最新人教版数学八年级上

合集下载

最新人教版八年级数学上册《15.3 分式方程(第1课时)》优质教学课件

最新人教版八年级数学上册《15.3 分式方程(第1课时)》优质教学课件
基本思路:将分式方程化为整式方程.
一般步骤:
(1)去分母;(2)解整式方程;(3)检验.
注意:由于去分母后解得的整式方程的解不一定是原分式方程的
解,所以需要检验.
巩固练习
指出下列方程中各分母的最简分母,并写出去分母后得
到的整式方程.
1
2


2x
x 3
2
4
2

x 1
x 1
解:①最简公分母2x(x+3),去分母得x+3=4x;

=
+1
2x
x+ 3 x - 5
x - 25
x+1 3 x+3
与上面的方程有什么共同特征?
分母中都含有未知数.

探究新知
分式方程的概念:
分母中含有未知数的方程叫做分式方程.
分式方程的特征:分母中含有未知数.
追问2:你能再写出几个分式方程吗?
注意:我们以前学习的方程都是整式方程,它们
的未知数不在分母中.


A)
D.x=–3
= 解为x=4,则常数a的值为
( D )
A.a=1
B.a=2
C.a=4
D.a=10
课堂检测
基础巩固题
1.若关于x的分式方程
(B
A.5
C.3


= 的解为x=2,则m的值为

B.4
D.2
课堂检测

2.方程

A.x=–1
C.x=


=

+
的解为( D )
解得x=–3,
经检验:x=–3是原方程的根.

最新人教版八年级数学上册《13.3.2 等边三角形(第2课时)》优质教学课件

最新人教版八年级数学上册《13.3.2 等边三角形(第2课时)》优质教学课件

含30°角的直角三角形的性质:
在直角三角形中,如果一个锐角等于30°,那么它所对的
直角边等于斜边的一半.
A
应用格式:
∵ 在Rt△ABC 中,∠C =90°,∠A =30°,

BC
=
1 2
AB.
B
C
探究新知
素养考点 1 利用含30°角的直角三角形的性质求线段的值
例1 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB
课堂检测
拓广探索题
如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且 CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
证明:∵△ABC为等边三角形, ∴ AC=BC=AB ,∠C=∠BAC=60°, ∵CD=AE, ∴△ADC≌△BEA.
课堂检测
∴∠CAD=∠ABE. ∵∠BAP+∠CAD=60°, ∴∠ABE+∠BAP=60°. ∴∠BPQ=60°. 又∵ BQ⊥AD, ∴∠BQP=90°, ∴∠PBQ=30°, ∴BP=2PQ.
课堂检测
3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC = 5 .
4.如图,Rt△ABC中,∠A= 30°, B
8
AB+BC=12cm,则AB=______cm.
C
A
第4题图
课堂检测
能力提升题
1.在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,
BE=5,则求AC的长.
∵ ∠A= 30°,
∴ ∠ECA=∠BEC–∠A=60°–30° = 30°.
∴ AE=EC, ∴ AE=BE=BC,

最新人教版八年级数学上册《15.1.1 从分数到分式》优质教学课件

最新人教版八年级数学上册《15.1.1 从分数到分式》优质教学课件

分数线
分母



分数:分子、分母都为
数字
分式:分子、分母都为
整式,且分母中必须含
有字母;分子中可以不
含字母
探究新知
素养考点 1 分式的识别
例 指出下列代数式中,哪些是整式,哪些是分式?
x 2x 1 1
x 1 x 2 a 2 2ab b 2
,
, (a b),
,
,
2 3x 2

x
探究新知
说一说 请大家观察式子
请大家观察式子
S
V
和 S
a

,有什么特点?
,有什么特点?
它们与分数有什么相同点和不同点?
相同点
都具有分数的形式
不同点(观察分母)
分母中有字母
探究新知
分式概念
一般地,如果A、B都表示整式,且B中含有字母,那
么称
为分式.其中A叫做分式的分子,B为分式的分母.
注意:分式是不同于整式的另一类式子,且分母中含有字母是分式的一大特点.
33
V
的圆柱形容器中,水面高度为____.
S
S
V
探究新知
3. 一艘轮船在静水中的最大航速是20千米/时,它沿江以最
大船速顺流航行100千米所用时间,与以最大航速逆流航行
60千米所用的时间相等.江水的流速是多少?
如果设江水的流速为v千米/时.
最大船速顺流航行
100千米所用时间
=

以最大航速逆流航行
60千米所用的时间
义的条件
B=0
分式的值
为0的条件
B≠0,A=0
你还有什么疑惑?
请与同伴交流!

