数据结构(C语言版)严蔚敏清华大学出版社第十二章
Chapter12_文件_数据结构(C语言版)_严蔚敏_配套.
二、次索引的组织方法• 1.多重链表文件特点:将所有具有相同次关键字的记录链接在同一链表中,该链表的头指针即为次索引项中“指针域”的值;
• 2.倒排文件特点:将所有具有相同次关键字的记录构成一个次索引顺序表,此时的次索引顺序表中仅存放记录的“主关键字”或记录的“物理记录号”。
次索引项中的“指针”指向相应的次索引顺序表;
次关键字索引表本身的结构可以是顺序表,也可以是树表或哈希表,视具体的次关键字的特性而定。
本章学习要点熟悉各类文件的特点,构造方法以及如何实现检索,插入和删除等操作。
数据结构课后习题答案_(C语言版_严蔚敏)
for(j=i; j<=n; j++) @ k++; } (5) for(i=1; i<=n; i++) { for(j=1; j<=i; j++) { for(k=1; k<=j; k++) @ x += delta; } (6) i=1; j=0; while(i+j<=n) { @ if(i>j) j++; else i++; } (7) x=n; y=0; // n 是不小于 1 的常数 while(x>=(y+1)*(y+1)) { @ y++; } (8) x=91; y=100; while(y>0) { @ if(x>100) { x -= 10; y--; } else x++; } 解:(1) n-1 (2) n-1 (3) n-1 (4) n+(n-1)+(n-2)+...+1=
6
for(i=0;i<k+1;i++){ if(i<k-1) p[i]=0; else p[i]=1; } for(i=k+1;i<n+1;i++){ x=p[0]; for(j=0;j<k;j++) p[j]=p[j+1]; p[k]=2*p[k-1]-x; } return p[k]; } 1.18 假设有 A,B,C,D,E 五个高等院校进行田径对抗赛,各院校的单项成绩均已存入计 算机,并构成一张表,表中每一行的形式为 项目名称 性别 校名 成绩 得分 编写算法,处理上述表格,以统计各院校的男、女总分和团体总分,并输出。 解: typedef enum{A,B,C,D,E} SchoolName; typedef enum{Female,Male} SexType; typedef struct{ char event[3]; //项目 SexType sex; SchoolName school; int score; } Component; typedef struct{ int MaleSum; //男团总分 int FemaleSum; //女团总分 int TotalSum; //团体总分 } Sum; Sum SumScore(SchoolName sn,Component a[],int n) { Sum temp; temp.MaleSum=0; temp.FemaleSum=0; temp.TotalSum=0; int i; for(i=0;i<n;i++){ if(a[i].school==sn){ if(a[i].sex==Male) temp.MaleSum+=a[i].score; if(a[i].sex==Female) temp.FemaleSum+=a[i].score; } } temp.TotalSum=temp.MaleSum+temp.FemaleSum; return temp;
清华大学严蔚敏数据结构习题集(C版)答案
清华大学严蔚敏数据结构习题集(C版)答案清华大学严蔚敏数据结构习题集(C版)答案第一章绪论1.16void print_descending(int x,int y,int z)//按从大到小顺序输出三个数{scanf("%d,%d,%d",&x,&y,&z);if(x<y) x<->y; //<->为表示交换的双目运算符,以下同if(y<z) y<->z;if(x<y) x<->y; //冒泡排序printf("%d %d %d",x,y,z);}//print_descending1.17Status fib(int k,int m,int &f)//求k阶斐波那契序列的第m项的值f {int tempd;if(k<2||m<0) return ERROR;if(m<k-1) f=0;else if (m==k-1) f=1;else{for(i=0;i<=k-2;i++) temp=0;temp[k-1]=1; //初始化for(i=k;i<=m;i++) //求出序列第k至第m个元素的值{sum=0;for(j=i-k;j<i;j++) sum+=temp[j];temp=sum;}f=temp[m];}return OK;}//fib分析:通过保存已经计算出来的结果,此方法的时间复杂度仅为O(m^2).如果采用递归编程(大多数人都会首先想到递归方法),则时间复杂度将高达O(k^m).1.18typedef struct{char *sport;enum{male,female} gender;char schoolname; //校名为'A','B','C','D'或'E'char *result;int score;} resulttype;typedef struct{int malescore;int femalescore;int totalscore;} scoretype;void summary(resulttype result[ ])//求各校的男女总分和团体总分,假设结果已经储存在result[ ]数组中{scoretype score;i=0;while(result.sport!=NULL){switch(result.schoolname){case 'A':score[ 0 ].totalscore+=result.score;if(result.gender==0) score[ 0 ].malescore+=result.score; else score[ 0 ].femalescore+=result.score;break;case 'B':score.totalscore+=result.score;if(result.gender==0) score.malescore+=result.score;else score.femalescore+=result.score;break;………………}i++;}for(i=0;i<5;i++){printf("School %d:\n",i);printf("Total score of male:%d\n",score.malescore);printf("Total score of female:%d\n",score.femalescore);printf("Total score of all:%d\n\n",score.totalscore);}}//summary1.19Status algo119(int a[ARRSIZE])//求i!*2^i序列的值且不超过maxint {last=1;for(i=1;i<=ARRSIZE;i++){a[i-1]=last*2*i;if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;last=a[i-1];return OK;}}//algo119分析:当某一项的结果超过了maxint时,它除以前面一项的商会发生异常.1.20void polyvalue(){float ad;float *p=a;printf("Input number of terms:");scanf("%d",&n);printf("Input the %d coefficients from a0 to a%d:\n",n,n);for(i=0;i<=n;i++) scanf("%f",p++);printf("Input value of x:");scanf("%f",&x);p=a;xp=1;sum=0; //xp用于存放x的i次方for(i=0;i<=n;i++){sum+=xp*(*p++);xp*=x;}printf("Value is:%f",sum);}//polyvalue第二章线性表2.10Status DeleteK(SqList &a,int i,int k)//删除线性表a中第i个元素起的k个元素{if(i<1||k<0||i+k-1>a.length) return INFEASIBLE;for(count=1;i+count-1<=a.length-k;count++) //注意循环结束的条件 a.elem[i+count-1]=a.elem[i+count+k-1];a.length-=k;return OK;}//DeleteK2.11Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va中{if(va.length+1>va.listsize) return ERROR;va.length++;for(i=va.length-1;va.elem>x&&i>=0;i--)va.elem[i+1]=va.elem;va.elem[i+1]=x;return OK;}//Insert_SqList2.12int ListComp(SqList A,SqList B)//比较字符表A和B,并用返回值表示结果,值为正,表示A>B;值为负,表示A<B;值为零,表示A=B{for(i=1;A.elem||B.elem;i++)if(A.elem!=B.elem) return A.elem-B.elem;return 0;}//ListComp2.13LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针{for(p=l->next;p&&p->data!=x;p=p->next);return p;}//Locate2.14int Length(LinkList L)//求链表的长度{for(k=0,p=L;p->next;p=p->next,k++);return k;}//Length2.15void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb 接在ha后面形成链表hc{hc=ha;p=ha;while(p->next) p=p->next;p->next=hb;}//ListConcat2.16见书后答案.2.17Status Insert(LinkList &L,int i,int b)//在无头结点链表L的第i个元素之前插入元素b{p=L;q=(LinkList*)malloc(sizeof(LNode));q.data=b;if(i==1){q.next=p;L=q; //插入在链表头部}{while(--i>1) p=p->next;q->next=p->next;p->next=q; //插入在第i个元素的位置}}//Insert2.18Status Delete(LinkList &L,int i)//在无头结点链表L中删除第i个元素{if(i==1) L=L->next; //删除第一个元素else{p=L;while(--i>1) p=p->next;p->next=p->next->next; //删除第i个元素}}//Delete2.19Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L中值大于mink且小于maxk的所有元素{while(p->next->data<=mink) p=p->next; //p是最后一个不大于mink 的元素if(p->next) //如果还有比mink更大的元素{q=p->next;while(q->data<maxk) q=q->next; //q是第一个不小于maxk的元素 p->next=q;}}//Delete_Between2.20Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L中所有值相同的元素{p=L->next;q=p->next; //p,q指向相邻两元素while(p->next){if(p->data!