大学数学 实函数与复函数微积分 幅角原理和Rouche定理
完整版本复变函数学习知识点梳理解读
第一章 :复数与复变函数这一章主假如解说复数和复变函数的有关观点 ,大多数内容与实变函数近似 ,不难理解。
一、复数及其表示法介绍复数和几种新的表示方法 ,其实就是把表示形式变来变去 ,方便和其余的数学知识联系起来。
二、复数的运算高中知识 ,加减乘除 ,乘方开方等。
主假如用新的表示方法来解说了运算的几何意义。
三、复数形式的代数方程和平面几何图形就是把实数替代成复数 ,因为复数的性质 ,因此平面图形的方程式二元的。
四、复数域的几何模型——复球面将复平面上的点 ,一一映照到球面上 ,意义是扩大了复数域和复平面 ,就是多了一个无量远点 ,此刻还不知道有什么意义 ,猜想应当是方便将微积分的思想用到复变函数上。
五、复变函数不同于实变函数是一个或一组坐标对应一个坐标 ,复变函数是一组或多组坐标对应一组坐标 ,因此看起来仿佛是映照在另一个坐标系里。
六、复变函数的极限和连续性与实变函数的极限、连续性同样。
第二章 :分析函数这一章主要介绍分析函数这个观点 ,将实变函数中导数、初等函数等观点移植到复变函数系统中。
一、分析函数的观点介绍复变函数的导数 ,近似于实变二元函数的导数,求导法例与实变函数同样。
所谓的分析函数 ,就是函数到处可导换了个说法 ,并且只合用于复变函数。
而复变函数能够分析的条件就是 : μ对 x 与ν对 y 的偏微分相等且μ对 y 和ν对 x 的偏微分互为相反数 ,这就是柯西黎曼方程。
二、分析函数和调解函数的关系出现了新的观点:调解函数。
就是对同一个未知数的二阶偏导数互为相反数的实变函数。
而分析函数的实部函数和虚部函数都是调解函数。
而知足柯西黎曼方程的两个调解函数能够构成一个分析函数 ,而这两个调解函数互为共轭调解函数。
三、初等函数和实变函数中的初等函数形式同样,可是变量成为复数 ,因此有一些不同的性质。
第三章 :复变函数的积分这一章 ,主假如将实变函数的积分问题,在复变函数这个系统里进行了系统的转化 ,让复变函数有独立的积分系统。
第三章复变函数的积分第一节、柯西定理
第三章复变函数的积分(Integration of function of thecomplex variable)第一讲授课题目:§3.1复积分的概念§3.2柯西积分定理教学内容:复变函数的积分的定义、复变函数积分的计算问题、复变函数积分的基本性质、柯西积分定理.学时安排:2学时教学目标:1、了解复变函数积分的定义和性质,会求复变函数在曲线上的积分2、会用柯西积分定理和复合闭路定理计算积分,了解不定积分的概念教学重点:复变函数积分的计算问题教学难点:柯西积分定理教学方式:多媒体与板书相结合P思考题:1、2、习题三:1-10作业布置:7576板书设计:一、复变函数积分的计算问题二、柯西积分定理三、举例参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社.2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版.3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月.4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月.课后记事:1、会求复变函数在曲线上的积分2、用柯西积分定理和复合闭路定理计算积分计算方法掌握不理想3、利用课余时间多和学生交流教学过程:§3.1 复积分的概念(The conception of complex integration)一、复变函数的积分的定义(Complex function of theintegral definition )定义(Definition )3.1设在复平面上有一条连接A 及B 两点的光滑简单曲线C 设),(),()(y x iv y x u z f +=是在C 上的连续函数.其中),(y x u 及),(y x v 是)(z f 的实部及虚部.把曲线C 用分点B z z z z z A n n ==-,...,,,1210分成n 个小弧段,其中),...,2,1,0(n k y x z k k k =+=在每个狐段上任取一点k k k ηξς+=,作和式))((11-=-∑k n k k k z z f ς(1) 令|}{|max 11-≤≤-=k k n k z z λ,当0→λ时,若(1)式的极限存在,且此极限值不依赖于k k k ηξς+=的选择,也不依赖于曲线C 的分法,则就称此极限值为)(z f 沿曲线C 的积分.记作=⎰C z z f d )())((lim 110-=→-∑k nk k k z z f ςλ当)(z f 沿曲线C 的负方向(从B 到A )积分,记作⎰-C z z f d )(当)(z f 沿闭曲线C 的积分,记作()dz z f C⎰ 定理(Theorem)3.1 若),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,则)(z f 沿C 可积,且,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f CC C ++-=⎰⎰⎰(2) 证明:))((11-=-∑k n k k k z z f ς)]())][(,(),([111k k nk k k k k k k y y i x x iv u -+-+=+=+∑ηξηξ],))(,())(,([))(,())(,(1111111111∑∑∑∑-=+=+-=+=+-+-+---=n k k k k k n k k k k k n k k k k k n k k k k k y y u x x v i y y v x x u ηξηξηξηξ由),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,可知),(),,(y x v y x u 沿光滑简单曲线C 也连续,当0→λ时,有0|}{|max 11→--≤≤k k n k x x 0|}{|max 11→--≤≤k k nk y y 于是上式右端的极限存在,且有,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f CC C ++-=⎰⎰⎰ 二、复变函数积分的计算(Complex integration of computational problems) 设有光滑曲线C : ()()()t iy t x t z z +== ()βα≤≤t ,即()t z '在[]βα,上连续且有不为零的导数()()()t y i t x t z '+'='.又设()z f 沿C 连续.由公式(2)我们有[()()()()()()()()]dtt y t y t x v t x t y t x u y y x u x y x v i y y x v x y x u z z f CC C '-'=++-=⎰⎰⎰⎰βα,,),(),(),(),()(d d d d d [()()()()()()()()]dt t y t y t x u t x t y t x v i '+'+⎰βα,,即()()[](),dt t z t z f dz z f c '⎰=⎰βα (3) 或 ()Re βα⎰=⎰dz z f c ()[]{()}()[]{()}dt t z t z f i dt t z t z f '⎰+'Im βα (4)用公式(3)或(4)计算复变函数的积分,是从积分路径C 的参数方程着手,称为参数方程法.注:当是分段光滑简单曲线时,我们仍然可以得到这些结论. 例1 计算dz z C⎰,其中C 是 (1) 从点1到i 的直线段1C ;(2) 从点1到0的直线段2C ,再从点0到i 得直线段3C 所连接成的折线段32C C C +=.解:(1))()(;1011≤≤+-==t it t t z C C ,有:⎰⎰⎰⎰=+-=+---=101010)12()1)(1(i dt i dt t dt i it t dz z c (2)).10()(:),10(1)(:2312≤≤=≤≤-=t it t z C t t t z C ,有:⎰⎰⎰⎰⎰=+--=+=10100)1(32tdt dt t dz z dz z dz z c c c例2 计算dz z ii I ⎰-=其中C 是 (1)连接i i 到-的直线段;(2)连接i i 到-的单位圆的左半圆(3)连接i i 到-的单位圆的右半圆解: i t i tdt i idt it dz z i i I t it z i =⋅==-=-=≤≤-=-⎰⎰⎰1221201211,11,)1( 于是程为:到i的直线段的参数方 ie de idt e e dz z i i I ,t e z it it it it it 2232232223,)2(223===⋅=-==⎰⎰⎰ππππππππ于是到从方程为单位圆的左半圆的参数 i e e d e dz z I ,t e z it it it i i it 2)(20,)3(2222=====---⎰⎰πππππ到从方程为单位圆的右半圆的参数上述二例说明:复变函数的积分与积分路径有关例3()0n Cdz z z -⎰,其中n 为任意整数,C 为以0z 为中心,r 为半径的圆周.解 C 的参数方程为0,02i z z re θθπ=+≤≤,由公式得()22(1)1000221100cos(1)sin(1)2,1,0, 1.i i n n n in n Cn n dz ire i d e d r e r z z i i n d n d r ri n n θππθθππθθθθθθπ-----==-=-+-=⎧=⎨≠⎩⎰⎰⎰⎰⎰ 此例的结果很重要,以后经常要用到.以上结果与积分路径圆周的中心和半径没有关系,应记住这一特点.例4 计算Czdz ⎰,其中C 为从原点到点34i +的直线段. 解: 此直线方程可写作3,4,01x t y t t ==≤≤ 或 34,01z t i t t =+≤≤. 在C 上,(34),(34)z i t dz i dt =+=+,于是()()()112220013434342C zdz i tdt i tdt i =+=+=+⎰⎰⎰. 因()()C CC C zdz x iy dx idy xdx ydy i ydx xdy =++=-++⎰⎰⎰⎰易验证,右边两个线积分都与路线C 无关,所以C zdz ⎰的值,不论是对怎样的连接原点到34i +的曲线,都等于()21342i +. 