最新人教版八年级数学上册《14.2.2 完全平方公式》优质教学课件

最新人教版八年级数学上册《14.2.2 完全平方公式》优质教学课件
1.项数、符号、字母及其指数
2.不能直接应用公式进行计算的式子,可能需要先添 括号变形成符合公式的要求才行 3.弄清完全平方公式和平方差公式不同(从公式结构 特点及结果两方面)
a2+b2=(a+b)2–2ab=(a–b)2+2ab; 4ab=(a+b)2–(a–b)2.
你还有什么疑惑?
请与同伴交流!
(3)(–3a+b)2=9a2–6ab+b2.
探究新知
素养考点 2 利用完全平方公式进行简便计算
例2 运用完全平方公式计算:
(1) 1022;
(2) 992.
解: 1022 = (100+2)2 =10000+400+4 =10404.
992 = (100 –1)2 =10000 –200+1
=9801.
探究新知
想一想 下面各式的计算是否正确?如果不正确,应当 怎样改正?
(1)(x+y)2=x2 +y2 ×
(x +y)2 =x2+2xy +y2
(2)(x –y)2 =x2 –y2 ×
(x –y)2 =x2 –2xy +y2
(3) (–x +y)2 =x2+2xy +y2 × (–x +y)2 =x2 –2xy +y2
(2)原式=20162–2×2016×2015+20152
=(2016–2015)2=1.
探究新知
素养考点 3 利用完全平方公式的变形求整式的值
例3 已知x–y=6,xy=–8.
求:(1) x2+y2的值; (2)(x+y)2的值.
解:(1)∵x–y=6,xy=–8, (x–y)2=x2+y2–2xy,

最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件

最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件

x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)


,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2


,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
(2)所乘(或除以)的必须是同一个整式;
(3)所乘(或除以)的整式应该不等于零.
探究新知
素养考点 1
分式的基本性质的应用
例 下列等式成立吗?右边是怎样从左边得到的?
解: (1)成立.
(2) 成立.
因为
因为
所以
所以
巩固练习
下列变形是否正确?如果正确,说出是如何变形的?如
果不正确,说明理由.
x
1

(1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C

,

(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
,
B. 3a 2b3 与 3a 2b 2c 通分后为 2 3
3a b c 3a 2 b 3 c
1
C. m +n 与
1
m–n
的最简公分母为m2-n2

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

归纳总结
性质1:等腰三角形的两个底角相等(等边对等角). A
如图,在△ABC中,
∵AB=AC(已知),
∴∠B=∠C(等边对等角).
B
C
性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高
线互相重合(三线合一).
顶角平分线 即:等腰三角形 底边上的高线
底边上的中线
具备其 中一条
另外两 条成立
探究新知
C1 C5
这样分类 就不会漏
啦!
C3
C6
A
8个
C7
B
C4
C8
C2
分别以A、B、C为顶角 顶点来分类讨论!
课堂小结
等边对等角
注意是指同一个三角形中


注意是指顶角的平分线,底边上的高和中

三线合一
线才有这一性质.而腰上的高和中线与底

角的平分线不具有这一性质



(1)求等腰三角形角的度数时,如果没有
(×)
(4)等腰三角形的顶角平分线一定垂直底边.
(√)
(5)等腰三角形的角平分线、中线和高互相重合.
( ×)
(6)等腰三角形底边上的中线一定平分顶角.
(√)
探究新知
素ቤተ መጻሕፍቲ ባይዱ考点 1 等腰三角形性质的应用
例1 如图,在△ABC中 ,AB=AC,点D在AC上,且
BD=BC=AD,求△ABC各角的度数.
分析:(1)找出图中所有相等的角; ∠A=∠ABD,∠C=∠BDC=∠ABC; (2)指出图中有几个等腰三角形?
数学语言:如图, 在△ABC中,
∵AB=AC, ∠1=∠2(已知),
A
∴BD=CD, AD⊥BC.(等腰三角形三线合一)

