考研数学二公式高数线代费了好大的劲技巧归纳
考研数学二公式高数线代费了好大的劲技巧归纳
考研数学二公式高数线代(费了好大的劲)技巧归纳————————————————————————————————作者: ————————————————————————————————日期:ﻩ高等数学公式一、常用的等价无穷小当x →0时x ~si nx ~tan x ~arc sin x ~arct an x ~l n(1+x ) ~ e x -1a x -1~x ln a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1-cosx ~21x 2增加x -si nx ~61x 3 对应 arcsin x –x ~ 61x 3 tan x –x ~ 31x 3 对应 x - a rctan x ~ 31x 3二、利用泰勒公式ex = 1 + x ++!22x o(2x ) ) (33 o !3sin x x x x +-=c osx = 1 – +!22x o(2x ) ln (1+x )=x – +22x o(2x ) 导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数角A si ncos tg c tg-α -sinα cosα -tgα -ctgα 90°-α c osα sinα ct gα tgα 90°+α cosα -sinα -ctgα -t gα 180°-α sinα -c osα -tgα -c tgα 180°+α -si nα -cosα tgα ctgα 270°-α -cosα -s inα ctgα tgα 270°+α -co sα sinα -ctgα -t gα 360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leib niz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研数学二必背公式及知识点(自己精心总结整理)
[基础知识]n -b n =(a -b)( a n−1+a n−2b+…+ab n−2+b n−1) ( n 为正偶数时)a n -b n =(a +b)( a n−1-a n−2b+…+ab n−2-b n−1) ( n 为正奇数时)a n +b n =(a +b)( a n−1-a n−2b+…-ab n−2+b n−1)+b)n =∑C n k a k bn−kn k=0(1) a,b 位实数,则○12|ab |≤a 2+b 2;○2|a ±b |≤|a |+|b |;○3|a |−|b |≤|a −b |. (2) a 1,a 2,…,a n >0, 则 ○1a 1+a 2+⋯+a n n ≥√a 1a 2⋯a n n<[x]≤x和差化积;积化和差(7):sin α+sin β=2(sin α+β2)(cosα−β2) sin αcos β=12(sinα+β2+cosα−β2)sin α-sin β=2(cosα+β2)(sinα−β2) cos αcos β=12(cos α+β2+cosα−β2)cos α+cos β=2(cos α+β2)(co sα−β2) sin αsin β=-12(cosα+β2-cosα−β2)cos α-cos β=2(sinα+β2)(sinα−β2)1+tan 2α=sec 2α 1+cot 2α=csc 2αsin 2α=2sin αcos α cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1tan (α±β)=tanα±tanβ1∓tanαtan β cot (α±β)=1∓cot αcot βcot α+cot βtanα2=1−cosαsinα=sinα1+cosα=±√1−cosα1+cosαcotα2=sinα1−cosα=1+cosαsinα=±√1+cosα1−cosα万能公式:u=tan x2(−π<x<π),则sin x=2u1+u2,cos x=1−u21+u2函数图像sec(x) csc(x) cot(x)arcsin(x) arccos(x)arctan(x) arc cot(x)[极限]函数极限x→•:(6)limx→x0f(x)=A: ∀E>0,∃δ>0,当0<|x- x0|< δ时,恒有|f(x)-A|< E.limx→x0+f(x)=A: ∀E>0,∃δ>0,当0<(x- x0)< δ时,恒有|f(x)-A|<E.limx→x0−f(x)=A: ∀E>0,∃δ>0,当0<( x0- x)< δ时,恒有|f(x)-A|< E.limx→∞f(x)=A: ∀E>0, ∃X>0,当|x|>X时,恒有|f(x)-A|<E.limx→∞+f(x)=A: ∀E>0, ∃X>0,当x>X时,恒有|f(x)-A|< E.limx→∞−f(x)=A: ∀E>0, ∃X>0,当-x>X时,恒有|f(x)-A|< E.数列极限n→∞:limn→∞f(x)=A: ∀E>0, ∃N>0,当n>N时,恒有|X n-A|< E.(1)唯一性:设limx→x0f(x)=A,limx→x0f(x)=B,则A=B.(2)局部有界性:若limx→x0f(x)存在,则存在δ>0,使f(x)在U={x|0<|x-x0|<δ内有界.(3)局部保号性:○1(脱帽)若limx→x0f(x) =A>0,则存在x0的一个去心邻域,在该邻域内恒有f(x)>0.○2(戴帽)若存在x0的一个去心邻域,在该邻域内f(x)>(≥)0,且limx→x0f(x)=A(∃),则A≥0.极限四则运算:设lim x→x 0f(x)=A(∃),lim x→x 0f(x)=B(∃),则○1lim x→x 0 [f (x )±g (x )]=A±B. ○2lim x→x 0[f (x )g (x )]=A⋅B. ○3lim x→x 0f(x)g(x)=AB(B≠0). 