例5 设C 是圆ρα=-||z ,其中α是一个复数,ρ是一个正数,则按逆时针方向所取的积分i z dz C πα2=-⎰ 证明:令 θραi e z =-,于是 θρθd d i ie z =,从而 i id z dz Cπθαπ220⎰⎰==- 三、复变函数积分的基本性质(Complex integration of the basic nature)设)(z f 及)(z g 在简单曲线C 上连续,则有(1)是一个复常数其中k z z f k z z kf C C,d )(d )(⎰⎰= (2);d )(d )(d )]()([⎰⎰⎰±=±C C C z z g z z f z z g z f(3)⎰⎰⎰⎰+++=n C C C C z z f z z f z z f z z f d )(...d )(d )(d )(21其中曲线C 是有光滑的曲线n C C C ,...,,21连接而成;(4)⎰⎰-=-C C z z f z z f d )(d )( 定理3.2(积分估值) 如果在曲线C 上,()M z f ≤,而L 是曲线C 的长度,其中M 及L 都是有限的正数,那么有()ML dz z f z z f CC ≤≤⎰⎰|d )(|, (5) 证明:因为ML z z M z z f k n k k k n k k k ≤-≤-∑∑-=+-=+|||))((|111111ζ两边取极限即可得:()ML dz z f z z f CC ≤≤⎰⎰|d )(| 例6 试证:⎰=→=+r z r dz z z 01lim 230 证:不妨设1<r ,我们用估值不等式(5)式估计积分的模,因为在r z =上,⎰⎰==-≤+≤+r z r z r r dz z z dz z z 24232312||1|1π上式右端当0→r 时极限为0,故左端极限也为0,所以⎰=→=+r z r dz z z 01lim 230 本节重点掌握: (1)复变函数积分的计算;(2)复变函数积分的基本性质§3.2 柯西积分定理(Cauchy integral theorem)下面讨论复变函数积分与路径无关问题定理(Theorem)3.3设)(z f 是在单连通区域D 内的解析函数,则)(z f 在D 内沿任意一条闭曲线C 的积分0d )(=⎰C z z f ,在这里沿C 的积分是按反时针方向取的.此定理是1825年Cauchy 给出的.1851年Riemann 在)(z f '连续的假设下给出了简单证明如下 证明:已知)(z f 在单连通区域D 内解析,所以)(z f '存在,设)(z f '在区域D 内连续,可知u 、v 的一阶偏导数在区域D 内连续,有0d )(=⎰Cz z f ⎰⎰⎰++-=⊂∀C C c udyvdx i vdy udx dz )z (f D C ,,又⎰⎰⎰⎰⎰⎰=-=+=--=-Dy x c D y x c dxdy v u udy vdx dxdy u v vdy udx Green 0)(,0)(公式由注1: 此定理证明假设“)(z f '在区域D 内连续”,失去定理的真实性,法国数学家古萨(E.Goursat )在1900年给出了真实证明,但比较麻烦.注2: 若C 是区域D 的边界,)(z f 在单连通区域D 内解析,在D 上连续,则定理仍成立.定理(Theorem)3.4若)(z f 是在单连通区域D 内的解析函数,1C 、1C 是在D 内连接0z 及z 两点的任意两条简单曲线,则=⎰1)(C dz z f ⎰2)(C dz z f证明:由柯西积分定理-⎰1)(C dz z f ⎰2)(C dz z f ()021==⎰+dz z f C C将柯西积分定理推广到多连通区域上定理(Theorem)3.5(复合围线积分定理)设有n +1条简单闭曲线,,...,,n C C C 1曲线n C C ,...,1中每一条都在其余曲线的外区域内,而且所有这些曲线都在的C 内区域,n C C C ,...,,1围成一个有界多连通区域D ,D 及其边界构成一个闭区域D .设f (z )在D 上解析,那么令Γ表示D 的全部边界,我们有0=⎰Γdz z f )(其中积分是沿Γ按关于区域D 的正向取的.即沿C 按逆时针方向,沿n C C ,...,1按顺时针方向取积分;或者说当点沿着C 按所选定取积分的方向一同运动时,区域D 总在它的左侧.因此0 1=+++=⎰⎰⎰⎰--ΓnC C Cdz z f dz z f dz z f dz z f )()()()(即 ⎰⎰⎰++=nC C C dz z f dz z f dz z f )(...)()(1例7 计算dz z z e zz ⎰-=)1(23,其中C 是包含0与1、-1的简单闭曲线.解:作互不相交的互不包含的三个小圆周321,,c c c 分别包含0,1,-1,且都在3=z 内,应用复合围线积分定理,有)2()22(21)1(1)1(11)1()1()1()1(111222223321321-+=++=+⋅-+-⋅++⋅-=-+-+-=---=⎰⎰⎰⎰⎰⎰⎰e e i e e e i z dzz z e z dz z z e z dz z dz z z e dz z z e dz z z e dz z z e z cz c c zc z c z c z z ππ由柯西积分定理可知:若)(z f 是在单连通区域D 内的解析函数,则沿着区域D 内的简单闭曲线C 的积分⎰Cd f ςς)(与路径无关,只与起点0z 及终点z 有关,此时也可写成⎰zz d f 0)(ζζ在单连通区域D 内固定0z ,当z 在区域D 内变动时,⎰zz d f 0)(ζζ确定了上限z 的一个函数,记作⎰=z z d f z F 0)()(ζζ定理(Theorem)3.6 设)(z f 是单连通区域D 的解析函数,则⎰=zz d f z F 0)()(ζζ也是区域D 内的解析函数,且)()('z f z F =证明: D z z ∈∆+∀,得⎰zz d f 0)(ζζ与路径无关,则⎰⎰-=-∆+∆+z z zz z d f d f z F z z F 0)()()()(ζζζζ=⎰∆+zz zd f ζζ)(其中积分路径取z 到z z ∆+得直线段,有()()()zz f z z F z z F ∆=-∆-∆+1(())⎰∆+-zz zd x f f ζζ)(因)(z f 在D 内连续,δδε<∆>∃>∀z ,0,0,有()()()ε<-∆-∆+z f zz F z z F即)()('z f z F =定义(Definition)3.2设在是单连通区域D 内,有)()('z f z F =,则称()z F 是)(z f 的原函数.定理(Theorem)3.7若)(z f 是在单连通区域D 内的解析函数,()z F 是)(z f 的一个原函数.则⎰=zz dz z f 0)(()z F -()0z F其中D z D z ∈∈,0注3: 此定理说明,如果某一个区域内的连续函数有原函数,那么它沿这个区域内曲线的积分可以用原函数来计算,这是数学分析中牛顿-莱布尼茨公式的推广. 例8 ( 重要积分)) 试证明:⎩⎨⎧Z ∈≠==-⎰n n n i a z dzc n ,1012)(π 这里 C 表示绕行a 一周的简单闭曲线.证明: 作圆周 1C : |z-a | = ρ, 使得 C 在 1C 的内区域中. 则有=-⎰c n a z dz )(⎰-1)(c n a z dz由例5结果即得证.例9 计算⎰+cdz z )1ln(,其中C 是从-i 到i 的直线段解 因为)1ln(z +是在全平面除去负实轴上一段1-≤x 的区域D 内为(单值)解析,又因为区域D 是单连通的,在D 内有[]ii i i i i i i z z i i i i dzzi i i i dzzzz z dz z iii i ii ii c )22ln 2()1ln()1ln(2)1ln()1ln()1ln()1ln()1ln()111()1ln()1ln(1|)1ln()1ln(π++-=--++--++=+---++=+---++=+-+=+----⎰⎰⎰本节重点掌握:1、柯西积分定理 2、柯西积分定理的推广 内容小结:1、复变函数的积分的定义2、复变函数积分的计算问题3、复变函数积分的基本性质4、柯西积分定理5、柯西积分定理的推广()()[](),dt t z t z f dz z f c '⎰=⎰βα2 1§3.3柯西积分公式§3.4解析函数的高阶导数柯西积分公式、解析函数的无穷可微性、柯西不等式与刘维尔定理、莫勒拉定理.1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、理解刘维尔定理与莫勒拉定理柯西积分公式解析函数的无穷可微性讲授法多媒体与板书相结合P思考题:1、2、习题三:11-157576一、柯西积分公式二、解析函数的无穷可微性三、举例[1]《复变函数》,西交大高等数学教研室,高等教育出版社.[2]《复变函数与积分变换学习辅导与习题全解》,高等教育出版社.[3]《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005.[4]《复变函数与积分变换》,苏变萍陈东立编,高等教育出版社,2008.1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、解析函数的无穷可微性理解很好3、利用课余时间对学生进行答疑第二讲授课题目:§3.3柯西积分公式§3.4解析函数的高阶导数教学内容:柯西积分公式、解析函数的无穷可微性、柯西不等式与刘维尔定理、莫勒拉定理.学时安排:2学时教学目标:1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、理解刘维尔定理与莫勒拉定理教学重点:柯西积分公式教学难点:解析函数的无穷可微性教学方式:多媒体与板书相结合作业布置:习题三:11-15板书设计:一、柯西积分公式二、解析函数的无穷可微性三、举例参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社.2、《复变函数与积分变换学习辅导与习题全解》高等教育出版.3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版).4、《积分变换》,南京工学院数学教研室,高等教育出版社.课后记事:1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、解析函数的无穷可微性理解很好3、利用课余时间对学生进行答疑教学过程:§3.3 柯西积分公式 (Cauchy integral formula )柯西积分公式(Cauchy integral formula )设)(z f 在以圆)0(|:|000+∞<<=-ρρz z C 为边界的闭圆盘上连续,C 的内部D 上解析,由柯西积分定理0d )(=⎰Cz z f 考虑⎰-C d z f ζζζ)(设D z ∈,显然函数在zf -ζζ)(满足z D ≠∈ζζ,的点ζ处解析. 以z 为心,作一个包含在D 内的圆盘,设其半径为ρ,边界为圆ρC .在D 上,挖去以ρC 为边界的圆盘,余下的点集是一个闭区域ρD .在ρD 上,函数)(ζf 以及zf -ζζ)(解析,所以有 ⎰⎰-=-ρζζζζζζC C d z f d z f )()(于是又如下定理定理(Theorem)3.8设)(z f 在在简单闭曲线C 所围成的区域D 内解析在C D D ⋃=上连续,0z 是区域D 内任一点,则有dzz z z f i z f C ⎰-=0)(21)(π (1)其中,沿曲线C 的积分是按反时针方向取的,(1)式就是柯西积分公式.