=q->data){p=p->next;q=p->next; //当相邻两元素不相等时,p,q都向后推一步 }else{while(q->data==p->data){free(q);q=q->next;}p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素}//else}//while}//Delete_Equal2.21void reverse(SqList &A)//顺序表的就地逆置{for(i=1,j=A.length;i<j;i++,j--)A.elem<->A.elem[j];}//reverse2.22void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2{p=L->next;q=p->next;s=q->next;p->next=NULL;while(s->next){q->next=p;p=q;q=s;s=s->next; //把L的元素逐个插入新表表头}q->next=p;s->next=q;L->next=s;}//LinkList_reverse分析:本算法的思想是,逐个地把L的当前元素q插入新的链表头部,p为新表表头.2.23void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A和B合并为C,A和B的元素间隔排列,且使用原存储空间{p=A->next;q=B->next;C=A;while(p&&q){s=p->next;p->next=q; //将B的元素插入if(s){t=q->next;q->next=s; //如A非空,将A的元素插入}p=s;q=t;}//while}//merge12.24void reverse_merge(LinkList &A,LinkList &B,LinkList &C)//把元素递增排列的链表A和B合并为C,且C中元素递减排列,使用原空间{pa=A->next;pb=B->next;pre=NULL; //pa和pb分别指向A,B的当前元素 while(pa||pb){if(pa->data<pb->data||!pb){pc=pa;q=pa->next;pa->next=pre;pa=q; //将A的元素插入新表}else{pc=pb;q=pb->next;pb->next=pre;pb=q; //将B的元素插入新表}pre=pc;}C=A;A->next=pc; //构造新表头}//reverse_merge分析:本算法的思想是,按从小到大的顺序依次把A和B的元素插入新表的头部pc处,最后处理A或B的剩余元素.2.25void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A和B的元素的交集并存入C中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;if(A.elem>B.elem[j]) j++;if(A.elem==B.elem[j]){C.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素, i++;j++; //就添加到C中}}//while}//SqList_Intersect2.26void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题{p=A->next;q=B->next;pc=(LNode*)malloc(sizeof(LNode));while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else{s=(LNode*)malloc(sizeof(LNode));s->data=p->data;pc->next=s;pc=s;p=p->next;q=q->next;}}//whileC=pc;}//LinkList_Intersect2.27void SqList_Intersect_True(SqList &A,SqList B)//求元素递增排列的线性表A和B的元素的交集并存回A中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;else if(A.elem>B.elem[j]) j++;else if(A.elem!=A.elem[k]){A.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素i++;j++; //且C中没有,就添加到C中}}//whilewhile(A.elem[k]) A.elem[k++]=0;}//SqList_Intersect_True2.28void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题{p=A->next;q=B->next;pc=A;while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else if(p->data!=pc->data){pc=pc->next;pc->data=p->data;p=p->next;q=q->next;}}//while}//LinkList_Intersect_True2.29void SqList_Intersect_Delete(SqList &A,SqList B,SqList C){i=0;j=0;k=0;m=0; //i指示A中元素原来的位置,m为移动后的位置 while(i<A.length&&j<B.length&& k<C.length){if(B.elem[j]<C.elem[k]) j++;else if(B.elem[j]>C.elem[k]) k++;else{same=B.elem[j]; //找到了相同元素same while(B.elem[j]==same) j++;while(C.elem[k]==same) k++; //j,k后移到新的元素while(i<A.length&&A.elem<same)A.elem[m++]=A.elem[i++]; //需保留的元素移动到新位置while(i<A.length&&A.elem==same) i++; //跳过相同的元素}}//whilewhile(i<A.length)A.elem[m++]=A.elem[i++]; //A的剩余元素重新存储。
严蔚敏数据结构题集(C语言版)答案
任何的限度,都是从自己的心坎开端的。
每一奋发尽力的背地,必有加倍的弥补。
严蔚敏数据结构C语言版答案详解第1章绪论1.1 简述下列术语:数据数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型解:数据是对客观事物的符号表示在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称数据元素是数据的基本单位在计算机程序中通常作为一个整体进行考虑和处理数据对象是性质相同的数据元素的集合是数据的一个子集数据结构是相互之间存在一种或多种特定关系的数据元素的集合存储结构是数据结构在计算机中的表示数据类型是一个值的集合和定义在这个值集上的一组操作的总称抽象数据类型是指一个数学模型以及定义在该模型上的一组操作是对一般数据类型的扩展1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别解:抽象数据类型包含一般数据类型的概念但含义比一般数据类型更广、更抽象一般数据类型由具体语言系统内部定义直接提供给编程者定义用户数据因此称它们为预定义数据类型抽象数据类型通常由编程者定义包括定义它所使用的数据和在这些数据上所进行的操作在定义抽象数据类型中的数据部分和操作部分时要求只定义到数据的逻辑结构和操作说明不考虑数据的存储结构和操作的具体实现这样抽象层次更高更能为其他用户提供良好的使用接口1.3 设有数据结构(DR)其中试按图论中图的画法惯例画出其逻辑结构图解:1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)解:ADT Complex{数据对象:D={ri|ri为实数}数据关系:R={<ri>}基本操作:InitComplex(&Creim)操作结果:构造一个复数C其实部和虚部分别为re和imDestroyCmoplex(&C)操作结果:销毁复数CGet(Ck&e)操作结果:用e返回复数C的第k元的值Put(&Cke)操作结果:改变复数C的第k元的值为eIsAscending(C)操作结果:如果复数C的两个元素按升序排列则返回1否则返回0IsDescending(C)操作结果:如果复数C的两个元素按降序排列则返回1否则返回0Max(C&e)操作结果:用e返回复数C的两个元素中值较大的一个Min(C&e)操作结果:用e返回复数C的两个元素中值较小的一个}ADT ComplexADT RationalNumber{数据对象:D={sm|sm为自然数且m不为0}数据关系:R={<sm>}基本操作:InitRationalNumber(&Rsm)操作结果:构造一个有理数R其分子和分母分别为s和mDestroyRationalNumber(&R)操作结果:销毁有理数RGet(Rk&e)操作结果:用e返回有理数R的第k元的值Put(&Rke)操作结果:改变有理数R的第k元的值为eIsAscending(R)操作结果:若有理数R的两个元素按升序排列则返回1否则返回0IsDescending(R)操作结果:若有理数R的两个元素按降序排列则返回1否则返回0Max(R&e)操作结果:用e返回有理数R的两个元素中值较大的一个Min(R&e)操作结果:用e返回有理数R的两个元素中值较小的一个}ADT RationalNumber1.5 试画出与下列程序段等价的框图(1) product=1; i=1;while(i<=n){product *= i;i++;}(2) i=0;do {i++;} while((i!=n) && (a[i]!=x));(3) switch {case x<y: z=y-x; break;case x=y: z=abs(x*y); break;default: z=(x-y)/abs(x)*abs(y);}1.6 在程序设计中常用下列三种不同的出错处理方式:(1) 用exit语句终止执行并报告错误;(2) 以函数的返回值区别正确返回或错误返回;(3) 设置一个整型变量的函数参数以区别正确返回或某种错误返回试讨论这三种方法各自的优缺点解:(1)exit常用于异常错误处理它可以强行中断程序的执行返回操作系统(2)以函数的返回值判断正确与否常用于子程序的测试便于实现程序的局部控制(3)用整型函数进行错误处理的优点是可以给出错误类型便于迅速确定错误1.7 在程序设计中可采用下列三种方法实现输出和输入:(1) 通过scanf和printf语句;(2) 通过函数的参数显式传递;(3) 通过全局变量隐式传递试讨论这三种方法的优缺点解:(1)用scanf和printf直接进行输入输出的好处是形象、直观但缺点是需要对其进行格式控制较为烦琐如果出现错误则会引起整个系统的崩溃(2)通过函数的参数传递进行输入输出便于实现信息的隐蔽减少出错的可能(3)通过全局变量的隐式传递进行输入输出最为方便只需修改变量的值即可但过多的全局变量使程序的维护较为困难1.8 设n为正整数试确定下列各程序段中前置以记号@的语句的频度:(1) i=1; k=0;while(i<=n-1){@ k += 10*i;i++;}(2) i=1; k=0;do {@ k += 10*i;i++;} while(i<=n-1);(3) i=1; k=0;while (i<=n-1) {i++;@ k += 10*i;}(4) k=0;for(i=1; i<=n; i++) {for(j=i; j<=n; j++)@ k++;}(5) for(i=1; i<=n; i++) {for(j=1; j<=i; j++) {for(k=1; k<=j; k++)@ x += delta;}(6) i=1; j=0;while(i+j<=n) {@ if(i>j) j++;else i++;}(7) x=n; y=0; // n是不小于1的常数while(x>=(y+1)*(y+1)) {@ y++;}(8) x=91; y=100;while(y>0) {@ if(x>100) { x -= 10; y--; }else x++;}解:(1) n-1(2) n-1(3) n-1(4) n+(n-1)+(n-2)+ (1)(5) 1+(1+2)+(1+2+3)+...+(1+2+3+...+n)===(6) n(7) 向下取整(8) 11001.9 假设n为2的乘幂并且n>2试求下列算法的时间复杂度及变量count的值(以n的函数形式表示)int Time(int n) {count = 0; x=2;while(x<n/2) {x *= 2; count++;}return count;}解:count=1.11 已知有实现同一功能的两个算法其时间复杂度分别为和假设现实计算机可连续运算的时间为秒(100多天)又每秒可执行基本操作(根据这些操作来估算算法时间复杂度)次试问在此条件下这两个算法可解问题的规模(即n值的范围)各为多少?哪个算法更适宜?请说明理由解:n=40n=16则对于同样的循环次数n在这个规模下第二种算法所花费的代价要大得多故在这个规模下第一种算法更适宜1.12 设有以下三个函数:请判断以下断言正确与否:(1) f(n)是O(g(n))(2) h(n)是O(f(n))(3) g(n)是O(h(n))(4) h(n)是O(n3.5)(5) h(n)是O(nlogn)解:(1)对 (2)错 (3)错 (4)对 (5)错1.13 试设定若干n值比较两函数和的增长趋势并确定n在什么范围内函数的值大于的值解:的增长趋势快但在n较小的时候的值较大当n>438时1.14 判断下列各对函数和当时哪个函数增长更快?