运用导数解决不等式恒成立问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 lnx≤mx-1x. 设 g(x)=lnx-mx-1x, 即∀x∈[1,+∞),g(x)≤0 恒成立,等价于函数 g(x)在[1,+∞) 上的最大值 g(x)max≤0. g′(x)=1x-m1+x12=-mx2x+2 x-m. ①若 m≤0,g′(x)>0,g(x)在[1,+∞)上单调递增, 即 g(x)≥g(1)=0,这与要求的 g(x)≤0 矛盾.
,求a的取值范围
解:函数f(x)的定义域为(0,+∞),由
f(x)≥27对一切x∈(0,+∞)恒成立

a x

x 9 27 3 3对一切x∈(0,+∞)
恒成立,即a 3 3x x x 对x∈(0,+∞)
恒成立设 h(x) 3 3x x x则, ,由h′(x)=0
解 , hx′(x)43〈9 90h时′(xx>)>4039时9 ,解得0<x<
恒成立 对x D, f '(x) 0; min
函数f (x)在区间D单调递减 在f '(x) 0在x D
恒成立 对x D, f '(x) 0; max
例1、已知函数 f (x) (a x)9(a R),对f(x) 定义域内任意的x的值x,f(x)≥27恒成立
题型一:“f (x) a”型(其中a为常数)
(1).对x D,有f (x) a恒成立 对x D,f (x) a; min
(2).对x D,有f (x) a恒成立 对x D,f (x) a. max
形式推广: (1).对x D,有f (x) g(x)恒成立 对x D,f (x) g(x) 0
题型二:“f (x ) g(x )”型
1
2
(1).形如x ,x D,都有f (x ) g(x )恒成立
1
2
1
2
对x D,f (x) g(x) ;
min
max
(2).形如x ,x D,都有f (x ) g(x )恒成立
1
2
1
2
对x D,f (x) g(x) ;
max
min
小结:辨析“f (x ) g(x )”型与“f (x) g(x)”型的差异:
1
2
1.对于x , x D, 有f (x ) g(x )恒成立
1
2
1
2
对x D,有f (x) g(x) 恒成立
m in
max
2.对于x D,有f (x) g(x)恒成立
函数f (x)图像恒在函数g(x)图像上方
探究提高 对于求不等式成立时的参数范围问题,在 可能的情况下把参数分离出来,使不等式一端是含有 参数的不等式,另一端是一个区间上具体的函数,这 样就把问题转化为一端是函数,另一端是参数的不等 式,便于问题的解决.但要注意分离参数法不是万能的, 如果分离参数后,得出的函数解析式较为复杂,性质 很难研究,就不要使用分离参数法.
(2).形如x1,x2 D,都有f (x1) g(x2 )恒成立 对x D,f (x)min g(x)max ;
形如x1,x2 D,都有f (x1) g(x2 )恒成立 对x D,f (x)max g(x)min;
【总结提升】
(1).对x D,有f(x) g(x)恒成立 对x D,f(x) g(x) 0
恒成立 对x D,f(x) g(x)min 0;
对x D,有f(x) g(x)恒成立 对x D,f(x) g(x) 0
恒成立 对x D,f(x) g(x)max 0;
②若 m>0,方程-mx2+x-m=0 的判别式 Δ=1-4m2.
当 Δ≤0,即 m≥12时,g′(x)≤0.
所以 g(x)在[1,+∞)上单调递减,g(x)max=g(1)=0, 即不等式成立;