它是解析函数的积分表达式,因而是今后我们研究解析函数的重要工具. 说明:1、有界闭区域上的解析函数,它在区域内任一点所取的值可以用它在边界上的值表示出来.2、柯西公式是解析函数的最基本的性质之一,可以帮助我们研究解析函数的许多重要性质.推论1(平均值公式)设)(z f 在)(z f R z z C <-|:|0内解析,在R z z C =-|:|0上连续,则π21)(0=z f ⎰+πθθ200)Re (d z f i推论 2 设)(z f 在由简单闭曲线1C 、2C 围成的二连通区域D 内解析,并在曲线1C 、2C 上连续,2C 在1C 的内部,0z 为区域D 内一点,则⎰-=100)(21)(C dz z z z f i z f π⎰--20)(21C dz z z z f i π例1 求下列积分的值(1)()⎰⎰==+-222.))(9(2;sin z z dz i z z zdz zz 解:(1)0|sin 2sin 02====⎰z z z i dz zzπ (2)⎰⎰=-===-=---=+-2122225|92)(9))(9(z z z z z i dz i z z z dz i z z z ππ 由平均值公式还可以推出解析函数的一个重要性质,即解析函数的最大模原理.解析函数的最大模原理,是解析函数的一个非常兆耀的原理,它说明了一个解析函数的模,在区域内部的任何一点都达不到最大值,除非这个函数恒等于常数.定理(Theorem)3.9(最大模原理) 设)(z f 在区域D 内解析,)(z f 不是常数,则在区域D 内()z f 没有最大值. 推论1在区域D 内的解析函数,若其模在区域D 内达到最大值,则此函数必恒等于常数推论2设)(z f 在有界区域D 内解析,在D 上连续,则()z f 必在区域D 的边界上达到最大值.证明:若)(z f 在区域D 内为常数,显然成立,若)(z f 在区域D 内不恒为常数,有连续函数的性质及本定理即可得证. 本节重点掌握:柯西积分公式§3.4 解析函数的高阶导数(The higher order derivative of analytic function) 一、解析函数的无穷可微性(Analytic functions ofinfinitely differentiable)定理(Theorem)3.10 设函数)(z f 在简单闭曲线C 所围成的区域D 内解析,在D 上连续,则)(z f 的各阶导数均在区域D 内解析,对区域D 内任一点z ,有,...)3,2,1( )()(2!)(1)(=-=⎰+n d z f i n z f C n n ζζζπ,证明:先证明1=n 时的情形.对区域D 内任一点z ,设D h z ∈+.⎰---=Cd z h z f ihζζζζπ2))(()(2 现在估计上式右边的积分.设以z 为心,以δ2为半径的圆盘完全在D 内,并且在这个圆盘内取h z +,使得δ<<h 0,那么当D ∈ζ时,,||,||δζδζ>-->-h z z设()z f 在C 上的最大值是M ,并且设C 的长度是L ,于是由积分估值定理有,2|||))(()(2|22δπζζζζπMLh d z h z f i hC ⋅≤---⎰ ])()(2)(21)(21[1)()(21)()(22⎰⎰⎰⎰------=---+C C C C d z f i h d z f i d h z f i h d z f i h z f h z f ζζζπζζζπζζζπζζζπ这就证明了当h 趋近于0时,积分⎰---Cd z h z f i hζζζζπ2))(()(2趋于0.即当1=n 时定理成立.设k n =时定理成立.当1+=k n 时,对区域D 内任一点z ,设D h z ∈+.仿1=n 时的证明方法,可推得定理成立.证毕例2 计算下列各积分)())()()⎰⎰⎰>==>=-+-1223221511121cos 1r z z zr z dzz z dzze dzz zπ解:)()()()()⎰>=-==-=-1545121cos !1521cos 1r z i z z i dz z zππππ)()()()()()⎰⎰⎰+-+-+=+>=12222212212CCzzr z zdz i z i z e dz i z i z e dz z e()()⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+='⎪⎪⎭⎫ ⎝⎛+=41sin 2222πππi i z i z e i z i z e i z z3)被积函数22)1(1-z z 有两个奇点:01=z 和12=z ,都在2=z 内,2)1(1-z 在31=z 内解析,21z在311=-z 内解析,作圆周3113121=-=z c z c :,:,利用复合围线积分定理, ⎰⎰⎰⎰⎰=-==-==-+--=-+-=-311233132311233123223)1(1)0()1(1)1()1()1(z z z z z dz z z dz z z z z dz z z dz z z dz由高阶导数公式,得()0661!1211!22)1(1302223=-='⎪⎭⎫ ⎝⎛+"⎪⎪⎭⎫ ⎝⎛-=-===⎰i i z i z i z z dzz z z ππππ应用上述定理可得出解析函数的无穷可微性定理(Theorem)3.11 设函数)(z f 在区域D 内解析,那么)(z f 在D 内有任意阶导数.并且它们也在区域D 内解析注3: 任意阶导数公式是柯西公式的直接推论;二、柯西不等式与刘维尔定理(Cauchy inequality and Liouville's theorem)柯西不等式(Cauchy inequality ) 设函数)(z f 在以R z z <-||0内解析,在以R z z <-||0内()M z f ≤,则,...)2,1,0(!!|)(|0)(=≤n RMn n z fn n 证明:令1R C 是圆)0(||110R R R z z <<=-,)(z f 在以10||R z z ≤-上解析,由高阶导数公式,有,2,1,0!22|)()(2!||)(|1111100)(1==⋅⋅≤-=++⎰n R M n R R M n!dz z z z f in z fnn C n n R πππ令R R →1,得 ,2,1,0!|)(|10)(=≤n R Mn z fn n上述的不等式称为柯西不等式.如果函数)(z f 在整个复平面上解析,那么就称)(z f 为一个整函数,例如z e z z ,cos ,sin 都是整函数.关于整函数,我们有下面的刘维尔定理:定理3.12(刘维尔Liouvlle 定理) 有界整函数一定恒等常数.证明:设)(z f 是有界整函数,即存在),0(+∞∈M ,使得M z f z <∈∀|)(|C,.),0(,C 0+∞∈∀∈∀R z ,)(z f 在R z z <-||0内解析.由柯西公式,有RM z f ≤|)('|0, 令+∞→R , 0)(',C 00=∈∀z f z ,由此可知)(z f 在C 上恒等于常数.三、莫勒拉定理(Mole La Theorem):应用解析函数有任意阶导数,可以证明柯西定理的逆定理,称为莫勒拉定理.定理(Theorem)3.13如果函数)(z f 在区域D 内连续,并且对于D 内的任一条简单闭曲线C ,我们有0)(=⎰Cdz z f那么)(z f 在区域D 内解析.本节重点掌握:(1) 解析函数的无穷可微性;(2)柯西不等式 内容小结: 1、柯西积分公式 2、解析函数的无穷可微性3、柯西不等式与刘维尔定理4、莫勒拉定理5、柯西定理的逆定理。
大学数学 实函数与复函数微积分 孤立奇点
f(z)
1 ( z z0
)m
[ cm
cm1( z z0
)L
c0( z z0
)m
L
],
其中 cm 0, 记上式右端括号中的级数的和函数为 ( z ),即 ( z ) cm cm1( z z0 ) L c0( z z0 )m L , 它的右端是在 B( z0 , ) 收敛的幂级数,其和函数( z ) 在 B( z0 , ) 解析且( z0 ) cm 0 。 故可得定理 1:
: (1) ( 2 ) : 若z0 是 f ( z ) 的m 级零点,则在z0 的某邻 域 B( z0 , ), f ( z ) ( z z0 )m( z ),
: ( z )在 B( z0 , )解析且( z0 ) 0,
义: 设( z )在 B( z0 , )的幂级数展开式为 义: ( z ) a0 a1( z z0 ) a2( z z0 )2 L an( z z0 )n L 义: 其中 a0 ( z0 ) 0, 义: 则 f ( z ) 在 B( z0 , )的幂级数展开式为 义: f ( z ) a0( z z0 )m a1( z z0 )m1 L an( z z0 )mn L
,
:
其中
( (
z z
) )
在 z0
(
解析,且 (
z0 z0
) )
0,
f(z)
若 m n ,由定理 2 知,当对 g( z ) 在z0 补充定义后z0
f(z)
可看作 g( z ) 的 m n 级零点;
,
若m
n
,
lim
zz0
f(z) g( z )
( z0 ( z0
) )
,
所以 z0
复变函数-幅角原理及其应用
f (z) z a g(z)
g(z)
由此,a为 f '(z) 一阶极点且Res[ f '(z) ,a] = n。
f (z)
f (z)
4
引例2 设b为f (z)的m阶零点,证明:b 为 f '(z) 一阶极点
f (z) 且Res[ f '(z) ,a] = -m。
f (z)
证明 b为f(z)的m级极点,则在b的去心邻域内有
零点数为: N f ,C 3
6
定理1 设C一条周线,f(z)符合条件:1 f(z)在C内是亚纯的; 2 f(z)在C上解析且不为零,则有
另一方面
1
2 i
C
f '(z) dz f (z)
N( f ,C) P(
f ,C)
1
2 i
C
f '(z) dz f (z)
1
2 i
dCdz来自[lnf(z)]dz
1
arg P iy n
y( Z )
9
10
三、儒歇(Rouché)定理
z在C上时有:(z) f (z)
11
儒歇定理
(z) f (z)
注:儒歇定理的 典型用途之一是将一个复杂的解析函数g同
零点已知的解析函数比较,推出关于零点的一些信息。
例4 证明多项式 g(z) z4 3z+1 的全部4个零点都位 于 z 2 内。 例5 证明: 满足条件 at | a0 | | a1 | L | at1 | | at1 | | an|
4
8
在自动控制中,一些技术的稳定性归结为要求常系 数线性微分方程解的稳定性,而这类问题要求该方 程的特征多项式
P z a0zn a1zn1 L an
复变函数的积分Cauchy积分定理PPT课件
则f[z(t)]=u[x(t),y(t)]+iv[x(t),y(t)],z(t)=x(t)+iy(t).