(1)(2)(3)(4)解:(1)g(n)快 (2)g(n)快 (3)f(n)快 (4) f(n)快1.15 试用数学归纳法证明:(1)(2)(3)(4)1.16 试写一算法自大至小依次输出顺序读入的三个整数XY和Z的值解:int max3(int xint yint z){if(x>y)if(x>z) return x;else return z;elseif(y>z) return y;else return z;}1.17 已知k阶斐波那契序列的定义为...;试编写求k阶斐波那契序列的第m项值的函数算法k和m均以值调用的形式在函数参数表中出现解:k>0为阶数n为数列的第n项int Fibonacci(int kint n){if(k<1) exit(OVERFLOW);int *px;p=new int[k+1];if(!p) exit(OVERFLOW);int ij;for(i=0;i<k+1;i++){if(i<k-1) p[i]=0;else p[i]=1;}for(i=k+1;i<n+1;i++){x=p[0];for(j=0;j<k;j++) p[j]=p[j+1];p[k]=2*p[k-1]-x;}return p[k];}1.18 假设有ABCDE五个高等院校进行田径对抗赛各院校的单项成绩均已存入计算机并构成一张表表中每一行的形式为项目名称性别校名成绩得分编写算法处理上述表格以统计各院校的男、女总分和团体总分并输出解:typedef enum{ABCDE} SchoolName;typedef enum{FemaleMale} SexType;typedef struct{char event[3]; //项目SexType sex;SchoolName school;int score;} Component;typedef struct{int MaleSum; //男团总分int FemaleSum; //女团总分int TotalSum; //团体总分} Sum;Sum SumScore(SchoolName sn Component a[]int n){Sum temp;temp.MaleSum=0;temp.FemaleSum=0;temp.TotalSum=0;int i;for(i=0;i<n;i++){if(a[i].school==sn){if(a[i].sex==Male) temp.MaleSum+=a[i].score;if(a[i].sex==Female) temp.FemaleSum+=a[i].score;}}temp.TotalSum=temp.MaleSum+temp.FemaleSum;return temp;}1.19 试编写算法计算的值并存入数组a[0..arrsize-1]的第i-1个分量中(i=12...n)假设计算机中允许的整数最大值为maxint则当n>arrsize或对某个使时应按出错处理注意选择你认为较好的出错处理方法解:#include<iostream.h>#include<stdlib.h>#define MAXINT 65535#define ArrSize 100int fun(int i);int main(){int ik;int a[ArrSize];cout<<"Enter k:";cin>>k;if(k>ArrSize-1) exit(0);for(i=0;i<=k;i++){if(i==0) a[i]=1;else{if(2*i*a[i-1]>MAXINT) exit(0);else a[i]=2*i*a[i-1];}}for(i=0;i<=k;i++){if(a[i]>MAXINT) exit(0);else cout<<a[i]<<" ";}return 0;}1.20 试编写算法求一元多项式的值的值并确定算法中每一语句的执行次数和整个算法的时间复杂度注意选择你认为较好的输入和输出方法本题的输入为和输出为解:#include<iostream.h>#include<stdlib.h>#define N 10double polynomail(int a[]int idouble xint n);int main(){double x;int ni;int a[N];cout<<"输入变量的值x:";cin>>x;cout<<"输入多项式的阶次n:";cin>>n;if(n>N-1) exit(0);cout<<"输入多项式的系数a[0]--a[n]:";for(i=0;i<=n;i++) cin>>a[i];cout<<"The polynomail value is "<<polynomail(a nxn)<<endl;return 0;}double polynomail(int a[]int idouble xint n)if(i>0) return a[n-i]+polynomail(ai-1xn)*x;else return a[n];}本算法的时间复杂度为o(n)第2章线性表2.1 描述以下三个概念的区别:头指针头结点首元结点(第一个元素结点)解:头指针是指向链表中第一个结点的指针首元结点是指链表中存储第一个数据元素的结点头结点是在首元结点之前附设的一个结点该结点不存储数据元素其指针域指向首元结点其作用主要是为了方便对链表的操作它可以对空表、非空表以及首元结点的操作进行统一处理2.2 填空题解:(1) 在顺序表中插入或删除一个元素需要平均移动表中一半元素具体移动的元素个数与元素在表中的位置有关(2) 顺序表中逻辑上相邻的元素的物理位置必定紧邻单链表中逻辑上相邻的元素的物理位置不一定紧邻(3) 在单链表中除了首元结点外任一结点的存储位置由其前驱结点的链域的值指示(4) 在单链表中设置头结点的作用是插入和删除首元结点时不用进行特殊处理2.3 在什么情况下用顺序表比链表好?解:当线性表的数据元素在物理位置上是连续存储的时候用顺序表比用链表好其特点是可以进行随机存取2.4 对以下单链表分别执行下列各程序段并画出结果示意图解:2.5 画出执行下列各行语句后各指针及链表的示意图L=(LinkList)malloc(sizeof(LNode)); P=L;for(i=1;i<=4;i++){P->next=(LinkList)malloc(sizeof(LNode));P=P->next; P->data=i*2-1;}P->next=NULL;for(i=4;i>=1;i--) Ins_LinkList(Li+1i*2);for(i=1;i<=3;i++) Del_LinkList(Li);解:2.6 已知L是无表头结点的单链表且P结点既不是首元结点也不是尾元结点试从下列提供的答案中选择合适的语句序列a. 在P结点后插入S结点的语句序列是__________________b. 在P结点前插入S结点的语句序列是__________________c. 在表首插入S结点的语句序列是__________________d. 在表尾插入S结点的语句序列是__________________(1) P->next=S;(2) P->next=P->next->next;(3) P->next=S->next;(4) S->next=P->next;(5) S->next=L;(6) S->next=NULL;(7) Q=P;(8) while(P->next!=Q) P=P->next;(9) while(P->next!=NULL) P=P->next;(10) P=Q;(11) P=L;(12) L=S;(13) L=P;解:a. (4) (1)b. (7) (11) (8) (4) (1)c. (5) (12)d. (9) (1) (6)2.7 已知L是带表头结点的非空单链表且P结点既不是首元结点也不是尾元结点试从下列提供的答案中选择合适的语句序列a. 删除P结点的直接后继结点的语句序列是____________________b. 删除P结点的直接前驱结点的语句序列是____________________c. 删除P结点的语句序列是____________________d. 删除首元结点的语句序列是____________________e. 删除尾元结点的语句序列是____________________(1) P=P->next;(2) P->next=P;(3) P->next=P->next->next;(4) P=P->next->next;(5) while(P!=NULL) P=P->next;(6) while(Q->next!=NULL) { P=Q; Q=Q->next; }(7) while(P->next!=Q) P=P->next;(8) while(P->next->next!=Q) P=P->next;(9) while(P->next->next!=NULL) P=P->next;(10) Q=P;(11) Q=P->next;(12) P=L;(13) L=L->next;(14) free(Q);解:a. (11) (3) (14)b. (10) (12) (8) (3) (14)c. (10) (12) (7) (3) (14)d. (12) (11) (3) (14)e. (9) (11) (3) (14)2.8 已知P结点是某双向链表的中间结点试从下列提供的答案中选择合适的语句序列a. 在P结点后插入S结点的语句序列是_______________________b. 在P结点前插入S结点的语句序列是_______________________c. 删除P结点的直接后继结点的语句序列是_______________________d. 删除P结点的直接前驱结点的语句序列是_______________________e. 删除P结点的语句序列是_______________________(1) P->next=P->next->next;(2) P->priou=P->priou->priou;(3) P->next=S;(4) P->priou=S;(5) S->next=P;(6) S->priou=P;(7) S->next=P->next;(8) S->priou=P->priou;(9) P->priou->next=P->next;(10) P->priou->next=P;(11) P->next->priou=P;(12) P->next->priou=S;(13) P->priou->next=S;(14) P->next->priou=P->priou;(15) Q=P->next;(16) Q=P->priou;(17) free(P);(18) free(Q);解:a. (7) (3) (6) (12)b. (8) (4) (5) (13)c. (15) (1) (11) (18)d. (16) (2) (10) (18)e. (14) (9) (17)2.9 简述以下算法的功能(1) Status A(LinkedList L) { //L是无表头结点的单链表if(L && L->next) {Q=L; L=L->next; P=L;while(P->next) P=P->next;P->next=Q; Q->next=NULL;}return OK;}(2) void BB(LNode *sLNode *q) {p=s;while(p->next!=q) p=p->next;p->next =s;}void AA(LNode *paLNode *pb) {//pa和pb分别指向单循环链表中的两个结点BB(papb);BB(pbpa);}解:(1) 如果L的长度不小于2将L的首元结点变成尾元结点(2) 将单循环链表拆成两个单循环链表2.10 指出以下算法中的错误和低效之处并将它改写为一个既正确又高效的算法Status DeleteK(SqList &aint iint k){//本过程从顺序存储结构的线性表a中删除第i个元素起的k个元素if(i<1||k<0||i+k>a.length) return INFEASIBLE;//参数不合法else {for(count=1;count<k;count++){//删除第一个元素for(j=a.length;j>=i+1;j--) a.elem[j-i]=a.elem[j];a.length--;}return OK;}解:Status DeleteK(SqList &aint iint k){//从顺序存储结构的线性表a中删除第i个元素起的k个元素//注意i的编号从0开始int j;if(i<0||i>a.length-1||k<0||k>a.length-i) return INFEASIBLE;for(j=0;j<=k;j++)a.elem[j+i]=a.elem[j+i+k];a.length=a.length-k;return OK;}2.11 设顺序表va中的数据元素递增有序试写一算法将x插入到顺序表的适当位置上以保持该表的有序性解:Status InsertOrderList(SqList &vaElemType x){//在非递减的顺序表va中插入元素x并使其仍成为顺序表的算法int i;if(va.length==va.listsize)return(OVERFLOW);for(i=va.length;i>0x<va.elem[i-1];i--)va.elem[i]=va.elem[i-1];va.elem[i]=x;va.length++;return OK;}2.12 设和均为顺序表和分别为和中除去最大共同前缀后的子表若空表则;若=空表而空表或者两者均不为空表且的首元小于的首元则;否则试写一个比较大小的算法解:Status CompareOrderList(SqList &ASqList &B){int ikj;k=A.length>B.length?A.length:B.length;for(i=0;i<k;i++){if(A.elem[i]>B.elem[i]) j=1;if(A.elem[i]<B.elem[i]) j=-1;}if(A.length>k) j=1;if(B.length>k) j=-1;if(A.length==B.length) j=0;return j;}2.13 试写一算法在带头结点的单链表结构上实现线性表操作Locate(L x);解:int LocateElem_L(LinkList &LElemType x){int i=0;LinkList p=L;while(p&&p->data!