概率论3

合集下载

概率论第三章部分习题解答

概率论第三章部分习题解答

ydxdy.
定理1 cov(X ,Y ) E( XY ) E( X )E(Y )
定理2 若X与Y 独立,则:covX ,Y 0. 逆命题不成立。
注 设X与Y是任两个随机变量,
10
D( X Y ) D( X ) D(Y ) 2cov(X ,Y )
2、X与Y 的相关系数
定义 R( X ,Y ) cov( X ,Y )
EX
xf
xdx
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
随机变量X及Y 的数学期望分别定义如下:
EX xi p xi , y j , EY y j p xi , y j .
i j
ji
即: EX xi pX xi , EY y j pY y j .
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x1 x2 xi
P p( x1 ) p( x2 )p( xi )
则随机变量X 的数学期望为: EX xi pxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为
i
j
假定级数是绝对收敛的.
(2)设二维连续随机变量(X,Y)的联合概率密度为f(x, y),则
随机变量X及Y 的数学期望分别定义如下:
EX
xf
x,
ydxdy,
EY
yf x, ydxdy.
即:EX
xf X x dx,
EY
yfY y dy.
2
假定积分是绝对收敛的.

概率论3

概率论3

P AB PB | AP A
5.3
例3 已知 P( A) 0.5, P( B) 0.6, P( B / A) 0.8.
求 P( AB)与P( A B )
例4 设袋中有r只红求,t只白球.每次自袋中任 取一只球,观察其颜色然后放回,并再放入a只 与所取出的那只球同色的球.若在袋中连续取 球四次,试求第一、二次取到红球且求第三、 四次取到白球的概率.
PBi | A PA | Bi PBi
j j
5.6
5 .7
PA | B PB
j 1
n
i 1,2,,n
P A P A | B 1 P B 1 P A | B 2 P B 2 P A | B n P B n
P( A) P( B) P( A / B) P( B ) P( A / B )
例1 某电子设备制造厂所用的元件是由三家元件 制造厂提供的.根据以往的记录有以下数据:
元件制造厂 1 2 3 次品率 0.02 0.01 0.03 提供元件的份额 0.15 0.80 0.05
设这三家工厂的产品在仓库中是均匀混合的, 且无区别的标志.(1)在仓库中随机地取一只元件, 求它是次品的概率;(2)在仓库中随机地取一只元件, 若已知取到的是次品,分析此次品出自何厂,需求出 由三家工厂生产的概率分别是多少.试求这些概率.
二 乘法定理
乘法定理 其意义是… (5.3)式容易推广到多个事件的情况.
P A1 A2 An PAn A1 A2 An 1 PAn 1 A1 A2 An 2 PA2 A1 P A1 其 中 P A1 A2 An 1 0
设P(A)>0,则有
注 对 任 一 事 件 A, A与 A 构 成 样 本 空 间 Ω 的一个分划。

概率论3

概率论3

X(a) = 1, X(b) = 2, X(c) = 2, 思考一下,X 是随机变量吗 ?很明显,X 不是随机变量,因为
{ω : X(ω) 1} = {a} ∈/ Ω, 那么如何对X 的取值进行一下修改,使之成为随机变量呢 ?只要修改X (b)的取值即可。令
Y (a) = 1, Y (b) = 1, Y (c) = 2,
其中,B(R)是实数轴上的Borel域。
这里有两点注记。首先,随机变量是确定性函数,自身并没有随机性。换句话说,给定 样本空间上的样本点,有唯一确定的实数值与之相对应。这种对应关系并没有不确定性。所 有的不确定性都体现在样本点是否在实验结果中出现上,和随机变量本身没有关系。随机 变量的引入,更多地是为了数学处理上的方便。其次,随机变量并不是概率论中独有的概 念。实分析的基本研究对象是所谓“可测函数(Measurable Functions)”。如果我们规定所谓 “可测集(Measurable Sets)”为某种σ-代数的元素,且在函数的定义域和值域上都定义了相应 的σ-代数,那么“可测函数”就是“可测集”原像仍为“可测集”的函数。很明显,随机变量 是一种特殊的可测函数,这里的“可测集”具有了更为具体的实际含义。
例 1.5 (随机变量平方) 包络检波器在通信和雷达电路中十分常见。小信号条件下,平 方律检波器作为包络检波器的重要类型被广泛使用。设平方律检波器的输入为随机噪声X, 那么其输出Y = aX2仍然是随机噪声。这是随机变量平方的典型实例。
4
例 1.6 (随机变量初等变换) 通信系统中载波信号常常表示为
是否仍然是随机变量呢?答案当然是肯定的。
定义 1.2 (实轴上的可测函数) 设B(R)为实数轴上的Borel域,如果函数f (x)满足
f (x) : R → R, f −1(A) ∈ B(R), ∀A ∈ B(R),