因为
u(x, y)dx v(x, y)dy
{u[x(t), y(t)]x(t) v[x(t), y(t)]y(t)}dt
L
L v(x, y)dx u(x, y)dy {v[x(t), y(t)]x(t) v[x(t), y(t)]y(t)}dt
设z=x+iy,zk =xk +iyk, k =k +ik,f(z)=u(x,y)+iv(x,y)
则(3.1)可改写为
n
L
f
( z )dz
lim
0
[u(k ,k )
k 1
iv(k ,k )](xk
iyk ).
n
lim
0
[u(k ,k )xk
k 1
v(k ,k )yk ]
n
i
lim
0
=
1 2
.
分析:2zz2 --z1
z (z 1) z(z 1)
1 z 1
1 z
2z-1
z2 -zdz
1 dz z 1
1 dz
z
(1)z 2,
11
2
2
z
1 dz 1
2
i
(2)z-1 1 ,
2
1dz z
2
i
原式 4 i
z
1 dz 1
2 i
1dz z
0
原式 2 i
例8:设是圆周
z
z
(z) f ( )d C z0
(z)
z
f ( )d C
z0
复变积分知识点总结
复变积分知识点总结一、复变函数的积分1. 复变函数的积分复变函数的积分是指对复平面上的函数进行积分,其中积分路径可以是一条曲线或者一条闭合曲线。
复变函数的积分包括对于实部和虚部的积分两部分,也可以看作是对于复变函数的实部和虚部的积分的和。
复变函数的积分可以用复积分的方式来表示,即对于积分路径上的每一个点,都可以对应一个复数,这样对于整个路径上的所有点的积分就可以用复数来表示。
2. 复变函数的积分性质复变函数的积分具有一些独特的性质,比如线性性、可微性、路径无关性等。
其中线性性是指对于复变函数的积分满足线性组合的性质,即对于两个复变函数的积分和它们的线性组合的积分是相同的。
而可微性是指对于复变函数的积分可以通过对积分路径上的点进行微分来得到,这与实部和虚部的积分分别成立。
路径无关性是指对于一个复变函数在不同的积分路径上积分得到的结果是相同的。
3. 古代积分定理古代积分定理是复变积分的重要定理之一,它是复平面上函数积分的一个基本定理,也是复变函数在复平面上的积分与在实数轴上的积分之间的联系的一个重要桥梁。
古代积分定理表明,对于一个复变函数在一个简单闭合曲线内的积分等于该函数在这个闭合曲线上的积分。
古代积分定理同时也说明了对于一个复变函数在整个复平面上的积分等于该函数在所有简单闭合曲线上的积分之和。
4. 柯西-黎曼积分定理柯西-黎曼积分定理是复变积分的另一个重要定理,它是复变函数积分在实数轴上的积分的推广和深化,也是复变积分的一个基本定理。
柯西-黎曼积分定理表明了对于一个复变函数来说,如果它在一个闭合曲线内保持解析,那么对于这个曲线内的复变函数的积分一定等于零。
柯西-黎曼积分定理是复变积分中一个非常重要且基础的定理,它为复变函数积分的计算和应用提供了一个非常重要的方法和途径。
5. 积分的应用复变积分在工程、物理、数学等领域都有广泛的应用,比如它可以用来求解一些特殊的积分问题,解决一些特殊的微分方程问题,描述一些特殊的物理现象等。
复变函数积分总结
复变函数积分总结导言在数学中,复变函数是指定义在复数域上的函数。
复变函数的积分是对复变函数在特定区域上的求和操作,与实变函数积分有所不同。
本文将对复变函数积分进行总结和讨论。
复杂积分的定义复杂积分,也称为复数积分,是指对复变函数在闭合曲线上的积分。
设有复变函数f(z)在某条复曲线C上连续,则函数f(z)在C上的复积分可记作∮Cf(z)dz。
复积分的计算方法复积分通常通过求曲线上各点处的函数值乘以位移的和来计算。
常用的计算方法有以下几种:直接计算直接计算法是指根据复积分的定义,对曲线进行参数化,将函数f(z)的表达式与曲线参数进行替换,然后依次计算函数值和位移,并求和得到积分的结果。
换元法当曲线C上的积分难以直接计算时,可以使用换元法简化问题。
通过引入新的复变量进行变换,使得积分的计算变得更加简便。
洛朗级数展开法洛朗级数展开法常用于计算含有奇点的复积分。
通过将复变函数在奇点附近展开为洛朗级数,并利用级数的性质进行计算,可以得到积分的近似值。
留数定理留数定理是计算复积分的重要工具。
该定理指出,如果复变函数在有限个奇点上可导,并且曲线上的积分路径不经过这些奇点,那么积分的结果等于这些奇点的留数的和。
复积分的性质复积分具有许多重要的性质,这些性质在计算和应用中起着重要的作用。
1.线性性质:复积分与常数的乘积、函数的线性组合和积分路径无关。
2.相对路径无关性:如果曲线C和C’在同一个区域内且只有端点不同,那么对于可积函数f(z),∮Cf(z)dz = ∮C’f(z)dz。
3.积分与路径无关性(格林定理):如果函数f(z)在以闭合曲线C为界的区域内解析,那么对于任意两条路径P1和P2,有∮P1f(z)dz = ∮P2f(z)dz。
4.积分与积分路径方向无关性:对于可积函数f(z),路径的方向不同,积分结果相差一个负号,即∮Cf(z)dz = -∮-Cf(z)dz。
应用领域复积分在许多领域中有着广泛的应用,包括物理学、工程学和统计学等。
复变函数积分数学物理方法柯西定理推论及应用
d z 当 n0 时 , 2 i c z z 0
当 n 0 时 dz i 2 c (z z0)n1 rn 0 [cos(n) isin(n)]d 0
结论:与积分路线的圆周中心及半径无关.
cos z d z 例 计算积分 ,其中 C 是绕 i 一周的围线 . C ( z i)3
的方程为
i dz i i2 d 2 re d n 1 n 1i ( n 1 ) n0 in c 0 ( z z ) r e r e 0
所以:
cos z dz ,其中 C 是绕 i 一周的围线. 例 计算积分 3 C ( z i)
k 1
f ( k ) z k
0
x
图 3 .1
cos z 例 计算积分 3 dz ,其中 C 是绕 i 一周的围线. C ( z i)
f() zd z ( u i v ) ( d x i d y ) ux d v d y i (d vx uy d )
说明: (1) 当 f ( z ) 是连续函数,且L是 光滑曲线时,积分L f ( z )d z (2)
C
n
C
n
) d z ) d z , f(z f(z
C k 1 C k
k 1 n
k
C3
C1
C2
D 其中 C 及 C 均取正方向 ; k
这个定理可用来计算周线内部有奇点 的积分!