最新人教版八年级数学上册《14.3.1 提公因式法》优质教学课件

最新人教版八年级数学上册《14.3.1 提公因式法》优质教学课件

② 24x2y=3x ·8xy 因式分解的对象是多项式
③ x2–1=(x+1)(x–1)
④ (2x+1)2=4x2+4x+1 是整式乘法

x2+x=x2(1+
1
)
x
每个因式必须是整式
⑥ 2x+4y+6z=2(x+2y+3z)
探究新知
知识点 2
用提公因式法分解因式
问题1: 观察下列多项式,它们有什么共同特点?
例2 计算:
(1)39×37–13×91;
(2)29×20.16+72×20.16+13×20.16–20.16×14.
解:(1)原式=3×13×37–13×91
=13×(3×37–91)
=13×20=260;
(2)原式=20.16×(29+72+13–14)
=2016.
方法总结:在计算求
值时,若式子各项都
–2xy
探究新知
素养考点 1 利用提公因式法分解因式
例1
把下列各式分解因式.
(1) 8a3b2 + 12ab3c;
公因式既可以是一个单
项式的形式,也可以是
一个多项式的形式.
(2) 2a(b+c) – 3(b+c).
分析:提公因式法步骤(分两步)
第一步:找出公因式;
第二步:提取公因式 ,即将多项式化为两个因式的乘积.
注意:首项有负常提负.
探究新知
归纳总结
提取公因式分解因式的技巧:
①当公因式是多项式时,把多项式看成一个整体提
取公因式;②分解因式分解到不能分解为止;③某一项
全部提取后,不要漏掉“1”;④首项有负号常提负号;

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。

探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。

练习:让学生通过解决实际问题,巩固勾股定理的应用。

1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。

探究:让学生通过割补、折叠等方法,尝试证明勾股定理。

练习:让学生通过解决实际问题,加深对勾股定理证明的理解。

第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。

探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。

练习:让学生通过解决实际问题,加深对实数分类的理解。

2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。

探究:让学生通过解方程的方法,掌握一元一次方程的解法。

练习:让学生通过解决实际问题,巩固一元一次方程的应用。

第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。

探究:让学生通过实际操作,理解不等式的性质。

练习:让学生通过解决实际问题,加深对不等式概念的理解。

3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。

探究:让学生通过实际操作,掌握不等式的解法。

练习:让学生通过解决实际问题,巩固不等式的解法。

第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。

探究:让学生通过实际操作,理解函数的性质。

练习:让学生通过解决实际问题,加深对函数概念的理解。

4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。

探究:让学生通过实际操作,绘制一次函数的图象。

练习:让学生通过解决实际问题,巩固一次函数图象的应用。

第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。

八上数学最新人教版八年级数学上册12.3.1角的平分线的性质(第1课时)

八上数学最新人教版八年级数学上册12.3.1角的平分线的性质(第1课时)

垂足为D.若PD =3,则点P 到OB 的距离为3.
A
D C
P
O
B
如图,E是∠AOB的角平分线OC上的一点, EM⊥OB垂足为M,且 EM=3cm,求点E 到OA的距离
分析:点E 到OA的距离是过点E作OA的垂线段,再根据角的平分线的性质,可知点E 到OA的距离。
解:过E作EN⊥OA垂足为N
∵ E是∠AOB的角平分线上的一点, EM⊥OB, EN⊥OA,B
2、分别以M、N为圆心,大于
的长为1半M 径N 作弧,两弧在∠AOB内部交于点C。
2
3、作射线OC,射线OC即为所求。
证明:连结MC,NC由作法知:
在△OMC和△ONC中 OM=ON MC=NC OC=OC
∵△OMC≌△ONC(SSS) ∴∠AOC=∠BOC 即:OC 是∠AOB的角平分线.
A
M
C
O
8
C
课堂小结
(1)本节课学习了哪些主要内容? (2)本节课是通过什么方式探究角的平分线的性质的? (3)角的平分线的性质为我们提供了证明什么的方法?
在应用这一性质时要注意哪些问题?
布置作业
教科书习题12.3第4、5题.
利用尺规作角的平分线的具体方法:
1、以O为圆心,适当长为半径作 弧,交OA于M,交OB于N。
2长、为分半12别径M以作NM弧、,N为两圆弧心在,∠大AO于B内部交于的M
点C。 3 、 作 射 线 OC , 射 线 OC 即为所求。
A C
O
N
B
感悟实践经验,用尺规作角的平分线
追问4 你能说明为什么射线OC 是∠AOB 的平分线吗? A
用量角器度量,也可用折纸的方法. 追问1 你能评价这些方法吗?在生产生活中,这 些方法是否可行呢?

