备战中考数学二模试题分类汇编——二次函数综合

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .

(1)求该二次函数的解析式及点C ,D 的坐标;

(2)点(,0)P t 是x 轴上的动点,

①求PC PD -的最大值及对应的点P 的坐标;

②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2

||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.

【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最

,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或

332t ≤<或72t =. 【解析】

【分析】

(1)先利用对称轴公式x=2a 12a

--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;

(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;

(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.

x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数

的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.

【详解】

解:(1)∵2a x 12a

-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.

∵2y ax ax 3=-+人最大值为4,

∴抛物线过点()1,4.

得a 2a 34-+=,

解得a 1=-.

∴该二次函数的解析式为2y x 2x 3=-++.

C 点坐标为()0,3,顶点

D 的坐标为()1,4.

(2)①∵PC PD CD -≤,

∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.

连接DC 并延长交y 轴于点P ,PC PD CD -===

∴PC PD -

.

易得直线CD 的方程为y x 3=+.

把()P t,0代入,得t 3=-.

∴此时对应的点P 的坐标为()3,0-.

②2

y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.

(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数

22x 23,0,y x 23,0.

x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.

x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数

22x 23,0,y x 23,0.

x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数

22x 23,0,y x 23,0.

x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.

x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2

y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.

令288t 0-=,解得7t 2

=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.

x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.

综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2

=. 【点睛】 本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.

2.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC .

(1)求抛物线的解析式;

(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.

【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365

;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(

73,256)或(173,﹣253). 【解析】

试题分析: (1)利用待定系数法求二次函数的解析式;

(2)设P (m ,﹣

34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m +,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365

,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:

CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94

n+3),则D (n ,﹣34n+3),G (0,﹣34

n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:

相关文档
最新文档