柯西积分公式
有界区域的单连通柯西积分公式
定理 (柯西积分公式) 如果 f ( z ) 在有界
区域D处处解析,L为D内的任何一条正向简单闭
C
Re( z )dz Re( z )dz Re( z )dz
复变函数6.3 辐角原理及其应用
的一级极点,且
f '( z ) Re s m z b f (z)
证 如a为f(z)的n级零点,则在点a的邻域内有
f ( z ) ( z a ) g ( z ),
n
其中g(z)在点a的邻域内解析,且g(a)≠0.于是
f '( z ) n( z a ) n 1 g ( z ) ( z a ) n g '( z ),
(z) c arg 1 0. f (z)
推论1: 设n次多项式 p(z)=a0zn+…+ atzn-t+…+an(a0≠0) 满足条件:|at|>|a0|+…+ |at-1|+ |at+1+ …+|an| 则p(z)在单位圆|z|<1内有n-t个零点 证:令f(z)= atzn-t, (z)=a0zn+…+ at-1zn-t+1+ at+1zn-t-1 +…+an 则f(z)与(z)均在闭单位圆域|z|≤1上解析,而且在单位 圆周 |z|=1上有: |f(z)|= |at|>|a0|+…+ |at-1|+ |at+1+ …+|an|≥|(z)| 由儒歇定里得p(z)=f(z)+(z)与f(z)在单位圆内有同样多 的零点,即为n-t个
C
2 i
1
f ( z ) f (z)
C
dz
i 2 i
C arg f ( z )
C arg f ( z ) 2
例6.21 设f(z)=(z-1)(z-2)2(z-4),C: |z|=3,试验证 辐角原理
93-4-4辐角原理和Rouche定理(更新)
,相应的阶数是
,则
.(恰好是在内部的零点个数)
证: 取足够小的正数 ,使得
都
位于 的内部,且彼此不相交.利用推广的Cauchy
积分定理便得到
湖州师范学院
国家精品资源共享课
因为 题4.3.4),故
在 上不取零值(命
从而
湖州师范学院
国家精品资源共享课
定理4.4.2(辐角原理)设 是区域, 是 中的一
这表明 Pn (z) 在 z R 上无零点.
利用辐角原理知,
N
1
2
ArgPn
(z)
其中
N
表示
Pn
(
z)
在
z R 上的零点个数, 为z; z R B(0, R)的正向,
现在来计算 ArgPn z ,注意到
ArgPn z Arganzn (an an1z1 … a0zn ) ,
条可求长简单闭曲线,其内部位于 中.若
在
上没有零点, 则 在 内部的零点个数恰好是当
在 上逆时针环绕一周时,
在曲线
上逆
时针环绕原点的有效圈数,即
湖州师范学院
国家精品资源共享课
证: 由定理4.4.1, 在 内部的零点个数是
湖州师范学院
国家精品资源共享课
定理4.4.3(Rouché定理) 设 是区域, 是 中 的一条可求长简单闭曲线,其内部位于 中.若
在圆环
中有3个零点.
湖州师范学院
国家精品资源共享课
定理4.4.4(Rouché定理) 设 是域
上的非
常数全纯函数,
若是
的
阶零点,则对充分小的圆盘
,存
什么是复变函数中的幅角原理
什么是复变函数中的幅角原理
幅角原理是复变函数中的一个定理,是奈氏判据的数学基础。
设$s$平面闭合曲线$\Gamma$包围$F(s)$的$Z$个零点和$P$个极点,则$s$沿$\Gamma$顺时针运动一周时,在$F(s)$平面上,$F(s)$闭合曲线$\Gamma_F$包围原点的圈数为:
$N=\frac{Z-P}{2\pi}$
其中,$Z$和$P$分别表示$\Gamma$内部的零点个数和极点个数。
幅角原理用于控制系统的稳定性的判定还需选择辅助函数和闭合曲线。
在波动学理论中,著名的Rayleigh 函数也可以用此理论证得仅有两个实根。
在控制理论中,模式的极点数目与模式的行为关系很大,因此常用此原理估算其极点数目。
复分析中的复变函数与复积分初步
复分析中的复变函数与复积分初步复分析是数学中重要的分支之一,它研究的是复变函数及其性质。
复变函数在实数域上的扩展,具有许多独特而重要的特性。
本文将介绍复分析中的复变函数和复积分的基本概念与性质。
一、复变函数的基本定义与性质复变函数是指定义在复数域上的函数,也称为复函数。
复函数可以分为解析函数和调和函数两类。
1. 解析函数解析函数是指在其定义域上有导数的函数。
复函数的导数与实变函数导数的性质类似,通过极限的概念进行定义。
如果一个复函数在某一点处有导数,则称其在该点处是解析的,也称为全纯的。
解析函数具有许多重要的性质,如保持调和性、幂级数展开、最大模原理等。
2. 调和函数调和函数是指满足拉普拉斯方程($\Delta u = 0$)的函数,其中$u$ 表示实部。
调和函数是解析函数的实部或虚部,它在物理和工程领域中有广泛的应用。
二、复变函数的复积分复积分是将复函数沿着复平面上的曲线进行积分的过程。
复积分相比于实积分具有更多的复杂性和重要性。
复积分包括两种形式:路径无关的复积分和路径相关的复积分。
1. 路径无关的复积分路径无关的复积分是指当积分路径相同时,积分结果与路径无关。
对于解析函数而言,路径无关的复积分总是存在的,并且只与起点和终点有关。
2. 路径相关的复积分路径相关的复积分是指积分结果与路径的选择有关。
路径相关的复积分可以通过参数化和积分分割等方法进行计算,其结果与路径的选取有关。
三、符合复积分的基本定理复积分具有类似于实积分的积分定理,包括柯西-黎曼积分定理、柯西积分定理、留数定理等。
1. 柯西-黎曼积分定理柯西-黎曼积分定理是复积分与路径无关性的重要定理。
它指出,如果一个函数在某一区域内是解析的,那么它在该区域内的积分只与区域的起点和终点有关。
2. 柯西积分定理柯西积分定理是基于柯西-黎曼积分定理的一个推论,它说明了一个闭合曲线上的积分等于该曲线所围成的区域内,函数的奇点(极点和本性奇点)处留数的和。
复积分的各种计算方法与应用
第1章 引言曹1.1研究背景及研究内容复变函数的积分理论是复变函数理论的重要组成部分,是研究解析函数的重要工具之一.但对于如何计算复变函数积分以及如何处理有关复变函数积分的问题,往往很难迅速找到解决问题的方法.因此,理解复变函数积分,并能够灵活运用复积分计算方法进行复积分计算就显得极其重要.复积分中的Cauchy 积分定理在理论上处于关键地位,由它派生出的Cauchy 积分公式、留数定理、辐角原理等都涉及到积分的计算问题.解析函数在孤立奇点的留数原本是一个积分,而实际计算却需要Laurent 展式.因而把积分与级数结合起来的留数定理使复积分理论甚至是复变函数理论达到高潮,且其用途十分广泛.因此,研究复变函数积分计算的各种方法有着非常重要的意义,本文以所列参考文献[3]中的复积分计算方法为基础,并通过查阅相关资料,借鉴了文献[4]-[7]的结果,总结复积分计算的各种方法,并通过应用[1],[2],[8],[9]中的相关知识和方法,对所列出的每种方法作典型例证和分析.1.2预备知识定义1.1[3] 复积分 设有向曲线C :()()βα≤≤=t t z z ,,以()αz a =为起点,()βz b =为终点,()z f 沿C 有定义.顺着C 从a 到b 的方向在C 上依次取分点:011,,,,n n a z z z z b -==.把曲线C 分成若干个弧段.在从1-k z 到k z ()n k ,..,2,1=的每一弧段上任取一点k ζ.作成和数()1nn k k k S f z ζ==∆∑,其中1k k k z z z -∆=-.当分点无限增多,而这些弧段长度的最大值趋于零时,如果和数n S 的极限存在且等于J ,则称()z f 沿C (从a 到b )可积,而称J 为()z f 沿C (从a 到b )的积分,并记以()cf z dz ⎰.C 称为积分路径. ()cf z dz ⎰表示沿C 的正方向的积分,()c f z dz -⎰表示沿C 的负方向的积分.定义1.2[3] 解析函数 如果函数()z f 在0z 点及()z f 的某个邻域内处处可导,那么称 ()z f 在0z 点解析,如果()z f 在区域D 内解析就称()z f 是D 内的一个解析函数.定义1.3[3] 孤立奇点 若函数()z f 在点的0z 邻域内除去点0z 外处处是解析的,即在去心圆域{}00()N z z z z δδ=-<内处处解析,则称点0z 是()z f 的一个孤立奇点.定义 1.4[3] 留数 函数()z f 在孤立奇点0z 的留数定义为()12c f z dz iπ⎰,记作()0Re ,s f z z ⎡⎤⎣⎦.第2章 复积分的各种计算方法2.1复积分计算的常见方法(1)参数方程法定理[3] 设光滑曲线:()()()()C z z t x t iy t t αβ==+≤≤,(()z t '在[,]αβ上连续,且()0z t '≠),又设()f z 沿C 连续,则()d [()]()d Cf z z f z t z t t βα'=⎰⎰.(α、β分别与起、终点对应)1.若曲线C 为直线段,先求出C 的参数方程C 为过12,z z 两点的直线段,1211:(),[0,1],C z z z z t t z =+-∈为始点,2z 为终点.例1 计算积分1Re d iz z -⎰,路径为直线段.解 设1(1)(1),[0,1]z i t t it t =-++=-+∈,则112101Re d (1)d 22iiz z t i t t t i -⎛⎫=-=-=- ⎪⎝⎭⎰⎰2.若曲线C 为圆周的一部分,例如C 是以a 为圆心,R 为半径的圆. 设:C z a R -=,即Re ,[0,2]i z a θθπ=+∈,(曲线的正方向为逆时针). 例2 计算积分d ,Cz z C ⎰为从1-到1的下半单位圆周.