=x){p=p->next;i++;}if(!p) return 0;else return i;}2.14 试写一算法在带头结点的单链表结构上实现线性表操作Length(L)解://返回单链表的长度int ListLength_L(LinkList &L){int i=0;LinkList p=L;if(p) p=p-next;while(p){p=p->next;i++;}return i;}2.15 已知指针ha和hb分别指向两个单链表的头结点并且已知两个链表的长度分别为m和n试写一算法将这两个链表连接在一起假设指针hc指向连接后的链表的头结点并要求算法以尽可能短的时间完成连接运算请分析你的算法的时间复杂度解:void MergeList_L(LinkList &haLinkList &hbLinkList &hc){LinkList papb;pa=ha;pb=hb;while(pa->next&&pb->next){pa=pa->next;pb=pb->next;}if(!pa->next){hc=hb;while(pb->next) pb=pb->next;pb->next=ha->next;}else{hc=ha;while(pa->next) pa=pa->next;pa->next=hb->next;}}2.16 已知指针la和lb分别指向两个无头结点单链表中的首元结点下列算法是从表la中删除自第i个元素起共len个元素后将它们插入到表lb中第i个元素之前试问此算法是否正确?若有错请改正之Status DeleteAndInsertSub(LinkedList laLinkedList lbint iint jint len){if(i<0||j<0||len<0) return INFEASIBLE;p=la; k=1;while(k<i){ p=p->next; k++; }q=p;while(k<=len){ q=q->next; k++; }s=lb; k=1;while(k<j){ s=s->next; k++; }s->next=p; q->next=s->next;return OK;}解:Status DeleteAndInsertSub(LinkList &la LinkList &lbint iint jint len){LinkList pqsprev=NULL;int k=1;if(i<0||j<0||len<0) return INFEASIBLE;// 在la表中查找第i个结点p=la;while(p&&k<i){prev=p;p=p->next;k++;}if(!p)return INFEASIBLE;// 在la表中查找第i+len-1个结点q=p; k=1;while(q&&k<len){q=p->next;k++;}if(!q)return INFEASIBLE;// 完成删除注意i=1的情况需要特殊处理if(!prev) la=q->next;else prev->next=q->next;// 将从la中删除的结点插入到lb中if(j=1){q->next=lb;lb=p;}else{s=lb; k=1;while(s&&k<j-1){s=s->next;k++;}if(!s)return INFEASIBLE;q->next=s->next;s->next=p; //完成插入}return OK;}2.17 试写一算法在无头结点的动态单链表上实现线性表操作Insert(Lib)并和在带头结点的动态单链表上实现相同操作的算法进行比较2.18试写一算法实现线性表操作Delete(Li)并和在带头结点的动态单链表上实现相同操作的算法进行比较2.19 已知线性表中的元素以值递增有序排列并以单链表作存储结构试写一高效的算法删除表中所有值大于mink且小于maxk的元素(若表中存在这样的元素)同时释放被删结点空间并分析你的算法的时间复杂度(注意mink和maxk是给定的两个参变量它们的值可以和表中的元素相同也可以不同)解:Status ListDelete_L(LinkList &LElemType minkElemType maxk){LinkList pqprev=NULL;if(mink>maxk)return ERROR;p=L;prev=p;p=p->next;while(p&&p->data<maxk){if(p->data<=mink){prev=p;p=p->next;}else{prev->next=p->next;q=p;p=p->next;free(q);}}return OK;}2.20 同2.19题条件试写一高效的算法删除表中所有值相同的多余元素(使得操作后的线性表中所有元素的值均不相同)同时释放被删结点空间并分析你的算法的时间复杂度解:void ListDelete_LSameNode(LinkList &L){LinkList pqprev;p=L;prev=p;p=p->next;while(p){prev=p;p=p->next;if(p&&p->data==prev->data){prev->next=p->next;q=p;p=p->next;free(q);}}}2.21 试写一算法实现顺序表的就地逆置即利用原表的存储空间将线性表逆置为解:// 顺序表的逆置Status ListOppose_Sq(SqList &L){int i;ElemType x;for(i=0;i<L.length/2;i++){x=L.elem[i];L.elem[i]=L.elem[L.length-1-i];L.elem[L.length-1-i]=x;}return OK;}2.22 试写一算法对单链表实现就地逆置解:// 带头结点的单链表的逆置Status ListOppose_L(LinkList &L){LinkList pq;p=L;p=p->next;L->next=NULL;while(p){q=p;p=p->next;q->next=L->next;L->next=q;}return OK;}2.23 设线性表试写一个按下列规则合并AB为线性表C的算法即使得当时;当时线性表AB和C均以单链表作存储结构且C表利用A表和B表中的结点空间构成注意:单链表的长度值m和n均未显式存储解:// 将合并后的结果放在C表中并删除B表Status ListMerge_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqb;pa=A->next;pb=B->next;C=A;while(pa&&pb){qa=pa; qb=pb;pa=pa->next; pb=pb->next;qb->next=qa->next;qa->next=qb;}if(!pa)qb->next=pb;pb=B;free(pb);return OK;}2.24 假设有两个按元素值递增有序排列的线性表A和B均以单链表作存储结构请编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序允许表中含有值相同的元素)排列的线性表C并要求利用原表(即A表和B表)的结点空间构造C表解:// 将合并逆置后的结果放在C表中并删除B表Status ListMergeOppose_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqb;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;A->next=NULL;C=A;while(pa&&pb){if(pa->data<pb->data){qa=pa;pa=pa->next;qa->next=A->next; //将当前最小结点插入A表表头A->next=qa;}else{qb=pb;pb=pb->next;qb->next=A->next; //将当前最小结点插入A表表头A->next=qb;}}while(pa){qa=pa;pa=pa->next;qa->next=A->next;A->next=qa;}while(pb){qb=pb;pb=pb->next;qb->next=A->next;A->next=qb;}pb=B;free(pb);return OK;}2.25 假设以两个元素依值递增有序排列的线性表A和B分别表示两个集合(即同一表中的元素值各不相同)现要求另辟空间构成一个线性表C其元素为A和B中元素的交集且表C中的元素有依值递增有序排列试对顺序表编写求C的算法解:// 将A、B求交后的结果放在C表中Status ListCross_Sq(SqList &ASqList &BSqList &C){int i=0j=0k=0;while(i<A.length && j<B.length){if(A.elem[i]<B.elem[j]) i++;elseif(A.elem[i]>B.elem[j]) j++;else{ListInsert_Sq(CkA.elem[i]);i++;k++;}}return OK;}2.26 要求同2.25题试对单链表编写求C的算法解:// 将A、B求交后的结果放在C表中并删除B表Status ListCross_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;C=A;while(pa&&pb){if(pa->data<pb->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}elseif(pa->data>pb->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}else{qa=pa;pa=pa->next;}}while(pa){pt=pa;pa=pa->next;qa->next=pa;free(pt);}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}2.27 对2.25题的条件作以下两点修改对顺序表重新编写求得表C的算法(1) 假设在同一表(A或B)中可能存在值相同的元素但要求新生成的表C中的元素值各不相同;(2) 利用A表空间存放表C解:(1)// A、B求交然后删除相同元素将结果放在C表中Status ListCrossDelSame_Sq(SqList &ASqList &BSqList &C){int i=0j=0k=0;while(i<A.length && j<B.length){if(A.elem[i]<B.elem[j]) i++;elseif(A.elem[i]>B.elem[j]) j++;else{if(C.length==0){ListInsert_Sq(CkA.elem[i]);k++;}elseif(C.elem[C.length-1]!=A.elem[i]){ListInsert_Sq(CkA.elem[i]);k++;}i++;}}return OK;}(2)// A、B求交然后删除相同元素将结果放在A表中Status ListCrossDelSame_Sq(SqList &ASqList &B){int i=0j=0k=0;while(i<A.length && j<B.length){if(A.elem[i]<B.elem[j]) i++;elseif(A.elem[i]>B.elem[j]) j++;else{if(k==0){A.elem[k]=A.elem[i];k++;}elseif(A.elem[k]!