最新人教版八年级数学上册《15.2.2 分式的加减(第1课时)》优质教学课件

最新人教版八年级数学上册《15.2.2 分式的加减(第1课时)》优质教学课件
分母不变,把分子相加减.
a
b
a b


c
c
c
探究新知
素养考点 1 同分母分式的加减的计算
5x 3 y
2x
2
例 计算: 2
2
x y
x y2
5x 3 y 2x
解:原式
x2 y2
3x 3 y

( x y)( x y)
3

x y
归纳总结:
同分母分式的加减,分母
=

c
c
c
a
c ad
bc ad bc
=

=

b
d bd
bd
bd
注意事项:
①若分子是多项式,则加上括号,然后再加减;
②计算结果一定要化成最简分式或整式.
你还有什么疑惑?
请与同伴交流!
这节课的学习你有
什么收获?





课后总结
通过这节课的学习,你明白了什
么? 还有什么疑问吗?
课后作业
S3 S2
S S1
2
S2
S1
2011年与2010年相比,森林面积增长率提高____________.
探究新知
请计算:
1.同分母分数加减法的法则如何叙述?
2.你认为
探究新知
同分母的分式加减法的法则
【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加减.
【同分母的分式加减法的法则】 同分母分式相加减,
(a 2)(a 2)
a2

(a 2)(a 2)

最新人教版八年级数学上册《15.2.1 分式的乘除(第1课时)》优质教学课件

最新人教版八年级数学上册《15.2.1 分式的乘除(第1课时)》优质教学课件
人教版 数学 八年级 上册
15.2
分式的运算
15.2.1 分式的乘除
第1课时
导入新知
通过前面分式的学习,我们知道分式和
分数有很多的相似性,如基本性质、约分和
通分.那么在运算上它们有相似性吗?
素养目标
2.能准确地进行分式的乘除法的计算.
1.知道并熟记分式乘除法法则.
探究新知
知识点
分式的乘除法法则
500
a 2 -1 a +1
2
(2)
=

=
.
2
2
(a -1) a -1 (a -1) 500
a -1
∴“丰收2号”小麦的单位面积产量是“丰收1号”小麦的
单位面积产量的
倍.
巩固练习
取一条长度为1个单位的线段AB,如图
第一步,把线段AB三等分,以中间
的一段为边作等边三角形,然后去掉这
一段,就得到由4条长度相等的线段组
则,说出分式的乘除法法则吗?
怎样用字母来表示分式的乘除法法则呢?
探究新知
分式的乘除法法则
a c
ac
a
c
a d
a d








b d
bd
b
d
b c
bc
乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的
分母.
除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式
相乘.
C.ab
D.


课堂检测
基础巩固题

1.化简

A.


2.计算:

最新人教版八年级数学上册《14.2.1 平方差公式》优质教学课件

最新人教版八年级数学上册《14.2.1 平方差公式》优质教学课件
人教版 数学 八年级 上册
14.2 乘法公式
14.2.1 平方差公式
导入新知
观察与思考
某同学在计算97×103时将其变成(100–3)(100+3) 并很快得出结果,你知道他运用了什么知识吗?这 节课,我们就来一起探讨上述计算的规律.
素养目标
2. 了解平方差公式的几何意义,体会数 形结合的思想方法. 1. 掌握平方差公式的推导及应用.
1.(a – b ) ( a + b) = a2 – b2 2.(b + a )( –b + a ) = a2 – b2
探究新知
平方差公式
相同为a
适当交换 (a+b)(a–b)=(a)2–(b)2
合理加括号 相反为b,–b 注:这里的两数可以是两个单项式也可以是两个多项式等.
探究新知
温馨提示
(a+b)(a– b)= a2– b2.
素养考点 2 利用平方差公式简便运算
例2 计算:
(1) 102×98;
(2) (y+2) (y–2) – (y–1) (y+5) .
解: (1) 102×98
(2)(y+2)(y–2)– (y–1)(y+5)
=(100+2)(100–2) = 1002–22
= y2–22–(y2+4y–5)
不符合平方差公式运
解:原式=9n2–1–(9–n2) =10n2–10. ∵(10n2–10)÷10=n2–1. n为正整数, ∴n2–1为整数
即(3n+1)(3n–1)–(3–n)(3+n)的值是10的倍数.
探究新知
归纳总结 对于平方差中的a和b可以是具体的数, 也可以是单项式或多项式.在探究整除性或 倍数问题时,一般先将代数式化为最简, 然后根据结果的特征,判断其是否具有整 除性或倍数关系.

