
2
。
2.直线和平面所成角
平面的一条斜线和它在平面上的射影所成的角,叫做这条 直线和这个平面所成的角;
特别地,一条直线垂直于平面,则它们所成的角是直角; 一条直线和平面平行,或在平面内,我们说它们所成的角 是0°角。 由定义知,直线与平____面______所______成______的______角______θ______∈________[_0_,2 ]
d
OA n n ___________________________
_______________________
o
β
(1)求异面直线所成的角
例1:如右图,直三棱柱A1B1C1─ABC中,∠BCA=90°, 点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,求 BD1与AF1所成的角的余弦值.
设平面A1B1C的法向量为n =(x,y,z)则
A
Dy
n nB A1 1C B1 00 3 3xy 4 0z0 3 xy 04z
B
x
令z=3,则x=0,y=4
cosn,B1D1
C
nB1D1
平面A1B1C的法向量为 n =(0,4,3)
n B1D1
22 5
又∵平面A1 C1C的法向量为
设平面A1B1C的法向量为 n =(x,y,z)则
n nB A1 1C B1 00 3 3xy 4 0z0 3 xy 04z
A1 B1
A B x
D1 C1
E D y
C
令z=3,则 n =(0,4,3), ___________________________ _______________________
设DE与面A1B1C所成角为,则
Sin=|cos<DE,
n >|=
DE DE
n n
6 13 65
即
ED与平面A1B1C所成角的大小为
6
13 65
z A1 B1
A B x
D1
C1
E D y
C
___________________________ _______________________
3.二面角:
பைடு நூலகம்
E是CC1的中点 。 求ED与平面A1B1C所成角的大小的正弦
值.
z
解:如图,建立空间直角坐标系,由题意知:
D (0,3,0); E (3,3,2); A1(0,0,4); B1(3,0,4); C (3,3,0)。
DE =(3,0,2) A1 B 1 =(3,0,0); B 1 C (0,3, 4)
二、空间角的向量计算
1.求异面直线所成角的公式:coscosa,b
其中 a , b 是异面直线 a , b 上的方向向量。
2.求线面角大小的公式:
如图,设平面β的法向量为 n ,直线AO与平面所成的角为 .则
OAn
sincosOA,n
其中 n 是平面的法向量。 A
OA n
θn
点A到平面β的距离d为: