考研高数:泰勒公式求极限

合集下载

考研高数求极限的方法总结

考研高数求极限的方法总结

考研高数求极限的方法总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--考研高数求极限的方法总结这是一篇由网络搜集整理的关于2017考研高数求极限的方法总结的文档,希望对你能有帮助。

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

泰勒公式在考研数学的常见应用

泰勒公式在考研数学的常见应用

泰勒公式在考研数学的常见应用泰勒公式在解题中的妙用——从几道数学考研题说起泰勒公式是数学分析中的重要工具之一,它反映了函数在某一点处的局部行为。

在很多数学问题中,泰勒公式的应用可以帮助我们更好地理解问题的本质,从而找到更简洁高效的解题方法。

本文将从几道数学考研题入手,详细阐述泰勒公式在解题中的应用,同时介绍一些应用技巧和注意事项,并进一步拓展泰勒公式在更高维度和更复杂问题中的应用。

求limx→0⁡(1+x+x2/2−−−−−−−√)−1x−−−−−−−−−−−−−−−√ex−1ex−1这道考研题中,我们可以将函数f(x)=(1+x+x2/2)−−−−−−−−−−−−−−−√ex −1在x=0处展开成泰勒级数,然后利用级数求和的方法得到答案。

具体步骤如下:f(x)=ex−1+xex−1+x22ex−1=(x+1)+x22+O(x3)因此,limx→0⁡f(x)=limx→0⁡(x+1)+limx→0⁡x22+O(x3)=12+1+0=32这道考研题可以利用泰勒公式将sin⁡xx展开成幂级数,然后求导n 次得到答案。

具体步骤如下:y=sin⁡xx=∑k=0∞(−1)k×x2k+O(x3)y(n)=∑k=n∞(−1)k×2k×x2k−n+O(x3)因此,y(n)(0)=∑k=n∞(−1)k×2k×1=(−1)n×2n×1=2n×(−1)n证明:(1+x)ln⁡(1+x)−xx=O(x3)这道考研题可以利用泰勒公式将等式中的函数展开成幂级数,然后进行恒等变形得到答案。

具体步骤如下:f(x)=(1+x)ln⁡(1+x)−xx=(1+x)(ln⁡1+ln⁡(1+x))−xx=x+x2+O(x3)−ln⁡(1+x)+O(x3)=O(x3)因此,f(x)(0)=0+0+…=0,即(1+x)ln⁡(1+x)−xx=O(x3)成立。

泰勒公式在很多数学问题中都有着广泛的应用,例如在微积分、线性代数、概率论等领域。

2024考研数学常见泰勒公式展开式

2024考研数学常见泰勒公式展开式

2024考研数学常见泰勒公式展开式泰勒公式是数学分析中的一个重要定理,它给出了一个函数在其中一点附近的多项式逼近。

它的形式如下:设函数f在点x=a处n+1次可导,则它在点x=a处的泰勒展开式为:\[f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x)\]其中,Rn(x)为泰勒余项,余项有以下形式:\[R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}\]其中a<c<x为函数f在区间[a,x]上的其中一点。

常见的泰勒公式展开式如下:1.指数函数的泰勒展开式:\[e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n! }+R_n(x)\]其中\[R_n(x)=\frac{e^c}{(n+1)!}x^{n+1}\]2.正弦函数的泰勒展开式:\[\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{\cos c}{(2n+2)!}x^{2n+2}\]3.余弦函数的泰勒展开式:\[\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{\sin c}{(2n+1)!}x^{2n+1}\]4.自然对数函数的泰勒展开式:\[\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1}\frac{x^n}{n}+R_n(x)\]其中\[R_n(x)=(-1)^n\frac{(1+c)^{-n}}{n+1}x^{n+1}\]5.三角函数的泰勒展开式:\[\begin{align*} \sin x &= x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+\frac{(-1)^n}{(2n+1)!}x^{2n+1} \quad \text{(奇次项展开式)} \\ \cos x &= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+\frac{(-1)^n}{(2n)!}x^{2n} \quad \text{(偶次项展开式)} \end{align*}\]除了上述常见的泰勒展开式之外,还有一些其他函数的泰勒展开式,如二次函数、指数对数混合形式等,这些展开式在不同的数学问题中有着重要的应用。