等价无穷小(9)sin x 1−cos x ~12x 2 arc sin x a x −1~lna ⋅xtan x (1+x )α−1~αx ~xarctan xln (1+x )e x −1lim n→∞√n n =1 , lim n→∞√a n=1, (a>0) ,lim x→0+x δ(ln x )k =0 ,lim x→+∞x k e −δx =0 (δ>0,k >0) lim n→∞√a 1n +a 2n +⋯+a m nn =max {a i }i =1,2,…,m;a i >0洛必达法则:“00”型:○1lim x→x 0f(x)=0, lim x→x 0g(x)=0; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3lim x→ x 0f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x0 f′(x)g′(x)“∞∞”型:○1lim x→x 0f(x)=∞, lim x→x0g(x)=∞; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0○3lim x→x 0 f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x 0 f′(x)g′(x)[注]洛必达法则能不能用,用了再说.数列极限存在准则: 1. 单调有界数列必收敛2.夹逼准则:如果函数f(x),g(x)及h(x)满足下列条件: (1) g(x)≤f(x)≤h(x); (2)limg(x)=A,limh(x)=A, 则limf(x)存在,且limf(x)=A .两种典型放缩:○1max{u i }≤∑u i n i=1≤n∙max{u i }; ○2n∙min{u i }≤∑u i n i=1≤n∙max{u i }选取的依据是谁在和式中去决定性作用海涅定理(归结原则):设f(x)在 (x 0,δ)内有定义,则lim x→x 0f(x)=A 存在⟺对任何以x 0为极限的数列{x n }(x n ≠x 0),极限lim n→∞f(x n )=A存在.连续的两种定义:(1) lim Δx→0Δy =lim Δx→0[f (x 0+Δx )−f (x 0)]=0(2) lim x→x 0f (x )=f (x 0)间断点:第一类:可去、跳跃;第二类:无穷、振荡[一元微分学]导数定义式:f’ (x 0)=dydx |x=x0=limΔx→0f (x 0+Δx )−f(x 0)Δx=limx→x 0f (x )−f(x0)x−x 0微分定义式:若Δy=A Δx +o(Δx ),则dy=A Δx . 可导的判别:(1) 必要条件:若函数f(x)在点x 0处可导,则f(x)在点x 0处连续.(2) 充要条件:f ′(x0)f +(x 0)′,f −(x 0)′都存在,且f +(x 0)′=f −(x 0)′.[注]通俗来说就是连续函数不一定可导;函数在一点可导且在该点连续,但在这点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断. 可微的判别:limΔx→0Δy−AΔx Δx=0,则f(x)可微。
考研数学二经典知识点技巧总结(高数线代)
高等数学(数二)一. 重点知识标记高等数学科目大纲章节知识点题型重要度等级高等数学第一章函数、极限、连续1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★2 .函数连续的概念、函数间断点的类型3 .判断函数连续性与间断点的类型★★★第二章一元函数微分学1 .导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系★★★★2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★第三章一元函数积分学1 .积分上限的函数及其导数变限积分求导问题★★★★★2 .有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★第四章多元函数微分学1 .隐函数、偏导数、的存在性以及它们之间的因果关系2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系★★3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★第五章多元函数积分学1. 二重积分的概念、性质及计算2.二重积分的计算及应用★★第六章常微分方程1.一阶线性微分方程、齐次方程,2.微分方程的简单应用,用微分方程解决一些应用问题★★★★一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。
二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。
一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。
2024考研数学常必背公式汇总
2024考研数学常必背公式汇总在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。
这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。
下面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:一、基本数学公式:1.平方差公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab+ b^22.二次方程的求根公式:若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a3.数列的通项公式:递推公式:a(n+1)=a(n)+d通项公式:a(n)=a(1)+(n-1)d二、高等数学公式:1.常用三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ2.常用反三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ3.常用指数函数公式:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^(-m)=1/a^m4.常用对数函数公式:log_a(m * n) = log_a(m) + log_a(n)log_a(m^n) = n * log_a(m)log_a(m/n) = log_a(m) - log_a(n)log_a(1) = 05.常用复数公式:i²=-1复数的共轭:若z = a + bi,则z的共轭为a - bi三、线性代数公式:1.行列式的加减法:A±B,=,A,±,B2.行列式的乘法:A*B,=,A,*,B3.矩阵的逆:若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I4.特征值与特征向量:设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量5.向量的内积:a ·b = ,a,,b,cosθ其中,a、b分别为向量,θ为a、b之间的夹角四、概率与统计公式:1.事件的概率公式:对于一个随机事件A,其概率满足0≤P(A)≤12.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)4.全概率公式:P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件5.贝叶斯公式:P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]其中,A1,A2,...,An与前述全概率公式的条件相同。
高等数学二答题技巧
高等数学二答题技巧
高等数学二是高等数学的进阶课程,主要涉及多元函数、级数、曲线积分、曲面积分、常微分方程等内容。
以下是一些答题技巧:
1. 理清思路:在开始解题前,应先理清思路,明确解题的步骤和方法。
特别是对于复杂的多元函数或曲线曲面的积分问题,要注意确定适当的变量和坐标系,以便于计算和求解。
2. 注意条件和范围:在阅读题目时,要仔细阅读条件和给定的范围,确保理解题意,不要遗漏关键信息。
3. 灵活使用公式和结论:高等数学二有一些重要的公式和结论,如多元函数的偏导数、梯度、震荡法等,曲面积分的高斯公式、斯托克斯公式等。
掌握这些公式和结论,并能熟练运用,能够简化求解过程。
4. 参考教材和习题:高等数学二是基础学科,教材和习题是非常重要的辅助学习材料。
在解题过程中,可以多参考教材中的例题和习题,加深对知识点的理解和掌握。
5. 注意转化和化简:在解题过程中,有时需要将问题进行合理的转化和化简。
可以通过变量代换、对称性利用、题目给定的条件等方法,将问题简化为更容易解答的形式。
6.注意细节和符号使用:高等数学二中符号的使用和运算非常
重要,特别是在级数运算和积分中,需要注意符号的正确使用。
同时,要对计算过程中的细节进行仔细检查,避免计算错误。
总之,高等数学二答题技巧主要包括理清思路、掌握公式和结论、参考教材和习题、注意转化和化简、注意细节和符号使用等。
通过领会这些技巧,并进行充分的练习和实践,可以提高高等数学二的解题能力和应用水平。
考研数学二各科目复习重点总结
考研数学二各科目复习重点总结考研数学二各科目复习重点总结我们在准备进行考研数学的二次备考的时候,需要做好备考的资料参考。
店铺为大家精心准备了考研数学二备考,欢迎大家前来阅读。
考研数学二各科目复习安排高数第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的`问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵考研数学:数二复习锦囊一、高等数学同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;二、线性代数数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;三、数学二不考概率与数理统计研究典型题型对于数二的来说,需要做大量的试题。
考研数学二重点
考研数学二重点考研数学二是众多考研学子需要攻克的重要科目之一。
对于许多考生来说,明确数学二的重点内容,制定有针对性的复习策略,是取得理想成绩的关键。
以下将详细介绍考研数学二的重点部分。
一、高等数学1、函数、极限、连续函数的概念、性质和各种类型的函数(如幂函数、指数函数、对数函数、三角函数等)是基础。
极限的计算方法,包括四则运算、等价无穷小替换、洛必达法则等,是必考的重点。
连续性的概念以及间断点的类型判断也经常出现。
2、一元函数微分学导数的定义、几何意义和基本公式要熟练掌握。
利用导数判断函数的单调性、极值和最值,以及函数的凹凸性和拐点,是常见的题型。
此外,微分中值定理(如罗尔定理、拉格朗日中值定理、柯西中值定理)的应用也是重点。
3、一元函数积分学不定积分和定积分的计算方法,包括换元法、分部积分法等,要熟练运用。
定积分的应用,如求平面图形的面积、旋转体的体积、曲线的弧长等,也是重要的考点。
4、多元函数微分学多元函数的偏导数、全微分的概念和计算方法,以及多元函数的极值和条件极值问题,需要重点关注。
5、常微分方程常见的一阶和二阶常微分方程的解法,如可分离变量方程、齐次方程、线性方程等,要能够熟练求解。
二、线性代数1、行列式行列式的性质和计算方法是基础,包括展开法则、三角化法等。
2、矩阵矩阵的运算(加法、乘法、转置等)、逆矩阵的求法、矩阵的秩等是重点。
3、向量向量组的线性相关性判断、极大线性无关组的求法,以及向量空间的基本概念。
4、线性方程组线性方程组的解的结构、求解方法(高斯消元法),以及有解的判定条件。
5、特征值和特征向量矩阵的特征值和特征向量的求法,以及相似对角化的条件和方法。
三、复习方法1、基础知识的巩固对于重点概念、定理和公式,要反复理解和记忆,确保能够熟练运用。
2、多做练习题通过大量的练习题,熟悉各种题型和解题方法,提高解题速度和准确性。
3、总结归纳对做过的题目进行总结归纳,找出解题的规律和技巧,形成自己的解题思路。
考研数学二公式高数线代(整理)技巧归纳(精选.)
高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
考研数学二知识点总结
考研数学二知识点总结一、高等数学1. 函数、极限与连续- 函数的定义与性质- 极限的概念与计算- 连续函数的性质与应用2. 微分学- 导数的定义与性质- 常见函数的导数- 微分的应用3. 积分学- 不定积分的基本概念与性质- 定积分的基本概念与性质- 积分技巧与方法4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面5. 重积分- 二重积分的计算- 三重积分的计算- 重积分的应用6. 无穷级数- 级数的基本概念- 正项级数的收敛性- 幂级数与泰勒级数二、线性代数1. 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用2. 矩阵- 矩阵的基本运算- 矩阵的逆- 矩阵的秩3. 向量空间- 向量空间的基本概念- 子空间与维数- 向量间的线性关系4. 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用5. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化6. 二次型- 二次型的标准型- 二次型的正定性- 二次型的应用三、概率论与数理统计1. 随机事件与概率- 随机事件的定义与性质- 概率的计算与性质- 条件概率与独立性2. 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 随机变量的数学期望与方差3. 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差4. 大数定律与中心极限定理- 大数定律的含义与应用- 中心极限定理的含义与应用5. 样本与估计- 样本的概念与性质- 点估计与区间估计- 估计量的评价标准6. 假设检验- 假设检验的基本思想- 显著性水平与P值- 常用的假设检验方法四、离散数学1. 集合与关系- 集合的基本概念与运算- 关系的基本概念与性质- 等价关系与偏序关系2. 图论基础- 图的基本概念与性质- 路径、回路与图的连通性- 图的着色问题3. 逻辑与布尔代数- 命题逻辑的基本结构- 布尔代数的运算与性质- 逻辑表达式的简化4. 递归与算法复杂度- 递归函数的性质与计算- 算法复杂度的概念与分类- 常见算法的时间复杂度分析请注意,这只是一个基本的大纲和示例内容。
考研数学二必背公式及知识点(自己精心总结整理)
[基础知识]n -b n =(a -b)( a n−1+a n−2b+…+ab n−2+b n−1) ( n 为正偶数时)a n -b n =(a +b)( a n−1-a n−2b+…+ab n−2-b n−1) ( n 为正奇数时)a n +b n =(a +b)( a n−1-a n−2b+…-ab n−2+b n−1)+b)n =∑C n k a k bn−kn k=0(1) a,b 位实数,则○12|ab |≤a 2+b 2;○2|a ±b |≤|a |+|b |;○3|a |−|b |≤|a −b |. (2) a 1,a 2,…,a n >0, 则 ○1a 1+a 2+⋯+a n n ≥√a 1a 2⋯a n n<[x]≤x和差化积;积化和差(7):sin α+sin β=2(sin α+β2)(cosα−β2) sin αcos β=12(sinα+β2+cosα−β2)sin α-sin β=2(cosα+β2)(sinα−β2) cos αcos β=12(cos α+β2+cosα−β2)cos α+cos β=2(cos α+β2)(co sα−β2) sin αsin β=-12(cosα+β2-cosα−β2)cos α-cos β=2(sinα+β2)(sinα−β2)1+tan 2α=sec 2α 1+cot 2α=csc 2αsin 2α=2sin αcos α cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1tan (α±β)=tanα±tanβ1∓tanαtan β cot (α±β)=1∓cot αcot βcot α+cot βtanα2=1−cosαsinα=sinα1+cosα=±√1−cosα1+cosαcotα2=sinα1−cosα=1+cosαsinα=±√1+cosα1−cosα万能公式:u=tan x2(−π<x<π),则sin x=2u1+u2,cos x=1−u21+u2函数图像sec(x) csc(x) cot(x)arcsin(x) arccos(x)arctan(x) arc cot(x)[极限]函数极限x→•:(6)limx→x0f(x)=A: ∀E>0,∃δ>0,当0<|x- x0|< δ时,恒有|f(x)-A|< E.limx→x0+f(x)=A: ∀E>0,∃δ>0,当0<(x- x0)< δ时,恒有|f(x)-A|<E.limx→x0−f(x)=A: ∀E>0,∃δ>0,当0<( x0- x)< δ时,恒有|f(x)-A|< E.limx→∞f(x)=A: ∀E>0, ∃X>0,当|x|>X时,恒有|f(x)-A|<E.limx→∞+f(x)=A: ∀E>0, ∃X>0,当x>X时,恒有|f(x)-A|< E.limx→∞−f(x)=A: ∀E>0, ∃X>0,当-x>X时,恒有|f(x)-A|< E.数列极限n→∞:limn→∞f(x)=A: ∀E>0, ∃N>0,当n>N时,恒有|X n-A|< E.(1)唯一性:设limx→x0f(x)=A,limx→x0f(x)=B,则A=B.(2)局部有界性:若limx→x0f(x)存在,则存在δ>0,使f(x)在U={x|0<|x-x0|<δ内有界.(3)局部保号性:○1(脱帽)若limx→x0f(x) =A>0,则存在x0的一个去心邻域,在该邻域内恒有f(x)>0.○2(戴帽)若存在x0的一个去心邻域,在该邻域内f(x)>(≥)0,且limx→x0f(x)=A(∃),则A≥0.极限四则运算:设lim x→x 0f(x)=A(∃),lim x→x 0f(x)=B(∃),则○1lim x→x 0 [f (x )±g (x )]=A±B. ○2lim x→x 0[f (x )g (x )]=A⋅B. ○3lim x→x 0f(x)g(x)=AB(B≠0). 等价无穷小(9)sin x 1−cos x ~12x 2 arc sin x a x −1~lna ⋅xtan x (1+x )α−1~αx ~xarctan xln (1+x )e x −1lim n→∞√n n =1 , lim n→∞√a n=1, (a>0) ,lim x→0+x δ(ln x )k =0 ,lim x→+∞x k e −δx =0 (δ>0,k >0) lim n→∞√a 1n +a 2n +⋯+a m nn =max {a i }i =1,2,…,m;a i >0洛必达法则:“00”型:○1lim x→x 0f(x)=0, lim x→x 0g(x)=0; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0 ○3lim x→ x 0f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x0 f′(x)g′(x)“∞∞”型:○1lim x→x 0f(x)=∞, lim x→x0g(x)=∞; ○2f(x),g(x)在x 0的某去心领域内可导,且g’(x)≠0○3lim x→x 0 f′(x)g′(x)=A 或为∞.则limx→x 0f(x)g(x)=limx→x 0 f′(x)g′(x)[注]洛必达法则能不能用,用了再说.数列极限存在准则: 1. 单调有界数列必收敛2.夹逼准则:如果函数f(x),g(x)及h(x)满足下列条件: (1) g(x)≤f(x)≤h(x); (2)limg(x)=A,limh(x)=A, 则limf(x)存在,且limf(x)=A .两种典型放缩:○1max{u i }≤∑u i n i=1≤n∙max{u i }; ○2n∙min{u i }≤∑u i n i=1≤n∙max{u i }选取的依据是谁在和式中去决定性作用海涅定理(归结原则):设f(x)在 (x 0,δ)内有定义,则lim x→x 0f(x)=A 存在⟺对任何以x 0为极限的数列{x n }(x n ≠x 0),极限lim n→∞f(x n )=A存在.连续的两种定义:(1) lim Δx→0Δy =lim Δx→0[f (x 0+Δx )−f (x 0)]=0(2) lim x→x 0f (x )=f (x 0)间断点:第一类:可去、跳跃;第二类:无穷、振荡[一元微分学]导数定义式:f’ (x 0)=dydx |x=x0=limΔx→0f (x 0+Δx )−f(x 0)Δx=limx→x 0f (x )−f(x0)x−x 0微分定义式:若Δy=A Δx +o(Δx ),则dy=A Δx . 可导的判别:(1) 必要条件:若函数f(x)在点x 0处可导,则f(x)在点x 0处连续.(2) 充要条件:f ′(x0)f +(x 0)′,f −(x 0)′都存在,且f +(x 0)′=f −(x 0)′.[注]通俗来说就是连续函数不一定可导;函数在一点可导且在该点连续,但在这点的某个邻域未必连续;函数可导,则其导函数可能连续,也可能震荡间断. 可微的判别:limΔx→0Δy−AΔx Δx=0,则f(x)可微。
考研数学公式总结
考研数学公式总结考研数学是考研数学专业课中的重要一科,掌握好数学公式是考研数学的关键。
下面是考研数学常用的一些公式总结。
1.代数与数论1.1二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 +...+ C(n,n-1)ab^(n-1) + C(n,n)b^n1.2二次方程求根公式:x = (-b ± sqrt(b^2 - 4ac)) / 2a1.3勾股定理:a^2+b^2=c^21.4平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^21.5一元二次不等式求解方法:ax^2 + bx + c > 0 或 < 0当a>0,则解集为(-∞,x1)∪(x2,+∞)当a<0,则解集为(x1,x2)1.6等差数列求和公式:S = n(a1 + an) / 21.7等比数列求和公式:S = (a1 - an*q) / (1 - q),当,q, < 12.数学分析2.1极限相关公式:x,<1时,1/(1-x)的幂级数展开为1+x+x^2+x^3+..sin(x) 的幂级数展开为 x - x^3/3! + x^5/5! - ...cos(x) 的幂级数展开为 1 - x^2/2! + x^4/4! - ...e^x的幂级数展开为1+x+x^2/2!+x^3/3!+...2.2微积分相关公式:微分公式:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)积分公式:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx 2.3泰勒展开公式:函数f(x)在x=a处的泰勒展开公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n3.概率论与数理统计3.1排列组合:排列公式:P(n,m)=n!/(n-m)!组合公式:C(n,m)=n!/[(n-m)!*m!]3.2二项分布:P(X=k)=C(n,k)*p^k*q^(n-k),其中q=1-p3.3正态分布:P(a < X < b) = ∫[a, b] (1/sqrt(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) dx3.4样本均值:样本均值的期望:E(¯X)=μ样本均值的方差:Var(¯X) = σ^2 / n3.5方差:总体方差的估计量:s^2 = Σ(xi - x_bar)^2 / (n - 1)以上是考研数学中较为常见的一些公式总结,这些公式涵盖了代数与数论、数学分析、概率论与数理统计等知识点。