=A.elem[i]){A.elem[k]=A.elem[i];k++;}i++;}}A.length=k;return OK;}2.28 对2.25题的条件作以下两点修改对单链表重新编写求得表C的算法(1) 假设在同一表(A或B)中可能存在值相同的元素但要求新生成的表C中的元素值各不相同;(2) 利用原表(A表或B表)中的结点构成表C并释放A表中的无用结点空间解:(1)// A、B求交结果放在C表中并删除相同元素Status ListCrossDelSame_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;C=A;while(pa&&pb){if(pa->data<pb->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}elseif(pa->data>pb->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}else{if(pa->data==qa->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}else{qa=pa;pa=pa->next;}}}while(pa){pt=pa;pa=pa->next;qa->next=pa;free(pt);}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}(2)// A、B求交结果放在A表中并删除相同元素Status ListCrossDelSame_L(LinkList &A LinkList &B){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;while(pa&&pb){if(pa->data<pb->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}elseif(pa->data>pb->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}else{if(pa->data==qa->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}else{qa=pa;pa=pa->next;}}}while(pa){pt=pa;pa=pa->next;qa->next=pa;free(pt);}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}2.29 已知AB和C为三个递增有序的线性表现要求对A表作如下操作:删去那些既在B表中出现又在C表中出现的元素试对顺序表编写实现上述操作的算法并分析你的算法的时间复杂度(注意:题中没有特别指明同一表中的元素值各不相同)解:// 在A中删除既在B中出现又在C中出现的元素结果放在D中Status ListUnion_Sq(SqList &DSqList &ASqList &BSqList &C){SqList Temp;InitList_Sq(Temp);ListCross_L(BCTemp);ListMinus_L(ATempD);}2.30 要求同2.29题试对单链表编写算法请释放A表中的无用结点空间解:// 在A中删除既在B中出现又在C中出现的元素并释放B、CStatus ListUnion_L(LinkList &ALinkList &BLinkList &C){ListCross_L(BC);ListMinus_L(AB);}// 求集合A-B结果放在A表中并删除B表Status ListMinus_L(LinkList &ALinkList &B){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;while(pa&&pb){if(pb->data<pa->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}elseif(pb->data>pa->data){qa=pa;pa=pa->next;}else{pt=pa;pa=pa->next;qa->next=pa;free(pt);}}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}2.31 假设某个单向循环链表的长度大于1且表中既无头结点也无头指针已知s为指向链表中某个结点的指针试编写算法在链表中删除指针s所指结点的前驱结点解:// 在单循环链表S中删除S的前驱结点Status ListDelete_CL(LinkList &S){LinkList pq;if(S==S->next)return ERROR;q=S;p=S->next;while(p->next!=S){q=p;p=p->next;}q->next=p->next;free(p);return OK;}2.32 已知有一个单向循环链表其每个结点中含三个域:predata和next其中data为数据域next为指向后继结点的指针域pre也为指针域但它的值为空试编写算法将此单向循环链表改为双向循环链表即使pre成为指向前驱结点的指针域解:// 建立一个空的循环链表Status InitList_DL(DuLinkList &L){L=(DuLinkList)malloc(sizeof(DuLNode));if(!L) exit(OVERFLOW);L->pre=NULL;L->next=L;return OK;}// 向循环链表中插入一个结点Status ListInsert_DL(DuLinkList &L ElemType e){DuLinkList p;p=(DuLinkList)malloc(sizeof(DuLNode));if(!p) return ERROR;p->data=e;p->next=L->next;L->next=p;return OK;}// 将单循环链表改成双向链表Status ListCirToDu(DuLinkList &L){DuLinkList pq;q=L;p=L->next;while(p!=L){p->pre=q;q=p;}if(p==L) p->pre=q;return OK;}2.33 已知由一个线性链表表示的线性表中含有三类字符的数据元素(如:字母字符、数字字符和其他字符)试编写算法将该线性表分割为三个循环链表其中每个循环链表表示的线性表中均只含一类字符解:// 将单链表L划分成3个单循环链表Status ListDivideInto3CL(LinkList &LLinkList &s1LinkList &s2LinkList &s3){LinkList pqpt1pt2pt3;p=L->next;pt1=s1;pt2=s2;pt3=s3;while(p){if(p->data>='0' && p->data<='9'){q=p;p=p->next;q->next=pt1->next;pt1->next=q;pt1=pt1->next;}elseif((p->data>='A' && p->data<='Z') ||(p->data>='a' && p->data<='z')){q=p;p=p->next;q->next=pt2->next;pt2->next=q;pt2=pt2->next;}else{p=p->next;q->next=pt3->next;pt3->next=q;pt3=pt3->next;}}q=L;free(q);return OK;}在2.34至2.36题中"异或指针双向链表"类型XorLinkedList和指针异或函数XorP定义为:typedef struct XorNode {char data;struct XorNode *LRPtr;} XorNode*XorPointer;typede struct { //无头结点的异或指针双向链表XorPointer LeftRight; //分别指向链表的左侧和右端} XorLinkedList;XorPointer XorP(XorPointer pXorPointer q);// 指针异或函数XorP返回指针p和q的异或值2.34 假设在算法描述语言中引入指针的二元运算"异或"若a和b为指针则a⊕b的运算结果仍为原指针类型且a⊕(a⊕b)=(a⊕a)⊕b=b(a⊕b)⊕b=a⊕(b⊕b)=a则可利用一个指针域来实现双向链表L链表L中的每个结点只含两个域:data域和LRPtr域其中LRPtr域存放该结点的左邻与右邻结点指针(不存在时为NULL)的异或若设指针L.Left指向链表中的最左结点L.Right指向链表中的最右结点则可实现从左向右或从右向左遍历此双向链表的操作试写一算法按任一方向依次输出链表中各元素的值解:Status TraversingLinkList(XorLinkedList &Lchar d){XorPointer pright;if(d=='l'||d=='L'){p=L.Left;left=NULL;while(p!=NULL){VisitingData(p->data);left=p;p=XorP(leftp->LRPtr);}}elseif(d=='r'||d=='R'){p=L.Right;right=NULL;while(p!=NULL){VisitingData(p->data);right=p;p=XorP(p->LRPtrright);}}else return ERROR;return OK;}2.35 采用2.34题所述的存储结构写出在第i个结点之前插入一个结点的算法2.36 采用2.34题所述的存储结构写出删除第i个结点的算法2.37 设以带头结点的双向循环链表表示的线性表试写一时间复杂度O(n)的算法将L改造为解:// 将双向链表L=(a1a2...an)改造为(a1a3...an。
数据结构(C语言版)(严蔚敏)
31
4、效率与低存储量需求 、
通常,效率指的是算法执行时间;存储量指的是 算法执行过程中所需要的最大存储空间。两者都 与问题的规模有关。
32
算法效率的衡量方法和准则
通常有两种衡量算法效率的方法: 事后统计法 缺点:1、必须执行程序 2、其它因素掩盖算法本质 事后分析估算法 和算法执行时间相关的因素: 1算法选用的策略 2、问题的规模 3、编写程序的语言 4、编译程序产生的机器代码的质量 5、计算机执行指令的速度
5
–例
书目自动检索系统
线性表
书目文件
书目卡片 001 高等数学 樊映川 002 理论力学 罗远祥 登录号: 003 高等数学 华罗庚 004 书名: 线性代数 栾汝书 …… 作者名: …… ……
按书名
高等数学 理论力学 线性代数 ……
S01 L01 S01 S02 ……
索引表
按分类号
分类号: 001, 003… … 樊映川 出版单位: 002, … … .. 华罗庚 出版时间: 004, … … 栾汝书 价格: … … ..
29
2、可读性 、
算法主要是为了人的阅读与交流,其次才是为计 算机执行。因此算法应该易于人的理解;另一方 面,晦涩难读的程序易于隐藏较多错误而难以调 试;
30
3.健壮性 健壮性
当输入的数据非法时,算法应当恰当地作出反映 或进行相应处理,而不是产生莫名奇妙的输出结 果。并且,处理出错的方法不应是中断程序的执 行,而应是返回一个表示错误或错误性质的值, 以便在更高的抽象层次上进行处理。
23
1.3 算法和算法分析
算法的概念和描述: 算法的概念和描述: 什么是算法? 什么是算法? 算法( 算法(Algorithm)是为了解决某类问题而规定的一 是为了解决某类问题而规定的一 个有限长的操作序列。 个有限长的操作序列。一个算法必须满足以下五 个重要特性: 个重要特性:
数据结构教材 出版社: 清华大学出版社 作者: 严蔚敏吴伟民 ISBN ...
数据结构教材出版社:清华大学出版社作者:严蔚敏吴伟民ISBN :978-7-302-02368-5目录第1章绪论1.1 什么是数据结构1.2 基本概念和术语1.3 抽象数据类型的表现与实现1.4 算法和算法分析第2章线性表2.1 线性表的类型定义2.2 线性表的顺序表示和实现2.3 线性表的链式表示和实现2.4 一元多项式的表示及相加第3章栈和队列3.1 栈3.2 栈的应有和举例3.3 栈与递归的实现3.4 队列3.5 离散事件模拟第4章串4.1 串类型的定义4.2 串的表示和实现4.3 串的模式匹配算法4.4 串操作应用举例第5章数组和广义表5.1 数组的定义5.2 数组的顺序表现和实现5.3 矩阵的压缩存储5.4 广义表的定义5.5 广义表的储存结构5.6 m元多项式的表示5.7 广义表的递归算法第6章树和二叉树6.1 树的定义和基本术语6.2 二叉树6.2.1 二叉树的定义6.2.2 二叉树的性质6.2.3 二叉树的存储结构6.3 遍历二叉树和线索二叉树6.3.1 遍历二叉树6.3.2 线索二叉树6.4 树和森林6.4.1 树的存储结构6.4.2 森林与二叉树的转换6.4.3 树和森林的遍历6.5 树与等价问题6.6 赫夫曼树及其应用6.6.1 最优二叉树(赫夫曼树)6.6.2 赫夫曼编码6.7 回溯法与树的遍历6.8 树的计数第7章图7.1 图的定义和术语7.2 图的存储结构7.2.1 数组表示法7.2.2 邻接表7.2.3 十字链表7.2.4 邻接多重表7.3 图的遍历7.3.1 深度优先搜索7.3.2 广度优先搜索7.4 图的连通性问题7.4.1 无向图的连通分量和生成树7.4.2 有向图的强连通分量7.4.3 最小生成树7.4.4 关节点和重连通分量7.5 有向无环图及其应用7.5.1 拓扑排序7.5.2 关键路径7.6 最短路径7.6.1 从某个源点到其余各顶点的最短路径7.6.2 每一对顶点之间的最短路径第8章动态存储管理8.1 概述8.2 可利用空间表及分配方法8.3 边界标识法8.3.1 可利用空间表的结构8.3.2 分配算法8.3.3 回收算法8.4 伙伴系统8.4.1 可利用空间表的结构8.4.2 分配算法8.4.3 回收算法8.5 无用单元收集8.6 存储紧缩第9章查找9.1 静态查找表9.1.1 顺序表的查找9.1.2 有序表的查找9.1.3 静态树表的查找9.1.4 索引顺序表的查找9.2 动态查找表9.2.1 二叉排序树和平衡二叉树9.2.2 B树和B+树9.2.3 键树9.3 哈希表9.3.1 什么是哈希表9.3.2 哈希函数的构造方法9.3.3 处理冲突的方法9.3.4 哈希表的查找及其分析第10章内部排序10.1 概述10.2 插入排序10.2.1 直接插入排序10.2.2 其他插入排序10.2.3 希尔排序10.3 快速排序10.4 选择排序10.4.1 简单选择排序10.4.2 树形选择排序10.4.3 堆排序10.5 归并排序10.6 基数排序10.6.1 多关键字的排序10.6.2 链式基数排序10.7 各种内部排序方法的比较讨论第11章外部排序11.1 外存信息的存取11.2 外部排序的方法11.3 多路平衡归并的实现11.4 置换一选择排序11.5 最佳归并树第12章文件12.1 有关文件的基本概念12.2 顺序文件12.3 索引文件12.4 ISAM文件和VSAM文件12.4.1 ISAM文件12.4.2 VSAM文件12.5 直接存取文件(散列文件)12.6 多关键字文件12.6.1 多重表文件12.6.2 倒排文件附录A 名词索引附录B 函数索引参考书目。