(完整版)泰勒公式求极限部分资料

(完整版)泰勒公式求极限部分资料

关于用泰勒公式求极限的部分讲解1. 用奏勒必丸求收曝【例2. 23】求械般liml ;―J —L - —U1 .工 < 111(1 一 工・) SHL - X )【分析与解苔】请对照若本眩的解答过理去看题斥的【注】并棒刻题佥* 申极炭=恤号吟「呼1+于> —一 •泄!二!坦丄土4O (.T X )]+ 卜'—-J-J* —◎(*)]........ .... ......... ..... ......... . 1 lim zT lll( 1 + J- >- Sin J- .2 MJ —lin(2〉若所展園数为丙个以上审数的代数和■应展开到鼻为几次穿?原则圧:分别展开到它们的系数消不掉的丁次数展低项为止.例如山一"2=工- 4-T 3+O (J 3)即町・ 0呆话需要宙出无穷小的运算规则:讼为正能数•则(Do(r-) ±。

(*) =/>(./) • / =(加减法时低阶-吸收•'角阶) ②o(广)• o(j n ) = o(x^) x R •o(x -) =o(工f)(義除法时阶数-累加”)Oo(JLr-) =▲ •。

(二・)一 o(J)M H 0,为計数(非冬常敷不影响阶数)/解了乗勒公式的使用•接下来我们去处理常见的泰勒公式•去休脸其魅力•熟记下而 一组公式’'十❶(j?)ln( 1+工)=工一• r 2~o(j 2) ⑤【拄】(1)対以上公式踐坝•可以鮒到一纠爭函敎的尊价无穷小.依次可彳孕: 二】< —r 1 ・arcsitkr — 4-./* ・ i :m :—』■-寺“"■ «r —srctanx 〜寺工'■ x hi(l t 丄〉~・(2)變学会对这组叢旳数的尊价尢穷小公式广义化•例如:当 LC 时•若柯-0•则ill x — stnor P ■可得,狗— bin 向 豹' ■迸咅自己去举一反二.【分析与解答】因 x-^Otftinjr-^Ot由狗一Nn 殉〜*(殉)珂狗~0)丄故原极^ = lim- sin.r=.r — -^-T 3 4-n( r*) 6arcsinx —JC -討+心)②【例2.2J 】求lim Mnr[:sirKr-Bin«eirxr)]4/ sin.r —sin(sinj-) —(sirvr)3 b (sinr)1丄7* taiu -• Jx**O【例2・26俅I E 些口泌二彳咲i •oarctaivr — tanx [分析与解答】因 j —K) H4 •arcsinr—siar^yj 3 > arctaar —tan.T3訐 1 故原极限= lim 」L = — +・3堆续看一个综合题.【例2・27】当文~0时・f(x) = J — (ox 十昴iikz)COSJ 3P 是符价无穷小•求常数a ■ b. 【分析与解答】因为 Sinx = JT — ryX S + n(J 3 ) • COSJ = 1 —-JrJ 2 +<)&)•3!Z! _£,)+o(F )](1 -芥2 +o(z :))(“一&)』一 -|-&z 1 十 O (P 川】一)jff +fk +o (y ), 故 1 —(a +厶)=0¥ +专=】. 丁是 a =— 2 ■b = 3• 2. 乙知权眼反求手裁处理比类何削恋用的方法为结论:a •若 lim “V? = c 存任•则 limx;(二)一 0= lim/(x)= 0. * -□ g (x ) < <-*C Jb ・若lim 今丄-c ,0 ♦则 lim/(/)■ 0= lim 呂(工)■ 0. Jf ■口 g (工) 上・口 * •口^lim/(r)=co»hm^( r) = oo t BU 二者为同阶无穷大. r-«n JT •口 c. 若 linij (J )^(X )= c 存任•则 lim/ (x)= 80 lim^(x)= U ・ z-*0 z->C d. 若lirn( f (x)—g(x))存妊•则lim/(_r)=8nlim£(Q- •一者为同阶入. L 口 L 口 X*U••若lim /a? [£(・")=< 存在•在分n 中加减一些项•使分了中出现一些典型的差所 A(J -) 数的形式,使lim 八护⑴=lirn ⑴)一小厂厂&⑴=I 诚川打仁)- h (r) 一口 A (J ) ••匚 h (x)OJC =(1 — (a 十 b)Xr +»(『)一厂)h(r)拆分后•其中束项可用泰衲公式直接得结果•见例2.30的解法二.【1 2・ 28】若lim (J £ + jr + 1" + ax +,») = 0 •求a ・/>・【分析与解答】由(c)结论•腺示「此题的突慨I」金尸式子圧边提取8这坝.故原极限=■】im(—x)(J1 +丄+当—“ 一=lim f /1 + —上―8r z丿b =— lim (+ 丁 + 】+ r)=— lim …"〒丄 ------- =■一冷 +工 + 1 —a* 2【例2. 29】若lim (z•十7工’十1 )* —J = b • < n > 4 ft -A 0 )•求m■ rt、【分析与樓答】此极限为—8”型・口极限存在•那么在丹> 4 (h + 7h + l)・的工的最髙次呈为工E •如=1 •舍则祓限一定不存在.于是原极限■ lim (/•十7+十1 —工)=〃jrf 8 '的条件下.71十M十丄_]LV 亍才7 1因而川—1=4・;1 = 5・〃=一•加==・V V[例2・30】i殳皿】叫1+匸)_冲4心 =2 ■则a ="■•o jrlim x【分析与解答】解法一:使用祭勒公式原极限=lim—ox ---- —x2 + o(x2)—ar —6tr2___ 一7(1 — )r — ( -y + 6 lr s + o (J* )lim ---------------- ' . 2 ------LO JC9因而1 —a = 0 • — (+ 十町=2=>a = 1.6 =—亍.。