概率论第三章

概率论第三章
第三章 随机变量的数字特征
一、数学期望的概念 二、数学期望的性质 三、应用实例

停 下
§3.1
数学期望
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒 约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望








因而其数学期望E(X)不存在.
§3.2 数学期望的性质 一、性质
性质3.1 设C是常数, 则有ECC. 证
E X E C 1 C C . E CX CE X .
性质3.2 设 X 是一个随机变量, C 是常数, 则有 证 E CX Cxk pk C xk pk CE X .

数学期望, 记为EX, 即
E X

xp x dx .
4. 数学期望不存在的实例
例3
设随机变量X的分布律为 1 PX n , n 1,2,, nn 1
求证: 随机变量X没有数学期望.
证 由定义, 数学期望应为

1 E X npn . n1 n 1 n 1
求EX, EY, E (Y / X ), E[( X Y )2 ]. 思考: X2的分布律?
例7 设随机变量X ~ N0,1, Y ~U0,1, Z~B5,0.5, 且X, Y, Z相互独立, 求随机变量W 2X+3Y4Z1
的数学期望.

《概率论》第3章§3条件分布

《概率论》第3章§3条件分布
P{X x | Y y} (x R1)
若按条件概率公式,则有 P{X y x | Y y} 当P{( XXP,{YY)x限(,XYy制,}Y在)y在}直区线域 D上 上时可视具为有一密维度r.vf (x, y)
y D
O
P{Y y} 0
x
第三章 多维随机变量及其分布
§3 条件分布
8/17
第三章 多维随机变量及其分布
§3 条件分布
4/17
设 (X ,的Y )分布律为
P{ X xi,Y yj} pij (i, j 1, 2,)
考虑在 {Y 对已y于j发} 固生定的的条j件,若下P{Y,{发Xy生j}x的i}p条.j 件 0概, 则率称
为在
P{ XP{Xxi| Yxi | Yyj }
X
Y
Y (1 X ) X Y
YX
1/ 2 1/ 2
X Y 1/ 2
Y
1 X
故三段木棒能构成 的概率为
X Y
P{Y
1 2
,X
1 2
,
X
Y
1 2
}
f (x, y)dxdy
y
yx
x0.5, y0.5 x y0.5
x 1dxdy
0.5
D
x
O
0.5 x 1
D:xx0y.50, y.50.5 0 x1,0 y x
如何定义条件分布 P{X x | Y y}
0, 考虑条件概率
P{X
x
|
y
Y
y
}
P{X x, y Y y } P{y Y y }
称为条件分布
应用积分中值定理
x
y
y
y
y
f (u, v)dvdu fY ( y)dy

概率论第三章第3,4节条件分布,独立性

概率论第三章第3,4节条件分布,独立性
1,2,
P X m, Y n q n2 p2 , n 2,3,; m 1,2,n 1
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
例3 设某班车起点站上车人数 X 服从参数为 ( 0) 的泊松分布,每位乘客在中途下车的概率为 p(0 p 1),
1 f ( x, y) , x y x, f ( y | x ) 当0 x 1, Y | X 2x f X ( x) 其它。 0,
1 P{ X , Y 0} 1 2 ( 3) P{ X | Y 0} 2 P{Y 0} y
1 1 (1 ) 2 3 2 2 1 4 1 1 2
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
P{ X x , y Y y } FX |Y ( x | y ) lim 0 P{ y Y y }
F ( x , y ) lim [F ( x, y ) F ( x, y )]/ 2 y 0 d lim [ F ( y ) F ( y )] / 2 Y Y FY ( y ) 0 dy y x x f ( u, v )dudv f ( u, y )du y . fY ( y) fY ( y)
n 2
2
第三章 随机变量及其分布
§3条件分布
在 X= m 条件下随机变量Y 的条件分布律为
当m=1,2,3,… 时,
P{Y n | X m}
P{ X m ,Y n} P{ X m }
p 2 q n 2 n m 1 pq , m 1 pq