严蔚敏数据结构题集(C语言版)完整与答案
严蔚敏 数据结构C 语言版答案详解第1章 绪论1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。
解:数据是对客观事物的符号表示。
在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
数据对象是性质相同的数据元素的集合,是数据的一个子集。
数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
存储结构是数据结构在计算机中的表示。
数据类型是一个值的集合和定义在这个值集上的一组操作的总称。
抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。
是对一般数据类型的扩展。
1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。
解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。
一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。
抽象数据类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。
在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。
1.3 设有数据结构(D,R),其中{}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r =试按图论中图的画法惯例画出其逻辑结构图。
解:1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。
解:ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={<r,i>} 基本操作: InitComplex(&C,re,im)操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C)操作结果:销毁复数C Get(C,k,&e)操作结果:用e 返回复数C 的第k 元的值Put(&C,k,e)操作结果:改变复数C的第k元的值为eIsAscending(C)操作结果:如果复数C的两个元素按升序排列,则返回1,否则返回0 IsDescending(C)操作结果:如果复数C的两个元素按降序排列,则返回1,否则返回0 Max(C,&e)操作结果:用e返回复数C的两个元素中值较大的一个Min(C,&e)操作结果:用e返回复数C的两个元素中值较小的一个}ADT ComplexADT RationalNumber{数据对象:D={s,m|s,m为自然数,且m不为0}数据关系:R={<s,m>}基本操作:InitRationalNumber(&R,s,m)操作结果:构造一个有理数R,其分子和分母分别为s和mDestroyRationalNumber(&R)操作结果:销毁有理数RGet(R,k,&e)操作结果:用e返回有理数R的第k元的值Put(&R,k,e)操作结果:改变有理数R的第k元的值为eIsAscending(R)操作结果:若有理数R的两个元素按升序排列,则返回1,否则返回0 IsDescending(R)操作结果:若有理数R的两个元素按降序排列,则返回1,否则返回0 Max(R,&e)操作结果:用e返回有理数R的两个元素中值较大的一个Min(R,&e)操作结果:用e返回有理数R的两个元素中值较小的一个}ADT RationalNumber1.5 试画出与下列程序段等价的框图。
数据结构(C)严蔚敏
选择合适的数据结构
选择原则
根据实际应用场景和需求,选择 最合适的数据结构。
常见数据结构
数组、链表、栈、队列、树、图等, 各有其特点和适用场景。
案例分析
例如,对于频繁进行查找操作的数 据,哈希表可能更合适;对于需要 频繁插入和删除元素的数据,链表 可能更合适。
空间和时间复杂度的优化
空间优化
通过减少数据存储空间的占用,提高数据结构的效率。
VS
快速排序
通过一趟排序将要排序的数据分割成独立 的两部分,其中一部分的所有数据都比另 一部分的所有数据要小,然后再按此方法 对这两部分数据分别进行快速排序,整个 排序过程可以递归进行,以此达到整个数 据变成有序序列。
排序算法
归并排序
将两个或两个以上的有序表组合成一个新的 有序表。
堆排序
利用堆这种数据结构所设计的一种排序算法。
数据结构(C)严蔚敏
目 录
• 引言 • 线性数据结构 • 非线性数据结构 • 数据结构的应用 • 数据结构的优化和改进建议
01 引言
什么是数据结构
定义
数据结构是计算机中数据的组织形式, 它根据数据特征将数据分成不同的类 型,并确定数据之间的相互关系。
数据结构的组成
包括数据的逻辑结构、物理结构和数 据的运算。
时间优化
通过改进算法和数据结构,减少数据操作的时间复杂度。
案例分析
例如,对于数组的插入和删除操作,可以通过二分查找法 将时间复杂度从O(n)降低到O(logn)。
算法的优化和改进
算法优化
通过改进算法逻辑,提高数据处理的效率。
算法改进
通过引入新技术或方法,改进现有算法的性能。
案例分析
例如,对于排序算法,快速排序、归并排序和堆排序各有其特点和适 用场景,可以根据实际情况选择最合适的算法。
数据结构(C语言版本)
2018/10/9
华侨大学数学系 黄建新
1.1 引言
• 众所周知,二十世纪四十年代,电子数字计算机问世的直接原因是解
决弹道学的计算问题。早期,电子计算机的应用范围,几乎只局限于 科学和工程的计算,其处理的对象是纯数值性的信息,通常,人们把 这类问题称为数值计算。 • 近三十年来,电子计算机的发展异常迅猛,这不仅表现在计算机本身 运算速度不断提高、信息存储量日益扩大、价格逐步下降,更重要的 是计算机广泛地应用于情报检索、企业管理、系统工程等方面,已远 远超出了科技计算的范围,而渗透到人类社会活动的一切领域。与此 相应,计算机的处理对象也从简单的纯数值性信息发展到非数值性的 和具有一定结构的信息。
• 为了叙述上的方便和避免产生混淆,通常我们把数据的逻辑结构
统称为数据结构,把数据的物理结构统称为存储结构( Storage Structure)。
2018/10/9
华侨大学数学系 黄建新
四种基本基本结构: (1)集合:结构中的数据元素之间除了“同属于一个集合”的关 系外,别无其他关系。 (2)线性结构:结构中的数据元素之间存在一个对一个的关系。 如:图书馆的书目检索系统 (3)树形结构:结构中的数据元素存在一个对多个的关系。 如:计算机和人对奕问题 工厂的组织管理 (4)图状结构:结构中的数据元素存在多个对多个的关系。 如:多叉路口的交通灯管理问题 最短路径问题
2018/10/9
华侨大学数学系 黄建新
1.3 什么是数据结构
• 计算机解决一个具体问题时,大致需要经过下列几个步骤:首先
要从具体问题中抽象出一个适当的数学模型,然后设计一个解此 数学模型的算法(Algorithm),最后编出程序、进行测试、调整 直至得到最终解答。寻求数学模型的实质是分析问题,从中提取 操作的对象,并找出这些操作对象之间含有的关系,然后用数学 的语言加以描述。 • 计算机算法与数据的结构密切相关,算法无不依附于具体的数据 结构,数据结构直接关系到算法的选择和效率。 • 运算是由计算机来完成,这就要设计相应的插入、删除和修改的 算法 。也就是说,数据结构还需要给出每种结构类型所定义的各 种运算的算法。 • 直观定义:数据结构是研究程序设计中计算机操作的对象以及它 们之间的关系和运算的一门学科。
数据结构C语言版严蔚敏人民邮电出版社课后习题答案(精品课件)
数据结构(C语言版)(第2版)课后习题答案李冬梅2015.3目录第1章绪论 (1)第2章线性表 (11)第3章栈和队列 (34)第4章串、数组和广义表 (67)第5章树和二叉树 (86)第6章图 (109)第7章查找 (132)第8章排序 (157)第1章绪论1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。
答案:数据:是客观事物的符号表示,指所有能输入到计算机中并被计算机程序处理的符号的总称。
如数学计算中用到的整数和实数,文本编辑所用到的字符串,多媒体程序处理的图形、图像、声音、动画等通过特殊编码定义后的数据。
数据元素:是数据的基本单位,在计算机中通常作为一个整体进行考虑和处理。
在有些情况下,数据元素也称为元素、结点、记录等。
数据元素用于完整地描述一个对象,如一个学生记录,树中棋盘的一个格局(状态)、图中的一个顶点等。
数据项:是组成数据元素的、有独立含义的、不可分割的最小单位。
例如,学生基本信息表中的学号、姓名、性别等都是数据项。
1 / 184数据对象:是性质相同的数据元素的集合,是数据的一个子集。
例如:整数数据对象是集合N={0,±1,±2,…},字母字符数据对象是集合C={‘A’,‘B’,…,‘Z’,‘a’,‘b’,…,‘z’},学生基本信息表也可是一个数据对象。
数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。
换句话说,数据结构是带“结构”的数据元素的集合,“结构”就是指数据元素之间存在的关系。
逻辑结构:从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
因此,数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。
存储结构:数据对象在计算机中的存储表示,也称为物理结构。
抽象数据类型:由用户定义的,表示应用问题的数学模型,以及定义在这个模型上的一组操作的总称。
具体包括三部分:数据对象、数据对象上关系的集合和对数据对象的基本操作的集合。
清华大学严蔚敏数据结构习题集(C版)答案
清华大学严蔚敏数据结构习题集(C版)答案清华大学严蔚敏数据结构习题集(C版)答案第一章绪论1.16void print_descending(int x,int y,int z)//按从大到小顺序输出三个数{scanf("%d,%d,%d",&x,&y,&z);if(x<y) x<->y; //<->为表示交换的双目运算符,以下同if(y<z) y<->z;if(x<y) x<->y; //冒泡排序printf("%d %d %d",x,y,z);}//print_descending1.17Status fib(int k,int m,int &f)//求k阶斐波那契序列的第m项的值f{int tempd;if(k<2||m<0) return ERROR;if(m<k-1) f=0;else if (m==k-1) f=1;else{for(i=0;i<=k-2;i++) temp=0;temp[k-1]=1; //初始化for(i=k;i<=m;i++) //求出序列第k至第m个元素的值{sum=0;for(j=i-k;j<i;j++) sum+=temp[j];temp=sum;}f=temp[m];}return OK;}//fib分析:通过保存已经计算出来的结果,此方法的时间复杂度仅为O(m^2).如果采用递归编程(大多数人都会首先想到递归方法),则时间复杂度将高达O(k^m).1.18typedef struct{char *sport;enum{male,female} gender; char schoolname; //校名为'A','B','C','D'或'E'char *result;int score;} resulttype;typedef struct{int malescore;int femalescore;int totalscore;} scoretype;void summary(resulttype result[ ])//求各校的男女总分和团体总分,假设结果已经储存在result[ ]数组中{scoretype score;i=0;while(result.sport!=NULL){switch(result.schoolname){case 'A':score[ 0 ].totalscore+=result.score;if(result.gender==0)score[ 0 ].malescore+=result.score;elsescore[ 0 ].femalescore+=result.score;break;case 'B':score.totalscore+=result.score;if(result.gender==0)score.malescore+=result.score;else score.femalescore+=result.score;break;………………}i++;}for(i=0;i<5;i++){printf("School %d:\n",i);printf("Total score ofmale:%d\n",score.malescore);printf("Total score offemale:%d\n",score.femalescore);printf("Total score ofall:%d\n\n",score.totalscore);}}//summary1.19Status algo119(int a[ARRSIZE])//求i!