高等数学:(11)泰勒公式求极限(第三章微分中值定理)

高等数学:(11)泰勒公式求极限(第三章微分中值定理)

高等数学:(11)泰勒公式求极限(第三章微分中值定理)
常用的泰勒展开式
常见的带佩亚诺余项的泰勒公式(麦克劳林公式)
以上的式子非常重要,尽量记下来吧...
在做题时,我们并不需要把函数展开到n阶,至于函数到底展开到多少阶,这里有相应的套路~
未定式为A/B型,即极限为分式形式时
面对分式形式的未定式,我们要将分子和分子展开至同阶的形式,即:若分母(分子)是n阶,则分子(分母)展开至n阶
如:
A-B型
遇到两个函数相减的未定式,我们需将A,B分别展开至系数不想等的x的最低幂为止
如:
最后我们再看一个例题:
谢谢观看。

考研数学二公式高数线代(费了好大的劲)技巧归纳

考研数学二公式高数线代(费了好大的劲)技巧归纳

高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

考研数学一-高等数学(五)

考研数学一-高等数学(五)

考研数学一-高等数学(五)(总分:99.99,做题时间:90分钟) 一、填空题(总题数:10,分数:40.00)(分数:4.00)解析: [解析] 先作如下变形:解法一:用洛必达法则求这个极限其中解法二:用泰勒公式求这个极限相减得因此(分数:4.00)解析: [解析] 因为故则所以3.极限(分数:4.00)解析: [解析] 将分子变形为又,当x→0时,则(分数:4.00)解析: [解析] 所求极限为“∞-∞”型未定式,应首先通分化为“ ”型未定式后,再进行求解.(分数:4.00)解析: [解析] 解法一:属1 ∞型利用等价无穷小因子替换得即解法二:属1 ∞型,用求指数型极限的一般方法而即(分数:4.00)解析:1 [解析] 因故所求极限是“ ”型未定式,用分项求极限法可得(后一项的分子为有界变量,分母是无穷大量,故其极限为0).7.设,则(分数:4.00)解析: [解析]因为,所以8.设f(x)在x=0处可导且f(0)=1,f"(0)=3,则数列极限(分数:4.00)解析:e 6 [解析] 这是指数型的数列极限,一般先进行变形,并转化为函数极限求解.又故I=e 6.(分数:4.00)解析: [解析]把看作函数在处的函数值,其中正好是将区间[0,1]n等分所得的第k个分点(k=1,2,…,n),这时每个小区间的长度为.于是可看作定积分对应的和式极限其中又因为在[0,1]上连续,于是在[0,1]上可积,故10.设f(x)连续,且当x→0时,x 3等价的无穷小量,则f(0)= 1.(分数:4.00)解析: [解析] 由无穷小量的定义及洛必达法则,可得所以,二、解答题(总题数:15,分数:60.00)11.设f(x)在(x 0 -δ,x 0 +δ)有n阶连续导数,且f k (x 0 )=0,k=2,3,…,n-1;f (n) (x 0)≠0,当0<|h|<δ时,f(x 0 +h)-f(x 0 )=hf"(x 0 +θh)(0<θ<1),求的值.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:将f"(x 0 +θh)在x=x 0处展开成泰勒公式得代入原式得令h→0得所以12.设函数f(x)在(-∞,+∞)三阶可导,且存在正数M,使得|f(x)|≤M,|f"(x)|≤M对-∞,+∞)成立,求证:f"(x),f"(x)在(-∞,+∞)有界.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:将f(x+1)与f"(x-1)分别在点x展开成带拉格朗日余项的二阶泰勒公式得为估计|f"(x)|的大小,将上面两式相减并除以2即得于是即f"(x)在(-∞,+∞)有界.为估计|f"(x)|的大小,由式①+式②得于是即f"(x)在(-∞,+∞)有界.13.设函数f(x)在(-∞,+∞)内连续,f(0)=0,且x,t∈(-∞,+∞)满足试求f(x)在(-∞,+∞)内的导函数f"(x).