概率论3

概率论3
(3)求至少有2人反映为阳性的概率:
P(X 2) 1 P(X 1) 1 P(X 0) P(X 1) 1 C50 0.4500.555 C510.4510.554 1 0.555 5 0.45 0.554 0.744
例3-1 已知发射一枚地对空导弹可“击中”来犯 敌机的概率是0.96,问在同样条件下需发射多少枚 导弹才能保证至少有一枚导弹击中敌机的概率大于 0.999? 解 设需要发射n枚导弹,则击中敌机的导弹数是随机 变量X~B(n,0.96),则
0
1
k
n
X ~ Cn0 p0qn
Cn1 p1qn1
Cnk pk qnk
Cnn
p
n
q0
n
( px q)n
C
k n
pk
q
nk
xk
k 0
n
n
所以, b(k; n, p) Cnk p k q nk ( p 1 q)n 1n 1
k 0
k 0
特别地,n=1时,二项分布为二值分布,其分布列
射手甲在一次射击中得分X的概率分布为:
0 1 2
e1
X ~ 0 0.2 0.8
e2
射手乙在一次射击中得分Y的概率分布为:
Y
~
0 0.6
1 0.3
2 0.1
Y的概率分布(律)为:
0 Y ~ 0.6
1 0.3
2 0.1
计算Y的分布函数F(x)=P(Y<x):
当x≤0时, F(x)=P(Y<x)=P()=0
X=X (w) w
X=X(w0)=0, X=X(w1)=1, X=X(w2)=2, …, X=X(w100)=100 事件“废品数少于50”={w : X (w) <50}

概率论第三章课后习题答案_课后习题答案

概率论第三章课后习题答案_课后习题答案

第三章 离散型随机变量率分布。

,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。

出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。

概率论第三章

概率论第三章

若二维随机变量( 若二维随机变量(X,Y)具有概率密度 ) 1 1 x − µ1 2 f (x, y) = exp{− ) 2 [( 2 2(1− ρ ) σ1 2πσ1σ2 1− ρ x − µ1 y − µ2 y − µ2 2 )( ) +( ) ]} − 2ρ( 其中
µ1, µ2,σ1,σ2, ρ
3.1.2、二维随机变量的联合分布函数 、 维随机变量的联合 联合分布函数
二维随机变量( 二维随机变量(X,Y) ) ( X , Y )的联合分布函数 )的联合分布函数
一维随机变量X 一维随机变量 X的分布函数 的分布函数
F(x, y) = P(X≤ x,Y ≤ y) − ∞ < x, y < ∞
xi ≤3yj ≤2
求:F(3,2) = P(X≤ 3,Y ≤ 2) = ∑∑pij
1 1 1 1 = + 0+ 0+ + + 0 = 4 8 8 2
例2 设随机变量 Y ~ E (1) ,随机变量
0 , 若Y ≤ k ( k = 1,) 2 Xk = 1 , 若Y > k 的联合概率分布列。 求 X 1 和 X 2 的联合概率分布列。
第三章 多维随机变量及其分布
到现在为止, 到现在为止,我们只讨论了一维随机变量 及其分布. 及其分布. 但有些随机现象用一个随机变量来 描述还不够, 描述还不够,而需要用几个随机变量来描述 在打靶时, 在打靶时,命中点的位置是由一 对随机变量(两个坐标)来确定的. 对随机变量(两个坐标)来确定的. 飞机的重心在空 中的位置是由三个随 机变量(三个坐标) 机变量(三个坐标)来 确定的等等. 确定的等等.
1/ 4 x 1 1 解: (3)P( X < ,Y < ) = ∫0 [∫0 3xdy]dx 4 2

《概率论》第3章§4相互独立的随机变量

《概率论》第3章§4相互独立的随机变量

§4
A, B 相互独立 X , Y 相互独立
相互独立的随机变量
11/19
P( A | B) P( A), P( B | A) P( B)
f ( x, y) f X ( x) fY ( y) (a.e) f ( x, y ) f X |Y ( x | y ) = f X ( x) ( a.e) fY ( y )
§4
相互独立的随机变量
1/19
随机变量的独立性
离散型、连续型随机变量的独立性的判断
利用随机变量的独立性进行相关概率的 计算
第三章 多维随机变量及其分布
§4
A, B 相互独立
相互独立的随机变量
A, B 之间没有任何关系
P( AB) P( A) P( B)
2/19
怎样定义 r.v X , Y 之间的独立性 若
FX ( x2 ) FY ( y2 ) FX ( x1 ) FY ( y2 ) FX ( x2 ) FY ( y1 ) FX ( x1 ) FY ( y1 )
[ FX ( x2 ) FX ( x1 )] [ FY ( y2 ) FY ( y1 )]
P{x1 X x2 }P{ y1 Y y2 }
X ~ U (0,1), Y ~ U (0,1)
X , Y 独立,故联合密度为
1, 0 x 1, 0 y 1 f ( x, y ) f X ( x ) f Y ( y ) 其它 0,
故两信号互相干扰的概率为
P{ | X Y | 1 }
120
1
y
y x
1 2 1 2 1
2
( x ) 1 exp{ [ 21 2 1 2(1 )