*2^i序列的值且不超过maxint{last=1;for(i=1;i<=ARRSIZE;i++){a[i-1]=last*2*i;if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;last=a[i-1];return OK;}}//algo119分析:当某一项的结果超过了maxint时,它除以前面一项的商会发生异常.1.20void polyvalue(){float ad;float *p=a;printf("Input number of terms:");scanf("%d",&n);printf("Input the %d coefficients from a0 toa%d:\n",n,n);for(i=0;i<=n;i++) scanf("%f",p++);printf("Input value of x:");scanf("%f",&x);p=a;xp=1;sum=0; //xp用于存放x的i次方for(i=0;i<=n;i++){sum+=xp*(*p++);xp*=x;}printf("Value is:%f",sum);}//polyvalue第二章线性表2.10Status DeleteK(SqList &a,int i,int k)//删除线性表a中第i个元素起的k个元素{if(i<1||k<0||i+k-1>a.length) returnINFEASIBLE;for(count=1;i+count-1<=a.length-k;c ount++) //注意循环结束的条件a.elem[i+count-1]=a.elem[i+count+k-1];a.length-=k;return OK;}//DeleteK2.11Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va中{if(va.length+1>va.listsize) returnERROR;va.length++;for(i=va.length-1;va.elem>x&&i>=0;i--)va.elem[i+1]=va.elem;va.elem[i+1]=x;return OK;}//Insert_SqList2.12int ListComp(SqList A,SqList B)//比较字符表A和B,并用返回值表示结果,值为正,表示A>B;值为负,表示A<B;值为零,表示A=B{for(i=1;A.elem||B.elem;i++)if(A.elem!=B.elem) returnA.elem-B.elem;return 0;}//ListComp2.13LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针{for(p=l->next;p&&p->data!=x;p=p->next);return p;}//Locate2.14int Length(LinkList L)//求链表的长度{for(k=0,p=L;p->next;p=p->next,k++);return k;}//Length2.15void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb接在ha后面形成链表hc{hc=ha;p=ha;while(p->next) p=p->next;p->next=hb;}//ListConcat2.16见书后答案.2.17Status Insert(LinkList &L,int i,int b)//在无头结点链表L的第i个元素之前插入元素b{p=L;q=(LinkList*)malloc(sizeof(LNode));q.data=b;if(i==1){q.next=p;L=q; //插入在链表头部}else{while(--i>1) p=p->next;q->next=p->next;p->next=q; //插入在第i个元素的位置}}//Insert2.18Status Delete(LinkList &L,int i)//在无头结点链表L中删除第i个元素{if(i==1) L=L->next; //删除第一个元素else{p=L;while(--i>1) p=p->next;p->next=p->next->next; //删除第i个元素}}//Delete2.19Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L中值大于mink且小于maxk的所有元素{p=L;while(p->next->data<=mink) p=p->next;//p是最后一个不大于mink的元素if(p->next) //如果还有比mink更大的元素{q=p->next;while(q->data<maxk) q=q->next; //q 是第一个不小于maxk的元素p->next=q;}}//Delete_Between2.20Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L中所有值相同的元素{p=L->next;q=p->next; //p,q指向相邻两元素while(p->next){if(p->data!=q->data){p=p->next;q=p->next; //当相邻两元素不相等时,p,q都向后推一步}else{while(q->data==p->data){free(q);q=q->next;}p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素}//else}//while}//Delete_Equal2.21void reverse(SqList &A)//顺序表的就地逆置{for(i=1,j=A.length;i<j;i++,j--)A.elem<->A.elem[j];}//reverse2.22void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2{p=L->next;q=p->next;s=q->next;p->next=NULL;while(s->next){q->next=p;p=q;q=s;s=s->next; //把L的元素逐个插入新表表头}q->next=p;s->next=q;L->next=s;}//LinkList_reverse分析:本算法的思想是,逐个地把L的当前元素q插入新的链表头部,p为新表表头.2.23void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A和B合并为C,A 和B的元素间隔排列,且使用原存储空间{p=A->next;q=B->next;C=A;while(p&&q){s=p->next;p->next=q; //将B的元素插入if(s){t=q->next;q->next=s; //如A非空,将A的元素插入}p=s;q=t;}//while}//merge12.24void reverse_merge(LinkList&A,LinkList &B,LinkList &C)//把元素递增排列的链表A和B合并为C,且C中元素递减排列,使用原空间{pa=A->next;pb=B->next;pre=NULL; //pa 和pb分别指向A,B的当前元素while(pa||pb){if(pa->data<pb->data||!pb){pc=pa;q=pa->next;pa->next=pre;p a=q; //将A的元素插入新表}else{pc=pb;q=pb->next;pb->next=pre;p b=q; //将B的元素插入新表}pre=pc;}C=A;A->next=pc; //构造新表头}//reverse_merge分析:本算法的思想是,按从小到大的顺序依次把A和B的元素插入新表的头部pc处,最后处理A或B的剩余元素.2.25void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A 和B的元素的交集并存入C中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;if(A.elem>B.elem[j]) j++;if(A.elem==B.elem[j]){C.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素,i++;j++; //就添加到C中}}//while}//SqList_Intersect2.26void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题{p=A->next;q=B->next;pc=(LNode*)malloc(sizeof(LNode));while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else{s=(LNode*)malloc(sizeof(LNode));s->data=p->data;pc->next=s;pc=s;p=p->next;q=q->next;}}//whileC=pc;}//LinkList_Intersect2.27void SqList_Intersect_True(SqList&A,SqList B)//求元素递增排列的线性表A 和B的元素的交集并存回A中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;else if(A.elem>B.elem[j]) j++;else if(A.elem!=A.elem[k]){A.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素i++;j++; //且C中没有,就添加到C中}}//whilewhile(A.elem[k]) A.elem[k++]=0;}//SqList_Intersect_True2.28void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题{p=A->next;q=B->next;pc=A;while(p&&q){if(p->data<q->data) p=p->next; else if(p->data>q->data) q=q->next;else if(p->data!=pc->data){pc=pc->next;pc->data=p->data;p=p->next;q=q->next;}}//while}//LinkList_Intersect_True2.29void SqList_Intersect_Delete(SqList&A,SqList B,SqList C){i=0;j=0;k=0;m=0; //i指示A中元素原来的位置,m为移动后的位置while(i<A.length&&j<B.length&&k<C.length){if(B.elem[j]<C.elem[k]) j++;else if(B.elem[j]>C.elem[k]) k++;else{same=B.elem[j];//找到了相同元素same while(B.elem[j]==same) j++;while(C.elem[k]==same)k++; //j,k后移到新的元素while(i<A.length&&A.elem<same)A.elem[m++]=A.elem[i++];//需保留的元素移动到新位置while(i<A.length&&A.elem==same) i++; //跳过相同的元素}}//whilewhile(i<A.length)A.elem[m++]=A.elem[i++]; //A的剩余元素重新存储。
严蔚敏数据结构题集(C语言版)完整与答案
严蔚敏 数据结构C 语言版答案详解第1章 绪论1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。
解:数据是对客观事物的符号表示。
在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
数据对象是性质相同的数据元素的集合,是数据的一个子集。
数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
存储结构是数据结构在计算机中的表示。
数据类型是一个值的集合和定义在这个值集上的一组操作的总称。
抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。
是对一般数据类型的扩展。
1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。
解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。
一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。
抽象数据类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。
在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。