(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:当x≠0时,令xt=μ,可得于是,当x≠0时,,即由f(x)的连续性知可导,从而xf(x)可导,于是f(x)当x≠0时可导,且f(x)=xf"(x)+f(x)+2xsinx+x 2 cosx.由此可得f"(x)=-2sinx-xcosx,x≠0,求积分知,当x≠0时,利用f(x)在(-∞,+∞)内的连续性及f(0)=0,可得,得C=-1.于是f(x)=cosx-xsinx-1,不仅当x≠0时成立,而且对x=0也成立,即 f(x)=cosx-xsinx-1,x∈(-∞,+∞),故 f"(x)=-2sinx-xcosx,x∈(-∞,+∞).证明:(分数:4.00)(1).若f(x)在[a,b]上连续,则存在ξ∈(a,b) 2.00)__________________________________________________________________________________________ 正确答案:()解析:设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最小值,则有不等式两边同时除以(b-a)得到显然,介于函数f(x)的最大值和最小值之间.根据闭区间上连续函数的介值定理可知.在区间[a,b]上至少存在一点ξ,使得函数f(x)在该点处的函数值与相等,即等式两边同时乘以(b-a)可得结论得证.(2).若φ(x)有二阶导数,且满足φ(2)>φ(1)ξ∈(1,3),使得φ"(ξ)<0.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由第一小题知,至少存在一点η∈(2,3),使得,又,所以有φ(2)>φ(1),φ(2)>φ(η).因为φ(x)有二阶导数,所以由拉格朗日微分中值定理可知,至少存在一点ξ1∈(1,2),使得且至少存在一点ξ2∈(2,η),使得再由拉格朗日微分中值定理可知,至少存在一点ξ∈(ξ1,ξ2 ),使得14.设函数f(x)可导,且有f"(x)+xf"(x-1)=4,又求(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:对变限积分,需经过两次求导,方可得到f(x)的导数形式,而中含有x,需先换元再求导.可设u=xt,则所以即两边同时对x求导得再次对x求导得f"(x)+xf"(x-1)+2f(x-1)=24x 2 +6x,将f"(x)+xf"(x-1)=4代入得f(x-1)=12x 2 +3x-2,故15.设f(x)在[0,+∞)内可导,f(0)=1,且满足求(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:∫[f"(x)-f"(x)]e -x dx=∫f"(x)e -x dx-∫f"(x)e -x dx.由于∫f"(x)e -x dx=f"(x)e -x+∫f"(x)e -x dx,所以∫[f"(x)-f"(x)]e -x dx=f"(x)e -x +C.对于方程令x=0得f"(0)=f"(0)=1.对两边求导,有(1+x)f"(x)+f"(x)-(1+x)f"(x)-f(x)+f(x)=0,即 (1+x)f"(x)-xf"(x)=0.令p=f"(x),有即 lnp=x-ln(1+x)+lnC,所以,即又f"(0)=1,于是C=1,即,所以16.设质点P所受的作用力为F,其大小反比于点P到坐标原点O的距离,比例系数为k;其方向垂直于P、O的连线,指向如下图所示,试求质点P由点经曲线到点时,力F所做的功.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:设点P坐标为P(x,y),∠POB=θ,则故其中L为从点沿到点的一段.设,因故曲线积分①在第一象限与路径无关,可选择从A到B的直线段积分.所在的直线方程为,故17.求直线在平面π:x-y+2x-1=0上的投影直线L 0的方程,并求L 0绕y轴旋转一周所成曲面的方程.