概率论基础3——条件概率

概率论基础3——条件概率

一、条件概率生活中很多概率都是在某些特殊条件下的概率。

比如你想知道你在家感染新冠的概率,这是取决于很多方面的,比如,政策有没有放开、是否位于高风险区等等。

只有在这些条件的限制下,我们才能较为准确的求出你想知道的概率。

基本概念:设A,B是随机试验E的两个随机试验,且P(B)>0,称P(A|B)=\frac{P(AB)}{P(B)} 为在事件B发生的条件下,事件A发生的条件概率。

韦恩图:上面A、B分别有两个椭圆,代表了他们的事件范围。

我们想要求在B的条件下A发生的概率,那么直观上分母应该是P(B),因为条件是事件B就相当于要以事件B作为基础;而由于事件B的限制,事件A中不属于B的部分应该被舍去,它们不在B的控制之下。

所以也很容易理解,分子是A和B的和事件(交集)的概率。

性质条件概率也属于概率,所以它也满足概率的基本性质,只不过会有所改变。

(1)对于每一事件A,0≤P(A|B)≤1(2) P(\Omega|B)=1(3)若A_1,A_2,……,A_n 互不相容,则P(\bigcup_{i=1}^{m} A_i|B)=\sum_{i=1}^mP(A_i|B) (4) P(A|B)+P(\overlineA|B)=1(5)容斥原理: P(A\bigcup B|B)=P(A|B)+P(B|B)-P(AB|B)二、乘法公式在上文我们知道条件概率的公式为: P(A|B)=\frac{P(AB)}{P(B)} 。

那如果我们此时知道P(B)和P(A|B),相求P(AB),可以通过移项转化成下列公式: P(A|B)P(B)=P(AB)同理,我们也可以得到: P(B|A)P(A)=P(AB) 这两个公式我们称其为乘法公式。

上面两个式子在实际计算中要根据问题灵活选择。

我们也可以将其拓展到n个事件中:P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_n…A_2A_1) 我们可以这样理解:$P(A_1)$是假设A1正确,$P(A_2|A_1)$是假设A1正确的情况下A2正确,以此类推三、全概率公式有限划分基本概念:设 \Omega 为随机试验E的样本空间,B1,B2 ,…,Bn为E的一组事件,若(1) Bi∩Bj =f ,i ≠ j(2) B_1∪B_2 ∪…∪B_n=\Omega则称B1,B2,…,Bn 为 \emptyset 的一个有限划分,或称完备事件组。

概率论第三章

概率论第三章

8 July 2010
联合密度函数的基本性质 (1) p(x, y) ≥ 0. (非负性) (2) (正则性)
注意: P{(X,Y) ∈D} = ∫∫ p(x, y)dxdy
D
8 July 2010
3.1.5
一,多项分布
常用多维分布 常用多维分布
若每次试验有r 种结果:A1, A2, ……, Ar 记 P(Ai) = pi , i = 1, 2, ……, r 记 Xi 为 n 次独立重复试验中 Ai 出现的次数. 则 (X1, X2, ……, Xr)的联合分布列为:
2x
+∞
1 2x +∞ 1 3y +∞ = A e × e 2 0 3 0
=A/6 所以, A=6
8 July 2010
例3.1.4
6e(2x+3y) , x ≥ 0, y ≥ 0 若 (X, Y) ~ p( x, y) = 其 它 0,
试求 P{ X< 2, Y< 1}.
8 July 2010
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ), 则 XN( ), YN( ).
二维均匀分布的边际分布不一定是一维均匀分布.
8 July 2010
例3.2.1 设 (X, Y)服从区域 D={(x, y), x2+y2 <1} 上的均匀分布,求X 的边际密度p(x). 解: 由题意得
e y , 0 < x < y p( x, y) = 其 他 0,
求概率P{X+Y≤1}. 解: P{X+Y≤1}=
1/2
1x x
y=x
x+y=1
= ∫ dx∫