1.3 设有数据结构(D,R),其中{}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r =试按图论中图的画法惯例画出其逻辑结构图。
解:1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。
解:ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={<r,i>} 基本操作: InitComplex(&C,re,im)操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C)操作结果:销毁复数C Get(C,k,&e)操作结果:用e 返回复数C 的第k 元的值Put(&C,k,e)操作结果:改变复数C的第k元的值为eIsAscending(C)操作结果:如果复数C的两个元素按升序排列,则返回1,否则返回0 IsDescending(C)操作结果:如果复数C的两个元素按降序排列,则返回1,否则返回0 Max(C,&e)操作结果:用e返回复数C的两个元素中值较大的一个Min(C,&e)操作结果:用e返回复数C的两个元素中值较小的一个}ADT ComplexADT RationalNumber{数据对象:D={s,m|s,m为自然数,且m不为0}数据关系:R={<s,m>}基本操作:InitRationalNumber(&R,s,m)操作结果:构造一个有理数R,其分子和分母分别为s和mDestroyRationalNumber(&R)操作结果:销毁有理数RGet(R,k,&e)操作结果:用e返回有理数R的第k元的值Put(&R,k,e)操作结果:改变有理数R的第k元的值为eIsAscending(R)操作结果:若有理数R的两个元素按升序排列,则返回1,否则返回0 IsDescending(R)操作结果:若有理数R的两个元素按降序排列,则返回1,否则返回0 Max(R,&e)操作结果:用e返回有理数R的两个元素中值较大的一个Min(R,&e)操作结果:用e返回有理数R的两个元素中值较小的一个}ADT RationalNumber1.5 试画出与下列程序段等价的框图。
严蔚敏《数据结构》(C语言版)笔记和习题(含考研真题)详解
读书笔记
好书啊,严蔚敏数据结构的题集是没有这么详细的答案哇!这书全有!。 重点内容都有介绍,很赞的就是习题部分的解答。
目录分析
1.2强化习题详解
1.1复习笔记
1.3考研真题与典 型题详解
2.2强化习题详解
2.1复习笔记
2.3考研真题与典 型题详解
3.2强化习题详解
3.1复习笔记
3.3考研真题与典 型题详解
4.2强化习题详解
4.1复习笔记
4.3考研真题与典 型题详解
考研真题与典 型题详解
6.2强化习题详解
6.1复习笔记
6.3考研真题与典 型题详解
7.2强化习题详解
7.1复习笔记
7.3考研真题与典 型题详解
9.2强化习题详解
9.1复习笔记
9.3考研真题与典 型题详解
10.2强化习题详解
10.1复习笔记
10.3考研真题与典 型题详解
11.2强化习题详解
11.1复习笔记
11.3考研真题与典 型题详解
作者介绍
精彩摘录
这是《严蔚敏《数据结构》(C语言版)笔记和习题(含考研真题)详解》的读书笔记模板,可以替换为自己 的精彩内容摘录。
谢谢观看
严蔚敏《数据结构》(C语言版)笔 记和习题(含考研真题)详解
读书笔记模板
01 思维导图
03 读书笔记 05 作者介绍
目录
02 内容摘要 04 目录分析 06 精彩摘录
思维导图
本书关键字分析思维导图
习题
数据结构
笔记
名校
复习
重难点
第章
笔记
教材
真题 真题
存储管理
语言版
典型
二叉树
青岛科技大学 数据结构 C语言版 严蔚敏 清华大学出版社 讲义
JYP
13
1.3 算法定义
数据结构的操作实际上是以算法的形式实现的。
定义:算法是一个有限的指令集合,执行这些指令 可以完成某一特定任务。一个算法还应当满足以下 特性: 输入 零个或多个由外界提供的输入量。 输出 至少产生一个输出量。 确定性 每一指令都有确切的语义,无歧义。 有限性 在执行有限步骤后结束。 有效性 每一条指令都应能经过有限层的表示转 化为计算平台的基本指令,即算法的指令必须是可 行的。
class Circle { // 对象: 几何圆 public: Circle(float r); // 构造函数,创建一个半径为r的对象实例 float Circumference( ); // 返回该实例的周长 float Area( ); // 返回该实例的面积 };
该抽象数据类型的名称为Circle,数据对象定义 为几何圆,操作包括构造函数、计算周长和面积等。 注意:这些定义不依赖于数据对象的具体表示,也 没有给出操作实现的过程。
• 中间层数据结构起着核心作用,称之为建模层。 • 对数据结构的研究产生了一批通用性强、具有很 高实用价值的中间层数据结构,如数组、字符串、 集合、线性表、栈、队列、链表、树、图、符号 表等。
• 系统地学习进而掌握数据结构的知识和方法,对 于提高设计与开发软件系统尤其是复杂软件系统 的能力,无疑是十分重要的。
JYP
7
• 用抽象数据类型(ADT)描述数据抽象与封装是 一种自然、有效的方法。 • 数据类型由一个数据对象的集合和一组作用于这 些数据对象的操作组成。例如,C++的基本数据 类型char、int、float和double等。
• 抽象数据类型是一个数据类型,该数据类型的组 织遵循将数据对象及对这些数据对象的操作的规 格说明与这些数据对象的表示、操作的实现相分 离的原则。
数据结构(C语言版)严蔚敏清华大学出版社第十二章文件
2019/3/29
3
二、文件可按其中记录的类型不同而 分成两类:
其一为操作系统的文件,文件中的记 录仅是一个字符组。由于操作系 统中的文件仅是一维的连续字符 序列,为了用户存取和加工的方 便,将文件中的信息划分为若干 组,其中每一组信息称作一个记 录;
2019/3/29
4
其二为数据库文件,文件中的记录带 有结构,是数据项的集合。记录 是文件中可以存取的数据基本单 位,数据项是文件中可以使用的 数据最小单位。
20
二、操作的特点:
1.检索方式为:直接存取和按关键 字存取。“按关键字检索”将分两步 进行:先查索引,然后根据索引中指 针所指索取记录; 2.插入记录时,“记录”插入在主 文件的末尾,而相应的“索引项”必 须插入在索引的合适位置上。因此, 最好在建索引表时留有一定“空位”;
2019/3/29
21
12.1 有关文件的基本概念
12.2 顺 序 文 件
12.3 索 引 文 件 12.4 索 引 顺 序 文 件
12.5 直 接 存 取 文 件 12.6 多 关 键 字 文 件
2019/3/29
2
12.1 有关文件的基本概念
一、文件即为记录的集合,和“查找 表”的差别在于,“文件”指的是存 储在外存储器中的记录的集合。 记录是文件中可以存取的数据的 基本单位。
2019/3/29
16
但有两点不同:
(1)对于事务文件中的每个操作 首先要判别其“合法性” (2)事务文件中可能存在多个操 作是对主文件中同一个记录 进行的
2019/3/29
17
批处理的时间分析: 假设主文件中含有n个记录,事 务文件中含有m个记录,则对事务文 件进行排序的时间复杂度为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09.12.2020
可编辑ppt
14
3.插入新的记录只能加在文件 的末尾;
4.删除记录时,只作标记; 5.更新记录必须生成新的文件。
09.12.2020
可编辑ppt
15
顺序文件的插入、删除和更新操 作在多数情况下都采用批处理方式。 此时,为处理方便,通常将顺序文件 作成有序文件,称作“主文件”,同时 将所有的操作作成一个“事务文件” (经过排序也成为有序文件),所谓 “批处理”,就是将这两个文件“合”为 一个新的主文件。具体操作相当于 “归并两个有序表”。
第三查找表
… ...
第 二 查 找表
… ...
查找 表 … ...
索 引表 … ...
主文件
09.12.2020
可编辑ppt
24
对主文件中每个记录建立一个索引项:
主关键字 记录在主文件中的存储位置
称作稠密索引,由这些索引项构成 索引表。
09.12.2020
可编辑ppt
25
从索引表建立的索引称查找表,其中 每个索引项为:
连续文件:次序相继的两个物理记录 其存储位置相邻;
串联文件:物理记录之间的顺序由指 针相链。
09.12.2020
可编辑ppt
13
操作特点:
1.便于进行顺序存取; 2.不便于进行直接存取,为取第i
个 记 录 , 必 须 先 读 出 前 i-1 个 记 录,对于磁盘上的等长记录的连 续文件可以进行折半查找;
09.12.2020
可编辑ppt
16
但有两点不同:
(1)对于事务文件中的每个操作 首先要判别其“合法性”
(2)事务文件中可能存在多个操 作是对主文件中同一个记录 进行的
09.12.2020
可编辑ppt
17
批处理的时间分析:
假设主文件中含有n个记录,事 务文件中含有m个记录,则对事务文 件进行排序的时间复杂度为
09.12.2020
可编辑ppt
21
3.删除记录时,仅需删除索引表 中相应的索引项即可;
4.更新记录时,应将更新后的记 录插入在主文件的末尾,同时修改 相应的索引项。
09.12.2020
可编辑ppt
22
1.多级静态索引 2.动态索引
09.12.2020
可编辑ppt
23
1.多级静态索引
此时的索引文件结构:
方便。
09.12.2020
可编辑ppt
09.12.2020
可编辑ppt
6
四、文件的逻辑结构指的是呈现在用 户面前的文件中记录之间的逻辑 关系;文件的物理结构指的是文 件中的逻辑记录在存储器中的组 织方式。
09.12.2020
可编辑ppt
7
五、文件的操作:
1.检索
顺序存取:存取“当前记录的” 下一个记录;
直接存取:存取第i个记录; 按关键字存取:存取其关键字等
09.12.2020
可编辑ppt
20
二、操作的特点:
1.检索方式为:直接存取和按关键 字存取。“按关键字检索”将分两步 进行:先查索引,然后根据索引中指 针所指索取记录;
2.插入记录时,“记录”插入在主 文件的末尾,而相应的“索引项”必 须插入在索引的合适位置上。因此, 最好在建索引表时留有一定“空位”;
4
其二为数据库文件,文件中的记录带 有结构,是数据项的集合。记录 是文件中可以存取的数据基本单 位,数据项是文件中可以使用的 数据最小单位。
09.12.2020
可编辑ppt
5
三、记录中能识别不同记录的数据项 被称为关键字,若该数据项能唯 一识别一个记录,则称为主关键 字,若能识别多个记录则称为次 关键字。
09.12.2020
可编辑ppt
3
二、文件可按其中记录的类型不同而 分成两类:
其一为操作系统的文件,文件中的记 录仅是一个字符组。由于操作系 统中的文件仅是一维的连续字符 序列,为了用户存取和加工的方 便,将文件中的信息划分为若干 组,其中每一组信息称作一个记 录;
09.12.2020
可编辑ppt
于给定值的记录。
09.12.2020
可编辑ppt
8
2.修改 往文件中插入一个或一批记录; 从文件中删除一个或一批记录; 更新文件中某个记录的属性。
09.12.2020
可编辑ppt
9
3.排序
文件的操作方式可以实时处理或 批量处理。
09.12.2020
可编辑ppt
10
本章讨论文件的几种常见的 物理结构:
顺序文件
直接存取文件
索引文件
多关键字文件
索引顺序文件
09.12.2020
可编辑ppt
11
12.2 顺序文件
结 构 特 点:
记录在文件中的排列顺序是由记 录进入存储介质的次序决定的, 即文 件物理结构中记录的排列顺序和文件 的逻辑结构中记录的排列顺序一致。
09.12.2020
可编辑ppt
12
顺序文件的具体组织形式有两种:
最大关键字 其所在数据块的存储位置
称这类索引为非稠密索引。 类似地,由查找表建立的索引为第二 查找表;由第二查找表建立的索引为第 三查找表。
按关键字进行检索时,从第三查找表
开始,至多访问外存五次。
09.12.2020
可编辑ppt
26
2.动态索引
索引表采用查找树表或哈希表。
优点:
1)不需要建立多级索引; 2)初建索引不需要进行排序; 3)插入或删除记录时,修改索引
12.1 有关文件的基本概念
12.2 顺 序 文 件
12.3 索 引 文 件
12.4 索 引 顺 序 文 件 12.5 直 接 存 取 文 件
12.6 多 关 键 字 文 件
09.12.2020
可编辑ppt
2
12.1 有关文件的基本概念
一、文件即为记录的集合,和“查找 表”的差别在于,“文件”指的是存 储在外存储器中的记录的集合。 记录是文件中可以存取的数据的 基本单位。
可编辑ppt
19
12.3 索引文件
一、结构特点:
1.索引文件由“主文件”和多级“索引”组成;
2.索引中的每个记录由“关键字”和“指针” 组成;
3.通常,索引文件中的主文件是无序文件,索 引是 (按关键字有序)的有序文件;
4.“索引”是在输入数据建立文件时自动生成。 初建时的“静态索引”为无序文件,经过排 序后成为有序文件。
O(mlogm),
内部归并的时间复杂度为O(m+n), 则总的内部处理的时间为
O(mlogm+n)。
020
可编辑ppt
18
假设对外存进行一次读/取为s个 记录,则整个批处理过程中读/写外存 的次数为2(m/s+(m+n)/s)
(其中s为对外存进行一次读/取的 记录数)。
09.12.2020