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:经过L作平面π1与π垂直,则π1与π的交线就是L在π上的投影,L的方向向量s={1,1,-1},π的法向量n={1,-1,2}是平面π1上的两个不共线向量,点p 0 (1,0,1)是L上一定点,设p 1(x,y,z)是平面π1上任一点,则共面,即即x-3y-2z+1=0.故L在π上的投影是为求L 0绕Y轴的旋转面,先把L 0表示为以Y为参数的形式,则旋转面的参数方程为消去θ得即旋转曲面的方程为4x 2 -17y 2 +4z 2 +2y-1=0.18.已知f(x,y)的2阶偏导存在且连续,且f(x,0)=1,f" yy(x,y)=x 2+2x+4,f" y(1,0)=-cos1,求f(x,y)的表达式.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:f" yy (x,y)=x 2 +2x+4两边对y积分得f" y (x,y)=(x 2 +2x+4)y+φ(x),①式①两边对x求偏导得则对φ"(x)取积分得所以(C为任意常数).代入点(1,0)得则,故对式②两边求积分:代入点(x,0),f(x,0)=C 1 =1,所以f(x,y)在点(0,0)处的连续性以及可微性.(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:(1)因为sin(x 2 +y 2)≤x 2 +y 2,所以0≤|f(x,y)|≤|x+y|,且所以所以f(x,y)在点(0,0)处连续.(2)同理f" y (0,0)=1,因为所以式①为0,即f(x,y)在点(0,0)处可微.综上f(x,y)在点(0,0)处连续可微.4.00)(1). 2.00)__________________________________________________________________________________________ 正确答案:()解析:(x,y)≠(0,0)时,(2).f(x,y)在点(0,0)处是否可微?为什么? 2.00)__________________________________________________________________________________________ 正确答案:()解析:因为又因此在点(0,0)处连续,故f(x,y)在点(0,0)处可微,且微分为零.设u=u(x,t)有二阶连续偏导数,并满足其中a>0为常数.(分数:3.99)(1).作自变量代换ξ=x-at u对x,t的一、二阶偏导数与u对ξ,η的一、二阶偏导数的关系式.(分数:1.33)__________________________________________________________________________________________ 正确答案:()解析:由复合函数求导法求导得(2).导出u作为ξ,η的函数的二阶偏导数所满足的方程.(分数:1.33)__________________________________________________________________________________________ 正确答案:()解析:由第一小题中的式①、②及题设条件得即(3).求u(x,t).(分数:1.33)__________________________________________________________________________________________ 正确答案:()解析:把式③写成,即与η无关,h(ξ)是连续可微的任意函数,再对ξ积分一次,并注意到积分常数可依赖η,于是将u=f(ξ)+g(η)用变量x,t表示得u(x,t)=f(x-at)+g(x+at),其中,f(ξ),g(η)是任意二阶连续可微的函数.20.已知一个三角形的周长为16,求使它绕自己的一边旋转时所构成旋转体体积最大时的三角形。