《概率论》第3章§5两个随机变量的函数的分布

《概率论》第3章§5两个随机变量的函数的分布
FP( X i z1 P n } 设 Xi ~ = Xi {x),≤=},2,{Y,≤,z且 X1 , X2 ,, Xn 相互独立
= P{X ≤ z,Y ≤ z}

Fmax (z) = F (z)
F (z) = P{min(X ,Y) ≤ z} min = FX1 (z)FX,2 (z)z} FXn (z) = 1 P{min(X Y) > F (z) =1P{{min(,Y 1,zX2 ,, Xn ) ≤ z } = P X > z X> } min n = 1∏ > } P(z > [ =1 P{X1zFXi {Y )] z} i =1 =1 ,[1,,{X 独立同分布于 F(x)时有 X1 X2 P Xn ≤ z}][1 P{Y ≤ z}] 特别当 n = 1[1 FX (z)][1 F (z)] n Y
z
2σ 2

z e ,z ≥0 2 fZ (z) = σ 分布) (瑞利Rayleigh分布) 0 , z第三章 多维随机变量及其分布 <0
ρ d 2 =1 e 2σ2 2σ 2
z 2σ 2
(z ≥ 0)
§5 两个随机变量的函数的分布
11/15 11/15
设 X ~ FX (x),Y ~ F ( y) ,且 X,Y 相互独立 ,则 Y F (z) = P{max(X ,Y) ≤ z} max
∵ Fmax (z) = F (z) ∴ fmax (z) = 2 f (z)F(z)
2
= 2 f (z)∫∞ f (t)dt ∵ Fmin (z) = 1[1 F(z)]2
∴ fmax (z) = 2 f (z)[1 F(z)]
= 2 f (z)[1 ∫∞ f (t)dt]

概率论第3章 随机向量及其分布

概率论第3章  随机向量及其分布

例3 一袋中有五件产品,其中两件次品,三件正品,
从袋中任意依次取出两件,分别采用有放回与不放回 两种方式进行抽样检查,规定随机变量
=10,,
第1次取出次品 第1次取出正品
=10,,
第2次取出次品 第2次取出正品
则(ξ,η)的联合分布律如下(并可求得边缘分布律):
表1 有放回抽样的分布律
设(X, Y)的联合分布律为P{X=xi , Y=yj}= pij (i,j=1,2, …) ,则(X, Y)关于X的边缘分布律有
PX xi PX xi ,Y



P X xi , (Y y j )

j 1



P ( X xi ,Y y j )
FX1,X2,L ,Xn x1, x2,L , xn P : X1() x1, X 2 () x2,L , X n () xn
I P : n Xi () xi

i 1

定理3.1.1 设,F, P为概率空间, 随机向量 X1, X 2,L , X n 的联合分布函数为FX1,X2,L ,Xn ,则
P 0, 1 P 0 P 1 0 2 3 3 5 4 10
P 1, 0 P 1 P 0 1 3 2 3 5 4 10
P 1, 1 P 1 P 1 1 3 2 3 5 4 10
定理3.1.2 设,F, P为概率空间, X1, X 2,L , X n
为其上的随机向量。
(1) 若X1, X 2,L
,
X
都为离散型随机变量,有分布列
n
P Xi aji ,j 1,2,L ,i 1,2,L ,n,

《概率论》第3章§2边缘分布解析

《概率论》第3章§2边缘分布解析

(关X ,于Y ) 的 第三Y章 多边维缘随密机变度量(及函其数分)布
例 设随机变量 X 和Y 具有联合概率密度
6, x2 y x,
f (x, y) 0,
其他.
求边缘概率密度 fX ( x), fY ( y).

fX (x)
f (x, y)d y
y
(1,1)
当 0 x 1时,
y x
p11 p21 pi1
p12 p22 pi 2
p1 j
p2 j pij
P{ X xi } pij , i 1,2,; P{Y y j } pij , j 1,2,.
j 1
i 1
2020年11月24日星期二
§2 边缘分布
6/29
设 从r.v X 四1个, 2数,3,中4 等可能取值,又设
2020年11月24日星期二
例 设( X ,Y ) 的联合密度为
f
(x,
y)
kxy,
0,
0 x y,0 y 1, 其他
其中k 为常数. 求
(1)常数 k ;
(2) P ( X + Y 1) , P ( X < 0.5); (3) 联合分布函数 F (x,y); (4) 边缘密度与边缘分布函数
1
0.5
y
dy 1 y
8xydx
5
/
6.
y
1
y=x
yy 11
0.5 00
y y==x x xx
0
0.5
2020年11月24日星期二
P( X 0.5)
x
0.5
1
0 dxx8xydy 7 /16.
的分段区域 y
x0