考研数学二技巧
考研数学二技巧
考研数学二的技巧主要包括以下几点:
1. 理解并掌握基本概念和公式:数学二的知识点相对比较固定,但难度较大,需要深入理解基本概念和公式,打下扎实的基础。
2. 做题:数学二需要通过大量的练习来提高解题能力。
建议从练习册或历年真题中选取具有代表性的题目进行练习,并逐步提高难度。
3. 注意答题技巧:数学二的题目往往有多种解法,需要根据实际情况选择最合适的解法。
例如,对于一些计算量较大的题目,可以采用分部计算的方法,避免一次性计算过多导致错误。
4. 保持好的心态:考试时不要紧张,保持冷静,合理安排时间。
遇到难题时不要慌张,尽量找到解题思路。
5. 提前熟悉考场环境:在考试前,可以提前去考场熟悉环境,以免因为不熟悉环境影响考试发挥。
以上就是考研数学二的技巧,希望对你有所帮助。
祝你考试顺利!。
考研数二知识点归纳总结
考研数二知识点归纳总结考研数学二,通常指的是高等数学和线性代数的组合。
以下是对考研数学二知识点的归纳总结:# 高等数学部分1. 函数、极限、连续性- 函数的概念与性质- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点2. 一元函数微分学- 导数的定义与几何意义- 基本初等函数的导数- 高阶导数- 微分中值定理- 洛必达法则- 函数的单调性与极值问题- 曲线的凹凸性与拐点- 函数图形的描绘3. 一元函数积分学- 不定积分与定积分的概念- 基本积分公式- 换元积分法与分部积分法- 定积分的性质与几何意义- 定积分的计算- 广义积分4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度5. 多元函数积分学- 二重积分与三重积分- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理6. 无穷级数- 常数项级数的收敛性- 幂级数与泰勒级数- 函数的幂级数展开7. 常微分方程- 一阶微分方程的解法- 高阶微分方程的降阶- 线性微分方程的解法# 线性代数部分1. 矩阵理论- 矩阵的运算- 矩阵的秩与行列式- 逆矩阵与伴随矩阵- 分块矩阵2. 线性空间与线性变换- 向量空间的定义与性质- 基与维数- 线性变换与矩阵表示- 特征值与特征向量3. 线性方程组- 齐次线性方程组与非齐次线性方程组- 高斯消元法- 克拉默法则- 矩阵的行列式与线性方程组的解4. 特征值问题与二次型- 特征值与特征向量的计算- 对称矩阵的谱分析- 二次型的标准化与规范型5. 内积空间与正交性- 内积空间的定义与性质- 正交基与正交投影- 正交变换与酉矩阵6. 矩阵分解- 矩阵的LU分解- 矩阵的QR分解- 奇异值分解(SVD)结束语:考研数学二的知识点广泛且深入,掌握这些基础知识点是解决复杂数学问题的关键。
希望以上的归纳总结能够帮助考生系统地复习和巩固相关知识,为考研数学二的考试做好充分的准备。
数学公式背诵六个技巧帮你记牢考研数学公式
数学公式背诵六个技巧帮你记牢考研数学公式一、利用图形化方法记忆公式我们知道图像是人类记忆的一种有效方式,因此我们可以尝试将数学公式转化成图形以帮助记忆。
例如,在学习三角函数时,可以利用单位圆和直角三角形的图形来记忆正弦、余弦和正切的定义和性质。
这样,每次想起图形,就会自然而然地记起相应的公式。
二、创造联想记忆法联想记忆法是一种将抽象的内容与具体的事物联系起来的方法。
我们可以将数学公式与日常生活或其他具体的事物相连接,创造出一种有趣的联想。
例如,记忆求和公式时,可以想象自己在超市购物,将物品的价格逐个相加。
这样,每次需要使用求和公式时,就会自然而然地联想到超市购物的场景,帮助记忆。
三、编写专属于自己的公式手册将学习过的数学公式整理成一个小册子,每天定期温习。
可以按照不同的数学领域进行分类,将相似的公式放在一起。
同时,可以利用不同颜色的笔或笔记软件进行标注,突出关键公式或重要性质。
通过不断翻阅自己的公式手册,可以加深记忆。
四、反复练习和应用公式复习只是记忆的一部分,更重要的是通过反复练习和应用公式,加深对其的理解和记忆。
可以通过做题、解题和应用实例的方式来加深对公式的理解,并锻炼应用公式的能力。
这样,公式就会在实际问题中发挥作用,更加容易记牢。
五、利用语言记忆公式将数学公式转化为一段有意义的语言,通过语言来记忆公式。
可以将公式中的每个符号和变量转化成特定的词语,每个符号和变量之间的关系用语言描述出来,形成一段具有逻辑、有趣的故事。
通过讲述这个故事来记忆公式,会更加生动、有趣,并且容易记忆。
六、交流和合作学习与他人进行交流和合作学习,可以通过讨论、解答问题等方式互相加深记忆和理解。
可以在学习小组中互相提问、共同解题,也可以在网络上加入学习群组,与其他同学一起学习交流。
通过与他人的交流和合作,可以不断强化对数学公式的记忆。
通过以上的六个技巧,我们可以更加高效地记忆考研数学公式。
在备考过程中,记忆数学公式是非常重要的一部分,希望大家能够利用这些技巧,提高记忆效果,顺利通过考试。
考研数学二技巧和方法
考研数学二技巧和方法
考研数学二的技巧和方法如下:
1. 了解考试大纲:深刻理解考试大纲,明确考试要求和命题趋势。
2. 制定复习计划:根据考试时间制定合理的复习计划,安排每天的学习内容和时间。
3. 系统学习基础知识:重点掌握基本概念、性质、定理和公式,可以通过看教材、做笔记、做习题等方式巩固。
4. 刷真题:多做真题,掌握考试形式和难度,寻找自己的薄弱环节,有针对性地加强练习。
5. 模拟考试:模拟考试可以帮助你了解自己的考试水平和薄弱环节,及时调整复习策略。
6. 善于归纳总结:对学过的知识进行归纳总结,形成自己的知识体系,有助于加深理解和记忆。
7. 做好时间管理:在复习过程中,要合理安排时间,保证每天有足够的学习时间和效率。