解 设,d d ,[,0]i i z e z ie θθθθπ==∈-,d (cos sin )d 2Cz z i i πθθθ-=+=⎰⎰.用Green 公式法也可计算复积分, Green 公式法是参数方程法的一种具体计算方法.例3 设C 为可求长的简单闭曲线,A 是C 所围区域的面积,求证:2czdz iA =⎰.证明 设z x iy =+,则ccczdz xdx ydy i xdy ydx =++-⎰⎰⎰由Green 公式,有:0cxdx ydy +=⎰2cxdy ydx A -=⎰得证.本题目用Green 公式解决了与区域面积有关的复积分问题. (2)用Newton-Leibnize 公式计算复积分在积分与路径无关的条件下(即被积函数()f z 在单连通区域内处处解析)也可直接按类似于实积分中的Newton-Leibnize 公式计算.例4 计算222(2)d i z z -+-+⎰.解 因为2()(2)f z z =+在复平面上处处解析,所以积分与路径无关.22222322221(2)d (44)d 2433ii i iz z z z z z z z -+-+-+---+=++=++=-⎰⎰.(3)用Cauchy 定理及其推论计算复积分Cauchy 积分定理[3] 设函数()f z 在复平面上的单连通区域D 内解析,C 为D 内任一条周线,则()d 0Cf z z =⎰.Cauchy 积分定理的等价定理[3]设函数()f z 在以周线C 为边界的闭域D D C =+上解析, 则()d 0Cf z z =⎰例5 计算2d ,22C zC z z ++⎰为单位圆周1z =.解 1z =是21()22f z z z =++的解析区域内的一闭曲线,由Cauchy 积分定理有2d 022C zz z =++⎰.注1 利用Cauchy 积分定理也有一定的局限性,主要是要求被积函数的解析区域是单连通的,计算起来较为方便.注2 此题可用参数方法,但计算要复杂得多,而用Cauchy 积分定理很简单. 另外,Cauchy 积分定理可推广到复周线的情形.定理[3] 设D 是由复周线012nC C C C C ---=++++ 所围成的有界1n +连通 区域,函数()f z 在D 内解析,在D D C =+上连续,则()0Cf z dz =⎰,或写成 ()()()010nC C C f z dz f z dz f z dz --++=⎰⎰⎰,或写成 ()()()010nC C C f z dz f z dz f z dz --++=⎰⎰⎰.这也是计算复积分的一个有力工具,即复函数沿区域外边界曲线的积分等于沿区域内边界积分的和.适用于积分曲线内部含被积函数奇点的情形.例6计算22d C zz z z -⎰的值,C 为包含圆周1z =的任何正向简单闭曲线.解 2211d d 1C C z z z z z z z ⎛⎫=+ ⎪--⎝⎭⎰⎰,分别以0,1z z ==为心做两个完全含于C 且互不相交的圆周12,C C ,则有12221111d d d 11CC C z z z z z z z z z z ⎛⎫⎛⎫=+++ ⎪ ⎪---⎝⎭⎝⎭⎰⎰⎰ 11221111d d d d 11C C C C z z z z z z z z =+++--⎰⎰⎰⎰ 20024i i i πππ=+++=.(4)用Cauchy 积分公式计算复积分Cauchy 积分公式[3] 设区域D 的边界是周线(或复周线),()C f z 在D 内解析,在D D C =+上连续,则有1()()d ()2C f f z z D i zζζπζ=∈-⎰.Cauchy 积分公式可以解决积分曲线内有被积函数的奇点的积分问题.例7 计算2d 1zCe z z +⎰,其中C 为圆周2z =. 解 因被积函数的两个奇点是,i i -,分别以这两点为心做两个完全含于C 且互不相交的圆周12,C C .则有1212222d d d d d 111z z z z zCC C C C e e e e e z i z i z z z z z z z z z iz i +-=+=++++-+⎰⎰⎰⎰⎰22()zzi i z iz ie e iie e z iz i πππ-==-=+=-+-.此题是Cauchy 积分公式与Cauchy 积分定理复周线情形的结合. (5)用解析函数的高阶导数公式计算复积分 Cauchy 积分公式解决的是形如()d ,()C f z D zζζζ∈-⎰的积分,那么形如()d ,()()n C f z D z ζζζ∈-⎰的积分怎样计算呢?利用解析函数的高阶导数公式()1!()()d ,()(1,2,)2()n n C n f f z z D n i z ζζπζ+=∈=-⎰可解决此问题.例8 计算22d ,(1)zC e z C z +⎰为2z =. 解 因被积函数的两个奇点是,i i -,分别以这两点为心做两个完全含于C 而且互不相交的圆周12,C C .12222222d (1)d d (1)(1)zC zzC C e z z e ez z z z +=+++⎰⎰⎰1222222222()()d d ()()22()()(1)()2z zC C z z z iz ii i e e z i z i z z z i z i e e i i z i z i i e ie πππ==--+-=+-+''⎡⎤⎡⎤=+⎢⎥⎢⎥+-⎣⎦⎣⎦=--⎰⎰注 Cauchy 积分公式与解析函数的高阶导数公式在计算复积分时的主要区别在于被积函数分母的次数是否为一次因式,二者在计算时都常与Cauchy 积分定理复周线情形相结合.(6)用留数定理计算复积分留数定理[3] 设函数()z f 在以C 为边界的区域D 内除12,,,n a a a 外解析,且连续到C ,则()()12Re k nCz a k f z dz i s f z π===∑⎰.例9 计算2252d (1)z z z z z =--⎰.解 252()(1)z f z z z -=-在圆周2z =内有一阶极点0z =,二阶极点1z =.20052Re ()2(1)z z z s f z z ==-==--,1152Re ()2z z z s f z z =='-⎛⎫== ⎪⎝⎭,由留数定理()221052d 2Re ()Re ()2(22)0(1)z z z z z i sf z s f z i z z ππ===-=+=-=-⎰. 留数计算方法的改进留数是复变函数中的一个重要的概念,一般的复变函数专著对函数在极点处的留数通常采用下面三个引理中叙述的计算方法进行计算,即引理1[3] 若a 为()f z 的m 阶极点,即()()()mz f z z a ϕ=-,其中()z ϕ在a 解析,且()0a ϕ≠,则()()1Re ()(1)!m z aa s f z m ϕ-==-.引理2[3]若()()()z f z z ϕψ=,其中(),()z z ϕψ在a 解析,()0a ϕ≠,()0,()0a a ψψ'=≠,则()Re ()()z aa s f z a ϕψ=='. 引理3[3] 设()f z 在扩充复平面上除12,,,,n a a a ∞外解析,,则()f z 在各点的留数总和为零,即1Re ()Re ()0k nz z a k s f z s f z =∞==+=∑.在实际运用中,发现以上三个引理所给公式应用范围有限,对有些留数的计算效果不佳.为了使计算简化、公式更为通用,下面通过三个定理给出三个改进的留数计算公式,并相应的给出算例.定理1[6] 设a 是()h z 的m 阶零点,也是()g z 的m 阶零点,则()()()g z f z h z =在a点的留数为111d Re ()lim ()()(1)!d m mm z a z a s f z z a f z m z --→=⎡⎤=-⎣⎦-. 证明 因为a 为()f z 的m n -阶极点,则()f z 在点a 的邻域内可展开为()1()1()1()101()()()()()m n m n m n m n f z C z a C z a C z a C C z a ----------=-+-++-++-+.则11()1()10()()()()()()m n n m m m n m n z a f z C z a C z a C z a C z a +-------=-+-++-+-+.两端求1m -阶导数,令z a →,则1111d lim ()()(1)!d m mm z a C z a f z m z---→⎡⎤=-⎣⎦-. 运用定理1只需判断()f z 分母零点的阶数,不必判断分子的零点阶数及()f z 极点的阶数,它简化了一些分式函数留数的计算.推论1[6] 设()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,则(1)1Re ()()(1)!n z as f z a n ϕ-==-. 例10 求225(1)()z e f z z -=在孤立奇点处的留数.解 因为0z =是5()h z z =的5阶零点,据推论1[6],有44522440001d 1d 28Re ()lim (())lim (1)4!d 4!d 3z z z z s f z z f z e z z →→==⋅=-=. 定理2[6] 设a 为()()()z f z z ϕψ=的一阶极点,且(),()z z ϕψ在a 解析,z a =为()z ϕ的m 阶零点,为()z ψ的1m +阶零点,则()(1)(1)()Re ()()m m z a m a s f z a ϕψ+=+=. 证明 由假设可得112112()()(),()()()m m m m m m m m z a z a a z a z b z a b z a ϕψ++++++=-+-+=-+-+.