最新人教版八年级数学上册《12.2 三角形全等的判定(第1课时)》优质教学课件

最新人教版八年级数学上册《12.2 三角形全等的判定(第1课时)》优质教学课件

写出
(2)∠BAD = ∠CAD.
结论
由(1)得△ABD≌△ACD ,
∴ ∠BAD= ∠CAD.
(全等三角形对应角相等)
探究新知
归纳总结
证明的书写步骤: ①准备条件:证全等时要用的条件要先证好; ②指明范围:写出在哪两个三角形中; ③摆齐根据:摆出三个条件用大括号括起来;
④写出结论:写出全等结论.
巩固练习
如图, C是BF的中点,AB =DC,AC=DF.
求证:△ABC ≌ △DCF.
证明:∵C是BF中点, ∴BC=CF. 在△ABC 和△DCF中, AB = DC,(已知) AC = DF,(已知) BC = CF,(已证) ∴ △ABC ≌ △DCF (SSS).
探究新知
素养考点 2 利用三角形全等证明线段或角相等
O C
课堂检测
能力提升题
1. 已知:如图,AB=AE,AC=AD,BD=CE, 求证:△ABC ≌△AED.
证明:∵BD=CE,
∴BD-CD=CE-CD .
∴BC=ED . 在△ABC和△ADE中,
AC=AD(已知), AB=AE(已知), BC=ED(已证),
=× × =
∴△ABC≌△AED(SSS).
吗?
A B
A′ C B′
作法: (1)画B′C′=BC; (2)分别以B',C'为圆心,线段 AB,AC长为半径画圆,两弧相 交于点A'; C′ (3)连接线段A'B', A 'C'.
想一想 作图的结果反映了什么规律?你能用文字语言和符号语言 概括吗?
探究新知
“边边边”判定方法
文字语言:三边对应相等的两个三角形全等.

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。

2. 教学重点:勾股定理的表述和证明;勾股定理的应用。

3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。

二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。

2. 教学重点:平行四边形的定义和性质;平行四边形的判定。

3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。

三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。

2. 教学重点:三角形的定义和性质;三角形的判定。

3. 教学难点:三角形的性质证明;三角形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。

四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。

2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。

3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。

五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。

最新人教版数学八年级上册第十二章-全等三角形(含答案)

最新人教版数学八年级上册第十二章-全等三角形(含答案)

第十二章 --全等三角形一、基本概念1.全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;(3)能够完全重合的三角形叫做全等三角形2.全等三角形的表示两个三角形全等用“≌”符号表示;例如:△ABC与△DEF全等,那么我们可以表示为:△ABC≌△DEF。

3.全等三角形的基本性质(1)全等三角形对应边相等;(2)全等三角形对应角相等4.全等三角形的判定方法(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)例:在如图所示的三角形中,AB=AC,AD是△ABC的中线,求证△ABD≌△ACD.AB D C(2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)例:如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C不经过池塘可以直接到达点A和B。

连接AC并延长到点D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离。

为什么?(3)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C。

求证AD=AE.AD EB C(4)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).例:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证△ABC≌△DEF(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)例:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.5.角平分线的性质及判定性质:角平分线上的点到角两边的距离相等判定:到一个角的两边距离相等的点在这个角的平分线上。

二、灵活运用定理1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找相等的可能性。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)三、常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等(2)利用判定公理来证明两个三角形全等练习题1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.33.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 4.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+25.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB 的依据是()A.SSS B.SAS C.ASA D.AAS 7.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(2015•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45°B.∠BAC=90°C.BD=AC D.AB=AC 9.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对10.(2015春•泰山区期末)如图,△A BC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2015春•沙坪坝区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是.13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.20.如图,在△A BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三.解答题(共7小题)21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB 延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系请证明你的结论.23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.24.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少请说明理由.练习题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.C 6.A 7.D 8.D 9.B 10.C 二.填空题(共10小题)11.4 12.70°13.30 14.30°15.AB=CD 16.AC=DE 17.60 18.90 19. 20.4三.解答题(共7小题)21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+E B=AF+2EB.25.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.。