0

m

1 2





mx2

x

m

0
的两根分别为
x1 =
1- 21m-4m2<1,x2=1+ 21m-4m2>1.
运用导数解决不等式恒成立问题
深圳市民办学校高中数学教师 欧阳文丰
利用导数解决不等式恒成立问题的“两种”常用方法 (1)分离参数法:将原不等式分离参数,转化为不含参数的 函数的最值问题,利用导数求该函数的最值,根据要求得 所 求 范 围 . 一 般 地 , f(x)≥a 恒 成 立 , 只 需 f(x)min≥a 即 可 ; f(x)≤a恒成立,只需f(x)max≤a即可. (2)函数思想法:将不等式转化为某含待求参数的函数的最 值问题,利用导数求该函数的极值(最值),然后构建不等式 求解.
但是运用洛比塔法则和多次求导,却能收到意想 不到的效果。
【总结提升】解决恒成立问题的基本方法:
1.分离参数法:其优点在于:有时可以 避开繁琐的讨论.
2.直接研究函数的形态. 其缺点在于:有些问讨论比较复杂.
当然,在解决问题时,要根据所给问题 的特点,选择恰当的方法来解题.并在解题 过程中,能够依据解题的进程合理地调整解 题策略.
恒成立 对x D, f (x) g(x) 0; min
对x D,有f (x) g(x)恒成立 对x D,f (x) g(x) 0
恒成立 对x D, f (x) g(x) 0; max
(2).函数f (x)在区间D单调递增 在f '(x) 0在x D
(ⅱ)当 k>1 时,则 g(x)在(0,k-1)上单调递减, 在(k-1,+∞)上单调递增,所以 g(x)的最小值为 g(k-1), 只需 g(k-1)>0 即可,即 ln k-k+2>0. 设 h(k)=ln k-k+2(k>1), h′(k)=1-k k<0,则 h(k)单调递减, 因为 h(2)=ln 2>0,h(3)=ln 3-1>0,h(4)=ln 4-2<0, 所以 k 的最大值为 3.
知存在 x0∈(2,3),使得 h(x0)=0,即 1+ln(x0+1)=x0,
又函数 h(x)在(0,+∞)上单调递增, 所以当 x∈(0,x0)时,h(x)<h(x0)=0; 当 x∈(x0,+∞)时,h(x)>h(x0)=0. 从而当 x∈(0,x0)时,g′(x)=h(xx2)<0; 当 x∈(x0,+∞)时,g′(x)=h(xx2)>0, 所以 g(x)在(0,+∞)上的最小值为 g(x0)= (x0+1)[1+x0ln(x0+1)]=x0+1.
2、已知函数f (x) ex 2bx 2a,若f (x)在[2, )
上单调递增,求实数b的取值范围。 b e2
总结:
2
变式练习
3、已知函数f (x) ex,g(x) 2x 2a, 若x [0, )时,恒有f (x) g(x),求 实数a的取值范围。
总结:
a ln 2 1
43 9 9
所以h(x)在(0,43 9 )上递增,在( 43 9
9
,+∞)上递减,
故h(x)的最大值为 h(43 9 ) 4
9
9
,所以wk.baidu.com
a
9
4 9
变式练习
1: 已知函数f (x) ex 2x 2a,若f (x) 0恒 成立,求实数a的取值范围。
总结:
a ln 2 1
变式练习
因此 f(x)>x+kx1-x2 在(0,+∞)上恒成立等价于 k<g(x)min=x0+1. 由 x0∈(2,3),知 x0+1∈(3,4),所以 k 的最大值为 3. 法二 由题意,1+ln(x+1)>x+kx1在(0,+∞)上恒成立.
设 g(x)=1+ln(x+1)-x+kx1(x>0), 则 g′(x)=x+1 1-(x+k1)2=x-((x+k-1)1)2 , (ⅰ)当 k=1 时,则 g′(x)=(x+x1)2>0,所以 g(x)单调递增, g(0)=1>0,即 g(x)>0 恒成立.
得 k<(x+1)[1+x ln(x+1)](x>0),
令 g(x)=(x+1)[1+x ln(x+1)](x>0),
则 g′(x)=x-1-lnx(2 x+1),设 h(x)=x-1-ln(x+1)(x>0),
则 而
hh′((2x))==11--lxn+13<1=0,x+xh1(3>)=0,2-所l以n 函4>数0,h(由x)在零(点0,存+在∞定)上理单,调递增.
不一定推出f (x) g(x) 恒成立
m in
max
例 3 已知函数 f(x)=xx+ln 1x,若对∀x∈[1,+∞),f(x)≤m(x-1)恒成立, 求 m 的取值范围.
(评注:第二种解法。本题通过构造函数,进行多次求导后,运用洛 比塔法则求解。)
解、f(x)=xx+ln 1x,∀x∈[1,+∞),f(x)≤m(x-1),
当 x∈(1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0,与要 求矛盾.综上所述,m≥12.
例 4 设函数 f(x)=1-x2+ln(x+1).若不等式 f(x)>x+kx1-x2(k∈N*)
在(0,+∞)上恒成立,求 k 的最大值. 解:法一 由已知 f(x)>x+kx1-x2 在(0,+∞)上恒成立,
相关文档
最新文档