概率论第三章(3,4,5)

概率论第三章(3,4,5)

e x y
y
x0
对y>0 P{ X>1| Y=y }

1
ex y dx e x y
1 y
y 1
e
例3 设( X, Y )服从单位圆上的均匀分布, 概率密度为:
1 2 2 , x y 1 f ( x , y ) 0, 其它
2
求 fY |X ( y | x ) y 1 x 解:
体重X 的分布
身高Y 的分布
现在若限制1.7<Y<1.8(米), 在这个条件下 去求X的条件分布,这就意味着要从该校的学 生中把身高在1.7米和1.8米之间的那些人都挑 出来,然后在挑出的学生中求其体重的分布. 容易想象,这个分布与不加这个条件 时的分布会很不一样.
一、离散型r.v.的条件分布 定义1: 设 (X,Y) 是二维离散型随机变量,
f ( x, y) f X ( x) fY ( y)
故X和Y不独立 .
对于正态分布有如下结论:
二维随机变量 ( X , Y ) ~ N (1, 2 ,1, 2 , ),
则X,Y相互独立 0
n维随机变量的边缘分布与独立性
1.边缘分布
设n维随机变量(X1,X2,...,Xn)的分布函数为 F(x1,x2,...,xn), (X1,X2,...,Xn)的k(1k<n)维 边缘分布函数就随之确定,
P( X xi |Y y j ) 0,
i = 1,2, …
i 1
P( X xi | Y y j ) 1

例1 一射手进行射击,击中目标的概率为 p,(0<p<1), 射击进行到击中目标两次为 止。以 X 表示首次击中目标所进行的射击次数, 以 Y 表示总共进行的射击次数。试求 X 和 Y 的联合分布及条件分布.

概率论第三章习题及答案

概率论第三章习题及答案
x 1 , x 2 , , x i, Y 的取值为 y1, y2, , yj,
则称
p i j P X x i , Y y j i , j 1 , 2 ,
为二维离散 X , Y 型 的随 (机 联变 合量
2021/7/1
14
第三章 习题课
二维离散型随机变量的联合分布律
X,Y的联合分布下 律表 也表 可示 以
布的关系,了解条件分布。 3 掌握二维均匀分布和二维正态分布。 4 要理解随机变量的独立性。 5 要会求二维随机变量的和及多维随机变返回主目3 录
第三章 习题课
1 二维随机变量的定义 设 E 是一个随机试验,它的样本空间是 S={e}, 设 X=X(e) 和 Y=Y(e) 是定义在 S 上的随机变量。 由它们构成的一个向量 (X, Y) ,叫做二维随机 向量,或二维随机变量。
2021/7/1
返回主目17 录
4) F ( x 2 , y 2 ) F ( x 2 , y 1 ) F ( x 1 , y 1 ) F ( x 1 , y 2 ) 0 .
2021/7/1
y y2
(x1 , y2)
(X, Y )
y1 (x1 , y1)
o x1
(x2 , y2)
(x2 , y1)
10
x2
x
第三章 习题课
说明
Y X
y1
y2

yj

x1
p11
p12

p1 j

x2
p 21
p 22
p2 j

xi
pi1
2021/7/1

返回主目15 录
第三章 习题课
二维离散型随机变量联合分布律的性质

《概率论》数学3章课后习题详解

《概率论》数学3章课后习题详解

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104× 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。

解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得ka +1.5(2)由(1)与(2)解得a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/1887. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi12. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()22020222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe e x e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ16. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE144275144251225)(22=-=-=ξξξE E D3613311121311270=⨯+⨯+⨯=ηE1083731121912=+⨯=ηE129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论》期中测试题参考解答1、(10分)设A B C 、、表示三个随机事件,试用事件A B C 、、的运算分别表示下列各事件:(1)A 不发生而B C 、都发生; 表示为:ABC(2)A B C 、、三个事件至少有一个发生; 表示为:AB C ;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C 、、三个事件至多有一个发生; 表示为:ABCABC ABC ABC(4)A B C 、、恰有两个不发生; 表示为:ABCCAB BAC ;(5)A B C 、、都不发生; 表示为:ABC(6)A B C 、、三个事件不少于两个发生; 表示为:ABBC AC ;或表示为:ABC ABC ABC ABC(7)A B C 、、同时发生; 表示为:ABC(8)A B C 、、三个事件不多于两个发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(9)A B C 、、不全发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生.或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P AB ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--= (3)()()()()0.40.60.10.9P AB P A P B P AB =+-=+-=;(4)()()1()10.90.1P AB P A B P A B ==-=-=;(5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-;(7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率.解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。