最新人教版八年级数学上册《15.3 分式方程(第2课时)》优质教学课件

最新人教版八年级数学上册《15.3 分式方程(第2课时)》优质教学课件
多少?
解:设提速前列车的平均速度为x km/h,则提速前列车行驶
s
(x+v)
s km所用的时间为 h;提速后列车的平均速度为
km/h,
x
s+50
(s+50)km,所用时间为 x+v h. 根据行驶时间
提速后列车运行
的等量关系可以列出方程:
s s+50
x = x+v
探究新知
去分母得:s(x+v)=x (s+50)
2. 设:选择恰当的未知数,注意单位统一.
3. 列:根据数量和相等关系,正确列出方程.
4. 解:解这个分式方程.
5. 验:检验.既要检验所求的解是不是分式方程的解,又要检验是否符
合实际意义.
6. 答:注意单位和语言完整.
探究新知
素养考点 1 利用分式方程解答工程问题
例1 两个工程队共同参与一项筑路工程,甲队单独施工1个月
方程两边同乘6x,得2x+x+3=6x, 解得 x=1.
检验:x=1时,6x≠0,x=1是原分式方程的解.
答:由上可知,若乙队单独施工1个月可以完成全部任务,
1
而甲队1个月完成总工程的 ,可知乙队施工速度快.
3
巩固练习
为了提高产品的附加值,某公司计划将研发生产的1 200件
新产品进行精加工后再投放市场,现有甲、乙两个工厂都
解:方程两边都乘以最简公分母 ( x 1)( x 1)
得: (x–1)+2(x+1)=4
∴x=1
检验:当x=1时,(x+1)(x–1)=0,
所以x=1不是原方程的根.
∴原方程无解.
课堂检测

最新人教版八年级数学上册《14.1.4 整式的乘法(第3课时)》优质教学课件

最新人教版八年级数学上册《14.1.4 整式的乘法(第3课时)》优质教学课件
计算.
巩固练习
计算:
(1)(–xy)13÷(–xy)8;
(2)(x–2y)3÷(2y–x)2;
(3)(a2+1)6÷(a2+1)4÷(a2+1)2.
解:(1)原式=(–xy)13–8=(–xy)5=–x5y5;
(2)原式=(x–2y)3÷(x–2y)2=x–2y;
(3)原式=(a2+1)6–4–2=(a2+1)0=1.
.
解法1: 12a3b2x3 ÷ 3ab2相当于求( )·3ab2=12a3b2x3.
由(1)可知括号里应填4a2x3.
解法2:原式=4a2x3 ·3ab2 ÷ 3ab2=4a2x3.
理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指
数0=2–2,而b0=1,x的指数3=3–0.
整式的除法
底数不变,指数相减
1.系数相除;
2.同底数的幂相除;
3.只在被除式里的因式照搬作为商的一
个因式
多项式除以
单项式
转化为单项式除以单项式的问题
0指数幂的
性质
除0以外任何数的0次幂都等于1
你还有什么疑惑?
请与同伴交流!
这节课的学习你有
什么收获?





课后总结
通过这节课的学习,你明白了什
么? 还有什么疑问吗?
以单项式.
探究新知
素养考点 1 多项式除以单项式的法则的应用
例1 计算(12a3–6a2+3a) ÷3a.
解: (12a3–6a2+3a) ÷3a
=12a3÷3a+(–6a2) ÷3a+3a÷3a
方法总结:多项式除以
单项式,实质是利用乘

2024年最新人教版八年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 5y = 3C. 4x + 6y = 9D. 5x 3y = 74. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)^3B. a^3 b^3 = (a b)^3C. a^3 +b^3 = (a b)^3 D. a^3 b^3 = (a + b)^37. 下列各式中,正确的是()A. (a + b)(a b) = a^2 b^2B. (a b)(a + b) = a^2 + b^2C. (a + b)(a b) = a^2 + b^2D. (a b)(a + b) = a^2 b^28. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab + b^2C. (a + b)^2 = a^2 2ab + b^2D. (a b)^2 = a^2 + 2ab + b^29. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)^3B. a^3 b^3 = (a b)^3C. a^3 + b^3 = (a b)^3D. a^3 b^3 = (a + b)^310. 下列各式中,正确的是()A. (a + b)(a b) = a^2 b^2B. (a b)(a + b) = a^2 + b^2C. (a + b)(a b) = a^2 + b^2D. (a b)(a + b) = a^2 b^2二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是__________。