又a 为()f z 的一阶极点,则1101()()()f z C z a C C z a --=-++-+,即1101()()()()z z C z a C C z a ϕψ--⎡⎤=-++-+⎣⎦.比较系数得11mm a C b -+=,而()(1)1()(),!(1)!m m m m a a a b m m ϕϕ++==+,由此解得()1(1)(1)()()m m m a C a ϕψ-++=.例11 计算积分31sin d (1)z z z zz e =-⎰.解 被积函数在单位圆内只有0z =一个奇点,且0z =是3()(1)z z e ψ=-的三阶零点,是()sin z z z ϕ=的二阶零点,又23()2cos sin ,()32427z z z z z z z z e e e ϕψ'''''=-=-+-. 由定理2[6],得(2)(3)0(21)(0)Re ()1(0)z s f z ϕψ=+==-. 另外,对于多个奇点留数的和利用定理1、定理2相当麻烦,于是通过对引理3进行改进得到如下一种更简便的方法.定理3[6] 设()()()P z f z Q z =,其中110()(0)n n n n n P z a z a z a a --=+++≠,110()(0)m m m m m Q z b z b z b b --=+++≠,则有以下结论:(1)当2m n -≥时,Re ()0z s f z =∞=; (2)当1m n -=时,Re ()nz ma s f zb =∞=-; (3)当0m n -≤时,设()()()()P z R z Q z r z =+,其中(),()R z r z 为z 的多项式,且()r z 的次数小于m ,则()Re ()Re ()z z r z s f z sQ z =∞=∞=,化为1)或2). 此定理的结论是求有理函数()f z 在∞点留数的一个好方法,使用起来很方便.当分子次数比分母高时,可用综合除法转化为1)或2)的情形.例12 计算积分152244d (1)(2)z z I z z z ==++⎰. 解 被积函数在4z =内部有6个奇点,计算它们十分麻烦,利用留数定理[3] 及引理3[3]有2Re ()z I i s f z π=∞=-.再利用定理3[6],1,1m m a b ==,则Re ()1mz ma s f zb =∞=-=-,故2I i π=. 例13 求221d ()1n n n z z z I z n N z =-+=∈+⎰. 解 设被积函数()f z 的n 个极点为(1,2,)k z k n =,并且()f z 在2z =外部无极点,利用留数定理及引理3[3],12Re ()2Re ()k nz z z k I i s f z i s f z ππ==∞===-∑,而213()211n n nn n z z f z z z z -+==-+++,利用定理3[6]0,1;32Re 6,1.1nz n I i si n z ππ=∞>⎧=-=⎨=+⎩ 注 运用定理3[6]求有理函数()f z 在∞点的留数特别简洁,并且利用它求()f z 在孤立奇点的留数可以达到事半功倍的效果.(7)用级数法计算复积分连续性逐项积分定理[3]设()n f z 在曲线C 上连续(1,2,3,n =…),()1n n f z +∞=∑在C上一致收敛于()f z ,则()f z 在曲线C 上连续,并且沿C 可逐项积分:()()1n ccn f z dz f z dz +∞==∑⎰⎰.将函数展成Taylor 级数或Laurent 级数就解决了该类复积分的有关问题.例14 计算积分11,:2n c n z dz C z ∞=-⎛⎫= ⎪⎝⎭∑⎰.解 在12z <内,有:1111n n z z z ∞=-=+-∑所以 1112021n c c n z dz dz i i z z ππ∞=-⎛⎫⎛⎫=+=+= ⎪ ⎪-⎝⎭⎝⎭∑⎰⎰. 例15 设()f z 在圆环0z a R <-<内解析,且()()lim 0z az a f z →-=,证明:在圆环0z a R <-<内,有()()12a r f f z dz i zηηπη-==-⎰ ()0r R <<. 证明 因为()f z 在圆环0z a R <-<内解析,故有()()nn f z C z a =-∑0z a R <-<,于是()()()()()()21320112n nn nC C C z a fC z a C z a C z a C z a z a z a +-----=-+-++-+++++++---由()()lim 0z az a f z →-=,得120n C C C --====,则()0n n n f z C Z ∞==∑在z a R -<内解析,根据Cauchy 积分定理可得:()()12a r f f z dz i zηηπη-==-⎰ ()0r R <<. (8)用Laplace 变换法计算复积分定义[4] 设()f t 是定义在[)0,+∞上的实函数或复函数,如果含复变量p is σ=+(,s σ为实数)的积分()0pt f t e dt +∞-⎰在p 的某个区域内存在,则由此积分定义的复函数()()0pt F p f t e dt +∞-=⎰称为函数()f t 的Laplace 变换,简记为()()F p L f t =⎡⎤⎣⎦.计算该类复积分时,可先运用Laplace 变换的基本运算法则(线性关系、相似定理、位移定理、象函数微分法、本函数微分法、本函数积分法、延迟定理、卷积定理等),将该类复积分化为()F p 的形式,再参照Laplace 变换表,得出相应的复积分结果.例16 计算积分012pz e dz az ∞-⎰. 解 令 ()12f az az = 则 ()012pz L f az e dz az ∞-=⎡⎤⎣⎦⎰ 由相似定理有 ()1p L f az F a a ⎛⎫=⎡⎤ ⎪⎣⎦⎝⎭由Laplace 变换表得p F a ⎛⎫= ⎪⎝⎭所以 0112pz p e dz F az a a ∞-⎛⎫== ⎪⎝⎭⎰.2.2各种方法的选择原则及其联系上一节给出了复积分的各种计算方法.那么,碰到有关复积分计算的题目时,我们到底应该如何选择具体的计算方法,简便而快捷地进行计算呢.这是本节所要探讨的主要问题.我们知道,复积分是由三部分构成的,即积分路径、被积函数以及积分微元。
复变函数与积分变换 蒙特卡罗
复变函数与积分变换蒙特卡罗复变函数与积分变换是数学中非常重要的两个概念,它们在不同领域的应用非常广泛。
而蒙特卡罗方法则是一种基于随机数的数值计算方法,可以用来解决各种复杂的问题。
本文将探讨这三个概念之间的联系和应用。
复变函数是指自变量和因变量都是复数的函数。
复变函数在物理学、工程学、经济学等领域都有重要应用,比如在电路分析、信号处理、流体力学等方面。
复变函数的性质和变换规律是数学家们长期研究的重点之一。
积分变换是将一个函数通过积分的方式转换成另一个函数的过程。
积分变换在信号处理、控制系统、图像处理等领域有着广泛的应用,可以用来分析系统的稳定性、频率响应等性质。
而积分变换的性质和变换规律也是数学家们研究的重点之一。
蒙特卡罗方法是一种基于随机数的数值计算方法,可以用来模拟各种随机现象,求解各种复杂的问题。
蒙特卡罗方法在金融工程、计算物理、统计学等领域有着广泛的应用,比如用来计算圆周率、模拟随机游走等。
蒙特卡罗方法的原理和应用也是数学家们不断探索的方向之一。
复变函数与积分变换在蒙特卡罗方法中的应用是一种非常有趣的组合。
通过复变函数的性质和变换规律,可以将一个复杂的积分变换问题转化成一个简单的复变函数求解问题。
而蒙特卡罗方法则可以用来模拟这个复变函数的性质,从而得到积分变换的近似解。
这种组合方法在实际问题中有着重要的应用,可以大大提高计算效率和精度。
总的来说,复变函数、积分变换和蒙特卡罗方法是数学中非常重要的概念,它们之间有着密切的联系和应用。
通过深入研究这三个概念的性质和变换规律,可以更好地理解和应用它们在各个领域中的作用。
希望本文能够给读者带来一些启发,激发大家对数学的兴趣和热情。
谢谢阅读!。
幅角原理及其应用ppt课件
且Res[ f '(z) ,a] = n。 f (z)
证明 设a为f(z)的n级零点,则可写
f (z) = (z - a)n g(z)
从而 f '(z) n g '(z) ,其中 g '(z) 在点a的邻域内解析
幅角原理及应用
1
留数和留数定理
一、对数留数 二、 幅角原理 三、儒歇定理
2
留数和留数定理
定义:如果函数 f 在区域D内除去极点外 处处解析,则称f 为区域D内的亚纯函数。
有理函数在整个平面上都是亚纯函数
若f 在闭周线C内是亚纯的,在C上解析且不取 零点,则 f 在C内至多有有限个极点。
3
一、对数留数
4
8
在自动控制中,一些技术的稳定性归结为要求常系 数线性微分方程解的稳定性,而这类问题要求该方 程的特征多项式
P z a0zn a1zn1 L an
的根全在左半平面。利用幅角原理可以得到这问题 的一个判据。 例3 证明:在虚轴上没有零点的n次多项式
P z a0zn a1zn1 L an (a0 0)
2 i
d ln
C
f (z)
1
2 i
[ dln
C
|
f
(z)
| i d arg
C
f
(z)]
C arg f (z)
2
7
二、幅角原理
定理2 设C一条周线,f(z)符合条件:1 f(z)在C内是亚纯的; 2 f(z)在C上解析且不为零,则有
N( f ,C) P( f ,C) C arg f (z)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( z ) 受控于 f ( z ) ,则 N( f ,C ) N( f ,C ).