8. 保持积极心态:保持积极的心态,相信自己能够克服困难,取得好成绩。
以上是考研数学二的一些技巧和方法,希望对你有所帮助。
考研数学二必背公式及知识点
考研数学二必背公式及知识点考研数学二对于很多考生来说是具有一定挑战性的科目,其中掌握必背的公式和知识点是取得好成绩的关键。
下面就为大家详细梳理一下考研数学二中那些必须牢记的公式和重要知识点。
一、函数、极限、连续1、函数的性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。
周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。
2、极限的计算四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x)= A ± B;lim f(x) × g(x) = A × B;lim f(x) / g(x) = A / B (B ≠ 0)。
两个重要极限:lim (1 + 1/x)^x = e (x → ∞);lim sin x / x= 1 (x → 0)。
3、连续的定义函数 f(x) 在点 x₀处连续,当且仅当 lim f(x) = f(x₀) (x → x₀)。
二、一元函数微分学1、导数的定义函数 y = f(x) 在点 x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。
2、基本导数公式(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算f(x) ± g(x)'= f'(x) ± g'(x)f(x) × g(x)'= f'(x)g(x) + f(x)g'(x)f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)²(g(x) ≠ 0)4、复合函数求导法则若 y = f(u),u = g(x),则 dy/dx = dy/du × du/dx5、微分的定义dy = f'(x)dx6、罗尔定理、拉格朗日中值定理、柯西中值定理罗尔定理:若函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),则在(a, b) 内至少存在一点ξ,使得 f'(ξ) =0。
数学2考研知识点总结
数学2考研知识点总结一、高等代数1. 行列式与矩阵行列式的性质及按行列式的公式进行展开;矩阵的定义及运算,包括矩阵的相加、相乘及转置等;线性方程组的解法。
2. 线性空间向量空间的概念及相关性质;线性相关性与线性无关性;基及维数的概念及相关定理。
3. 矩阵的相似性矩阵的相似对角化及其条件。
4. 线性变换线性变换的定义及相关性质;线性变换的矩阵表示及标准形。
5. 对称矩阵对称矩阵及正定性的判定。
6. 二次型二次型的概念及标准化处理。
二、数学分析1. 常数列常数列的极限概念及相关性质;常数列的收敛性判定。
2. 函数的极限函数的极限定义及性质;函数极限的计算方法。
3. 连续性函数的连续性概念及相关定理;连续函数的性质及在区间上的应用。
4. 导数与微分函数的导数概念及计算方法;函数的微分及相关定理;隐函数与参数方程的导数计算方法。
5. 泰勒公式函数在一点的泰勒公式及泰勒展开式;几种常见函数的泰勒公式。
6. 不定积分不定积分的概念及性质;基本积分法及常用积分公式。
7. 定积分定积分的概念及性质;定积分的计算方法及应用。
8. 罗尔定理罗尔定理的定义及应用;拉格朗日中值定理及柯西中值定理。
9. 序列与级数数列的极限概念及收敛性判定;级数的概念及收敛性判定;常见的级数收敛判别法。
10. 常微分方程常微分方程的概念及基本概念;一阶线性微分方程的解法;二阶线性常系数齐次微分方程的解法。
三、复变函数1. 复数及其运算复数的概念及相关性质;复数的几何表示及共轭复数。
2. 复函数复函数的概念及性质;复函数的导数及柯西—黎曼方程。
3. 复积分复函数的积分及柯西—黎曼积分定理;积分路径无关的条件。
4. 留数定理留数定理的定义及应用;留数定理在复积分中的应用。
四、概率统计1. 概率基本概念随机试验、样本点、基本事件等概念;概率的定义及性质。
2. 随机变量随机变量的概念及相关性质;离散型随机变量及其分布律;连续型随机变量及其概率密度函数。
高等数学二常用公式
《高等数学二》考试常用方法和公式一、 求极限 (一)形如)()(lim x g x f a x → 1.代入法把a x =代入)()()()(a g a f x g x f = (0)(≠a g ) 2.因式分解法若把a x =代入00)()()()(==a g a f x g x f 可分解分子或者分母,约去一个因式,再把a x =代入即可。
3.重要极限法若把a x =代入00)()()()(==a g a f x g x f 且分子或分母中含有)sin(或)tan(,利用公式 1)()sin(lim 0)(=→ 1)()tan(lim 0)(=→ 4.洛必达法则若把a x =代入00)()()()(==a g a f x g x f 或∞∞,可利用洛必达法则,即 )()(lim )()(lim x g x f x g x f a x a x ''=→→,再把a x =代入即可。