《概率论》第3章§2边缘分布

《概率论》第3章§2边缘分布

F (x,y) =
2x2–x4 , 0 x <1, y 1 y4 , x 1, 0 y < 1 1, x 1, y 1
2013年8月5日星期一
(4)
0, 2x2–x4 , 1, 0,
x < 0, 0 x < 1, x1 y<0
FX ( x) F ( x,) =
FY ( y ) F (, y ) =
y4 ,
1,
0 y < 1,
y1
2013年8月5日星期一
4 x 4 x , 0 x 1 f X ( x) 其他 0,
3
4 y , 0 y 1 fY ( y ) 其他 0,
3
2013年8月5日星期一
当然也可直接由联合密度求边缘密度,例 如
6/29
§2
故 X , Y的联合分布律为
Y X
P{X i, Y j} P{Y j | X i} P{X i} 1 1 (1 j i) i 4
1 1/ 4 0 0 0
1 4
1 2 3 4
pi
2 1/ 8 1/ 8 0 0
1 4
3 1/12 1/12 1/12 0
y
故 r.v X的密度函数为 同理 Y的分布函数为
Y的密度函数为

( x )
FY ( y ) f ( x, v)dxdv
fY ( y ) f ( x, y )dx

( y )
称 f X ( x)为 ( X , Y )关于 X的边缘密度(函数) 称 f Y ( y) 为 ( X , Y )关于 Y 的边缘密度(函数) 第三章 多维随机变量及其分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝鸡文理学院试题
课程名称 概率论 适 用 时 间 试卷类别 3
适用专业、年级、班 36课时班级
一、填空题(每题2分,共10分) 1.随机试验的三个基本特点是____.
2.若,A B 相互独立,且()()0.5P A P B ==,则 ()P A B = ____.
3.若随机变量X 的分布函数为1,0;
()0,0.
x e x F x x -⎧-≥=⎨<⎩则(2)P X <=____.
4. 若随机变量X 的分布函数为()arctan F x a b x =+,则a =____,b =____.
5.若()X P λ ,则2EX =____.
二、选择题(每题2分,共20分) 1.若,A B 为独立事件,则下列结论正确的是【 】
A.()()()P AB P A P B =
B.()0P B A =
C.1)|(=B A P
D.()1P A B +=
2. 袋中有5只球,其中有2只白球3只黑球.从中不放回地每次随机地取一只球,则第二次取得黑球的概率为【 】A.57 B.45 C.35 D.58
3. 甲乙两人约定1时至2时之间到某站乘车,这段时机内共有2班车发出,开车时间为1:20和2:00.假定两人在这段时间内任何时刻到达的机会相同,到站时刻相互独立,且见车就乘。

甲乙同乘一车的概率为【 】 A.12 10 B.14 C.49 D.59
4. 某人的命中率为0.4,用X 表示他在3次独立射击中命中目标的次数,则X 的分布为【 】A.0-1分布B.二项分布C.均匀分布D.泊松分布
5. 设X 服从正态分布(0,1)N ,X 的分布函数为()x Φ,则对任意实数a ,下列等式成立的是【 】A.()1()a a Φ-=-Φ B.()()a a Φ-=-Φ C.()()a a Φ-=Φ D.()2()1a a Φ-=Φ-
6.设随机变量2
(,)X N μσ ,则随σ增大()P X μσ-<将【 】
A.单调增大
B.单调减小
C.保持不变
D.增减不定 7. 设X 的概率密度函数是()f x ,则21Y X =+的概率密度函数为【 】 A.(2)2f y B.(2)f y C. ((1)2)2f y - D. 1)2)f y -((
8.若,X Y 相互独立且具有相同的分布函数()F x ,max(,)Z X Y =,则Z 的分布函数为【 】 A.()F z B.2
()F z C.1()F z - D.2
1(1())F z -- 9.设X 服从正态分布(0,1)N ,则(3)D X +=【 】 A.0 B.1 C.3 D.9
10.若,X Y 相互独立,则下列结论错误的是 【 】
A.()E X Y EX EY +=+
B.()()()E XY E X E Y =
C.()D X Y DX DY -=+
D.()()()D XY DX DY = 三、判断题(每题2分,共10分) 1.若()0P A =,则A =Φ.
2.若,,A B C 相互独立,则,,A B C 相互独立.
3.离散型随机变量函数一定是离散型随机变量.
4. 连续型随机变量一定能够取遍某个区间内的所有取值.
5. ,X Y 相互独立的充要条件是,X Y 不相关. 四、计算题(每题10分,共60分)
1.已知5%的男性和0.25%女性是色盲,假设男女各占一半。