最新人教版八年级数学上册《13.1.2 线段的垂直平分线的性质(第2课时)》优质教学课件

最新人教版八年级数学上册《13.1.2 线段的垂直平分线的性质(第2课时)》优质教学课件

课后作业
1.基础型作业:梳理本节课知识点。 2.发展型作业:完成本课时练习。
总结点评 反思
同学们,这节课你们表现得都非常棒。 在以后的学习中,请相信你们是存在着巨 大的潜力的,发挥想象力让我们的生活更 精彩吧。

1 2
AB的长为半径作弧,两弧交于
C,D两点.
A
(2)作直线CD. CD即为所求.
C B
特别说明:这个作法实际上就是线段垂直平分线的
D
尺规作图,我们也可以用这种方法确定线段的中点.
探究新知
如图,A,B是路边两个新建小区,要在公路边增设一
个公共汽车站.使两个小区到车站的路程一样长,该公共汽
车站应建在什么地方?
人教版 数学 八年级 上册
13.1 轴对称
13.1.2 线段的垂直平分线的性质 第2课时
导入新知
如图,A,B是路边两个新建小区,要在公路边增设一 个公共汽车站,使两个小区到车站的路程一样长,该公共 汽车站应建在什么地方?
B A
公路
素养目标
3. 能够运用尺规作图的方法解决简单的作 图问题.
2. 进一步了解尺规作图的一般步骤和作图语 言,理解作图的依据.
课堂小结
尺规 作图
属于基本作图之一,必须熟熟练掌握.
线段的垂直 平分线的 有关作图
作对称轴的 常见方法
(1)将图形对折; (2)用尺规作图; (3)用刻度尺先取一对对称点连线的 中点,然后作垂线.
你还有什么疑惑?
请与同伴交流!
小 结 与 思 考
这节课的学习你有 什么收获?
课后总结
通过这节课的学习,你明白了什 么? 还有什么疑问吗?
M A
O N
B

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。

学会解一元一次方程,掌握解方程的基本步骤。

1.2 方程的解法学习使用加减法、乘除法解一元一次方程。

学会使用移项、合并同类项解方程。

1.3 方程的应用学会将实际问题转化为方程,解决实际问题。

练习使用一元一次方程解决实际问题。

第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。

学会解一元一次不等式,掌握解不等式的基本步骤。

2.2 不等式组理解不等式组的概念,掌握不等式组的解法。

学会解不等式组,掌握解不等式组的基本步骤。

2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。

练习使用不等式解决实际问题。

第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。

学会判断两个变量之间的关系是否为函数。

3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。

学会判断函数的单调性、奇偶性、周期性。

3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。

练习使用函数解决实际问题。

第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。

学会判断两个整式是否相等。

4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。

学会使用合并同类项进行整式的加减法运算。

4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。

练习使用整式解决实际问题。

第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。

掌握数据的整理方法,如列表、画图等。

5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。

学会使用图表展示数据,如条形图、折线图等。

5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。

学会使用统计量对数据进行描述和分析。

八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、会列变量之间的关系式。
3、理解常量和变量不是绝对的,同一个量在不 同的变化过程中可能是不同的。
1、已知圆柱的体积公式是V=πr2h(V为体积,r 为底面圆的半径,h为圆柱的高),若h为常数, 则在这个公式中,变量是什么?
2、某市实验中学八(8)班同学每人买一本教辅书, 书的单价是7.5元/本,求总金额y(元)与学生人 数n(人)之间的关系式。来自答: 常量:4 3
,变量:V,R.
4、夏季高山上温度从山脚起每升高100米降低 0.7℃,已知山脚下温度是23℃,则温度y与上升 高度x之间关系式为__________.
答: y=23-0.007x
1、能指出问题中的变量与常量; 在一个变化过程中,我们称数值发生变化的量为 变量,数值始终不变的量为常量.
结束语
谢谢大家聆听!!!
14
人教版数学八年级上
一辆长途客车在行驶过程中,那些量 不变?那些量发生了变化?
(1)若汽车的速度不变,则汽车所用的 时间和汽车走过的路程发生了变化。
(2)若总路程不变,则汽车所需时间和 行驶速度发生了变化。
3、若球体体积为V,半径为R,则V=
4 3
R3.其
中变量是_______、 _______,常量是________.
相关文档
最新文档