z4 8z 6 0 在圆 z 1 和圆环1 z 3 义: 例4: 求方程
的根的个数
义:解: (1)取区域 D : z 1 ,其边界为 z 1 ,
f ( z ) 8z, ( z )定义:, 则当 z 1 时, z4 6 义: 令
f ( z ) f ( z ) bj 是 f ( z ) 的一级极点且 Re s[ f ( z ) ,bj ] m j . 同理可得:
p q 1 f ( z ) L f ( z ) dz nk m j N( f , L ) P( f , L ). 2 i k 1 j 1
ln f ( z0 ) ,故 L ln f ( z ) 0 ,
所以
1 f ( z ) 1 L f ( z ) dz 2 L arg f ( z ). 2 i
由定理 1,可得
定理2(幅角原理): 条件同定理 1,则
1 L arg f ( z ) N( f , L ) P( f , L ). 2
z 1 时, z4 8z 6 0 , 义: 又当
1 z 3 , z4 8z 6 0 有且仅有4 1 3 个根. 义: 故在圆环
义:例5: 利用 Rouche 定理证明代数学基本定理: n 次方程
P( z ) a0 z n a1z n1 an 0( a0 0 ) 有且仅有 n 个根.
由定理 1
1 f ( z ) ( 2z 1 )3 ( 2z 1 )3 L f ( z ) dz N( z( z 1 )4 , L ) P( z( z 1 )4 , L ) 2 i
3 5 2.
二、幅角原理
1 f ( z ) 1 L f ( z ) dz 2 i L dLnf ( z ) 2 i
L 设 f ( L ) 是区域D 的边界 在映射 w f ( z ) 下的
像,当 z 从 L 的某点 z0 沿L 的正向绕行一周回到 z0 时, 它的像点 w f ( z ) 在 w 平面画出一条连续的封闭曲线
(它可以自交),当 绕 w 0 沿逆时针旋转一圈时,称
绕 w 0 旋转一次, 当 绕 w 0 沿顺时针旋转一圈时,
f ( z ) 0,
f ( z ) ( z ) f ( z ) ( z ) 0.
由幅角原理,
1 N( f ,C ) C arg[ f ( z ) ( z )] 2 1 ( z ) C arg[ f ( z )( 1 )] 2 f(z)
1 1 ( z ) C arg f ( z ) C arg( 1 ) 2 2 f(z) 1 ( z ) N( f ,C ) C arg( 1 ) 2 f(z)
f ( z ) a0 z n ,( z ) a1z n1 an , 证明: 定义: 记 ( z ) n ak 1 k ( z ) , 义: 则 P( z ) f ( z )定义: 且 f ( z ) k 1 a0 z ,
R 上, 义: 在圆周 CR : z定义:
义: 即 P( z ) 在圆周 CR 上和圆周 CR 外均无零点,
f ( z ) a0 z n 有且仅有一个 n 级零点 z 0 , 义: 又
义: 由 Rouche 定理,
N( P,CR ) N( f ,CR ) N( f ,CR ) N( a0 z n ,CR ) n 义: 定义:
故
( 2z 1 )3 f(z) , D : z 2, L : z 2, 4 求 f (z ) 关于 例1:设 z( z 1 )
L 的对数留数.
1 f ( z ) 在 z 2 有一个三级零点 z 2 ,算作三个零点, 解: 因
在 z 2 有一个一级极点 z 0 和一个四级极点z 1, 后者算 作四个极点,所以 f ( z ) 在 z 2 共有 5 个极点,
f ( z ) f ( z ) 在 D 内除 ak ( k 1, 2, , p ) 和 bj ( j 1, 2, ,q )
证明:
外解析,在 D 上除上述点外连续,由留数定理
p q 1 f ( z ) f ( z ) f ( z ) L f ( z ) dz Re s[ f ( z ) ,ak ] Re s[ f ( z ) ,bj ]. 2 i k 1 j 1
解析且不为零,在 D 的闭包D 除上述诸点外连续且 不为零.其边界 L D 取关于D 的正向,则
1 f ( z ) L f ( z ) dz N( f , L ) P( f , L ) 2 i
其中 N( f , L ) 表示边界 L 所围区域D 内 f ( L 所围区域D 内 f ( z ) 的极点个数, 重数计算在内,即在计算零点或极点时 m 级零点或极点 算作 m 个零点或极点.
(1) f ( z ) 和 ( z ) 在 D 内解析且在D 连续;
(2) 在 C 上 f ( z ) ( z ) ;
则 f ( z ) 与 f ( z ) ( z ) 在D 内零点个数相等,
即
N( f ,C ) N( f ,C ).
证明: 由定理的条件(2),在C 上
故幅角原来指出:
当 f ( z ) 满足定理 1 的条件时, f ( z ) 关于 L 的指标, 或即像曲线 绕 w 0 旋转次数的代数和,应等于 f ( z ) 在 L 所围区域 D 内零点总数与极点总数的差.
三、Rouche定理
定理(Rouche定理):
设 D 是一个区域, C D, 函数 f ( z ) 和 ( z ) 满足:
ak 的邻域, f ( z ) 可表示为 f ( z ) ( z ak )nk k ( z ), 在
其中 k ( z ) 在 ak 解析且 k ( ak ) 0,
f ( z ) nk ( z ak )nk 1k ( z ) ( z ak )nk k ( z ), 又
f ( z ) z4 ,( z ) 定义: 则当 z 3 时, 8z 6, 义: 令
( z ) 8z 6 8 z 6 30 81 z4 f ( z ) 定义: 定义: 定义:
义: 由 Rouche 定理,
N( z4 8z 6, z 3 ) N( z4 , z 3 ) 4. 定义:
4
4
( z ) 定义: z 6 定义: f ( z ) z 6 定义:7 8z 义:
义: 由 Rouche 定理,
N( z4 8z 6, z 1 ) N( 8z, z 1 ) 1. 定义:
(2)取区域 D : z 3 ,其边界为 z 3 ,
下证
为此,令
C arg( 1
w 1
( z )
f(z)
,
) 0.
则
( z )
f(z)
w 1
( z )
f(z)
( z C ),
C 变动时, w 1 f ( z ) 的像恒落在 w 平面的圆 故当 z 沿
( z )
w 1 1 之内,
C 在映射 w 1 f ( z ) 下的像 不会围绕原点 w 0 即曲线
称 绕 w 0 旋转 ( 1 ) 次.
1 L arg f ( z ) 可见 2 是当 z 沿 L 的正向旋转一圈时
z 在映射 w f ( z ) 下的像 绕 w 0 旋转次数的代数和,
称之为 f ( z ) 沿 L 的指标,记作 Ind L f ( z ) ,
即
1 Ind L f ( z ) L arg f ( z ), ---整数 2
1 1 L [ Lnf ( z )] L [ ln f ( z ) i arg f ( z )] 2 i 2 i
其中 L [ Lnf ( z )] 表示当 z 沿 L 走一圈时 Lnf ( z ) 获得的 增量,这里 Lnf ( z ) 可从任一单值分支开始.
又因 ln f ( z ) 是单值函数,当 z 从 L 上某点z0 出发沿 L 正 向 绕 行 一 周 回 到 z0 时 , ln f ( z ) 的 值 也 回 到 原 来 的
义: 即 P( z ) 在 CR 内有且仅有 n 个零点.
义: 综上所述 P( z ) 在全平面内有且仅有 n 个零点.
n
( z )
1 n ak ,( R 1 ) , f ( z ) R k 1 a0
ak R 义: 取 R 充分大,使 k 1 a0 ,
义: 则当 z R 时, ( z ) f ( z ) ,
义: 此时 P( z ) f ( z ) ( z ) 0 ,
§4 幅角原理和Rouche定理
一、对数留数
1 f ( z ) L f ( z ) dz 的积分称为对数留数. 定义:形如 2 i
定理1:设 f ( z ) 在区域 D 内除在点 ak 处有 nk 级零点
( k 1, 2 , , p ) ,在点bk 处有 m j 级极点 ( j 1, 2 , ,q ) 外
又因 bj 是 f ( z ) 的 m j 级极点,
所以在 bj 的邻域
( z bj ) 其中 j ( z ) 在 bj 解析且 j ( bj ) 0,
f(z)
j( z )
mj
,
由此可计算得
m j j ( z ) f ( z ) . f ( z ) z bj j ( z )
故
nk k ( z ) f ( z ) . f ( z ) z ak k ( z )