现随机挑选一人。

(1)求此人是色盲的概率; (2)若已知此人是色盲,求此人是男性的概率。

2.从一批次品率为0.01的产品中有放回的抽取产品,直到取到次品为止,用X 表示抽取的次数,求(1)X 的分布列;(2)X 的期望和方差。

3.设X 服从区间[0,1]上的均匀分布。


(1)X 的概率密度;(2)X 的分布函数;(3)Y X =的概率密度。

4.设(,)X Y 的联合分布列为 X Y
0 1
0 1/3 3/8 1
1/8
1/6
(1)求关于,X Y 的边缘分布列;(2)判断,X Y 的相互独立性. 5.设(,)X Y 的联合概率密度为
,01,01;
(,)0, A x y f x y <<<<⎧=⎨⎩
其它.
(1)求系数A ;
(2)判断,X Y 的相互独立性; (3)求()E XY .
6.将一枚硬币连掷100次,求出现正面的次数不超过60的概率。

【(1)0.8413;(2)0.9772Φ=Φ=】
宝鸡文理学院试题参考答案与评分标准
课程名称概率论适用时间
试卷类别 3 适用专业、年级、班36课时班级
一、填空题(每题2分,共10分) 1. 1.0)(=B A P ; 2. 3
2
11e
e
a -
=
; 3. 1=+b a ; 4. EXEY EXY =
5. )7,5.2(~N Y X +
二、选择题(每题2分,共20分)
题 号 1 2 3 4 5 6 7 8 9 10 答 案 (3) (3) (2)
(1) (3) (3) (2) (4) (3) (1)
三、判断题(每题2分,共10分)
题 号 1 2 3 4 5 答 案


错 对 错
四、计算题(每题10分,共60分)
1. 解:A :表示一件产品为甲工厂生产; B :表示一件产品为乙工厂生产; C :顾客买一件产品为次品。

产品的合格率为:
924.0)/()()/()()(=⋅+⋅=B C P B P A C P A P C P
买一件产品为次品的概率为:
079.0924
.01%
98%30)()()/(=-⋅==C P AC P C A P
2. 解:令X 表示掷硬币所需的次数,那么X 的分布列为:
X 1 2 …
k …
P (X =k ) 1/2 (1/2)2

(1/2)k …
2)
2/1()(1
1
==
==
∑∑∞
=∞
=k k
k k k X
kP EX
24)2/1()()(1
2
2
1
2
=-=
-==
∑∑∞
=∞
=k k
k k
EX k X P k
DX
3.(,)X Y 的联合分布列为
Y X
1 2 3 4 1 1/4 0 0 0 2 1/8 1/8 0 0 3 1/12 1/12 1/12 0 4
1/16
1/16
1/16 1/16
X 的分布列为
X 1 2 3 4 P
1/4 1/4 1/4 1/4 Y 的分布列为
Y 1 2 3 4 P
25/48
13/48
7/48
1/16
4. 23,01
()(,)0,X x x f x f x y dy +∞-∞
⎧<<=
=⎨⎩⎰
其它
2
3(1),1y 1
(y)(,)4
0,Y y f f x y dx +∞-∞
⎧--<<⎪=
=⎨⎪⎩⎰
其它 由于1
333
1
(,0)()(0)2
4442
X Y f f f =
≠⨯=,所以,X Y 不相互独立. 5.()0,()0E U aEX bEY E V aEX bEY =+==-=,222()()()D U D V a b σ==+
22
22222
2
2
2
2
()()()
()U V E U V E U E V a b a b a b a b
D U
D V
σ
σ
ρσ
---=
=
=
++,又a b ≠,所以a b =-时,U V 不相关。

6.记6000只电子元件中次品数为X ,则1
(6000,)6
X B 。

要使1
99%6000
6X
P ε⎛⎫
-
<=
⎪⎝⎭
,需10006000
99%111(1)1000(1)
666X P ε

⎫ ⎪
- ⎪<= ⎪⨯--
⎪⎝


即6000 2.5811(1)
66ε
=⨯-
,0.0124ε=。

即有99%的把握断言
10.01246000
6
X -
<;
解此不等式可得9261074X <<,即在6000只电子元件中,次品数在926只到1074只之间。

相关文档
最新文档