(二)形如01110111lim b x b x b x b a x a x a x a m m m m n n n n x ++++++++----∞→L L 方法:⎪⎪⎩⎪⎪⎨⎧>∞<==++++++++----∞→m n m n m n b a b x b x b x b a x a x a x a mn m m m m n n n n x ,,0,lim 01110111L L(三)形如e x =⎪⎪⎭⎫ ⎝⎛+∞→)()(11lim 或()e x =+→)(1)(1lim 0 (四)形如)()()())((lim 0)(a f a f a f '=-+→ 二、 分段函数分段点处连续或极限存在(1)⎩⎨⎧>≤=bx x f b x x f x f ),(),()(21在b x =处连续(或极限存在),求表达式中的待定常数方法:把b x =代入两个表达式并令其相等,即令)()(21b f b f =,解出待定常数即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式一、常用的等价无穷小 当x →0时x ~sin x ~tan x ~arcsin x ~arctan x ~ln (1+x ) ~ e x -1 a x -1~x ln a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1-cos x ~ 21x 2增加x -sin x ~61x 3 对应 arcsin x –x ~ 61x 3 tan x –x ~ 31x 3 对应 x - arctan x ~ 31x 3二、利用泰勒公式e x = 1 + x ++!22x o (2x ) ) (33 o !3sin x x x x +-= cos x = 1 – +!22x o (2x ) ln (1+x )=x – +22x o (2x ) 导数公式:a x x a a a ctgxx x tgx x x xctgx xtgx a x xln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式: ·半角公式:·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 多元函数微分法及应用 微分法在几何上的应用: 方向导数与梯度:多元函数的极值及其求法: 重积分及其应用:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ微分方程的相关概念:即得齐次方程通解。
,代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。
得:的形式,解法:为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u xyy x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0),(),(),(ϕϕϕ一阶线性微分方程: 全微分方程: 二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2.代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4.设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5.行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7.证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4.关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1.一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2.行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0; 3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5.矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤; ②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C ab C ab Ca bC b C a b -----=+=++++++=∑L L ; 注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m nn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mm m m rnr r n nn n nnn n r C C C C C CrC nC ;③、利用特征值和相似对角化: 7.伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A -=8.关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭M );④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应; 2.①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3.矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面; 6.线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定; 7.向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8.方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;(111P 题33结论)5、相似矩阵和二次型1.正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2.施密特正交化:12(,,,)r a a a L 11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4.①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7.n 元二次型T x Ax 为正定: A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。