泰勒公式及其在极限运算中的运用

泰勒公式及其在极限运算中的运用

泰勒公式及其在极限运算中的运用泰勒公式是数学分析中的一个重要公式,广泛应用于函数极限、导数计算以及微积分等领域。

本文将对泰勒公式进行详细介绍,并讨论其在极限运算中的应用。

泰勒公式是由苏格兰数学家布鲁尔-泰勒 (Brook Taylor) 在18世纪提出的。

该公式是将一个函数在其中一点的附近进行多项式展开的一种方法。

泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+Rn(x)在该公式中,f(x)表示需要求解的函数,a是给定的点,f(a)是函数在该点的函数值,f'(a)是函数在该点的一阶导数值,f''(a)是函数在该点的二阶导数值,f^n(a)表示函数在该点的n阶导数值。

最后一项Rn(x)表示剩余的误差,即多项式展开与原函数之间的差值。

泰勒公式的应用之一是极限运算。

当需要求解一些函数在其中一点的极限值时,可以利用泰勒公式来进行近似计算。

具体的步骤如下:1.选择给定的点a;2.求解函数在该点的一阶、二阶、三阶...n阶导数值;3.将导数值代入泰勒公式中,并计算多项式展开的和;4.计算剩余项Rn(x);5.将得到的多项式展开式和剩余项带入极限公式中,计算极限值。

在极限运算中,泰勒公式的应用可以大大简化计算的复杂度。

若函数是连续可导的,且多项式展开的项数足够多,那么剩余项Rn(x)的大小趋近于零,可以忽略不计。

这样,通过泰勒公式计算得到的多项式展开式就是函数在给定点的极限值的一个很好的近似。

泰勒公式的应用并不仅限于极限运算,还可以用来计算函数的导数值。

通过求解各阶导数值,可以利用泰勒公式将函数在其中一点的值展开成其导数的和。

这对于函数的近似计算和函数特性的研究有着重要的意义。

总结来说,泰勒公式是一种重要的数学工具,可以用于函数的近似计算和函数在其中一点的极限运算。

极限求解--泰勒公式理解

极限求解--泰勒公式理解

tan x - sin x x 1 x3 o(x3 ) - (x 1 x3 0(x3 )) 1 x3 o(x3 )
3
6
2
这里由“幂次最低”原则,因为分母化简后 x3 系数不为 0,因此取到 3 次幂即可,由此在化简
分子的时候,也只需要化简到 3 次幂就可以了;
由分子为复合函数相减,将(1)和(2)代进(3),有:
次方即可(不理解的小伙伴可以根据前面的高阶无穷小计算规则进行理解)
在(6)式中,看似很复杂,我们主要抓住 3 次幂这个点就可以简单拆分了,如 1 (x 1 x3 )2 23
一般的计算结果为 1 (x2 2x 1 x3 (1 x3 )2 ) ,但我们可以看出后面两项为 o(x3 ) ,原因是
2
lim 计算
etan x esin x
x0 tan x sin x
【分析】
先将基本展开式写出来:
tan x x 1 x3 o(x3 ) (1) sin x x 1 x3 0(x3 ) (2)
3
6
因为分母看着要比分子容易化简,所以我们先化简分母
ex 1 x 1 x2 1 x3 o(x3 ) (3) 26
【举个栗子】已知当x
x2
0时,e 2
cos
x与ax b是等价无穷小, 求a, b
【分析】
当x 0时,
x2
e2
1 ( x2 ) 1 ( x2 )2 1 ( x2 )3 o(( x2 )3 )
222 62
2
cos x 1 x2 x4 o(x4 ) 2 24
由上面可见,当 x为4次方时,A和B的展开式系数不一样了 ,因此取到最低次幂也 就是4
33
除了第一项,其他的项进行展开时都带有 1 x3 ,所以实际上我们只需要将 1 (x 1 x3 )2 写成

泰勒公式求极限例题

泰勒公式求极限例题

泰勒公式求极限例题《泰勒公式求极限的例题》泰勒公式是微积分中常用的一个重要工具,用于近似计算函数在某一点附近的极限值。

下面我们通过一个例题来说明如何使用泰勒公式。

假设我们要求解函数$f(x) = e^x$ 在$x=0$ 处的极限。

我们可以使用泰勒公式来近似计算这个极限值。

首先,根据泰勒公式,我们需要确定到哪一阶的泰勒展开式能提供足够准确的近似。

在这个例子中,由于指数函数的各阶导数都是$e^x$ 本身,因此我们可以使用任意高阶的泰勒展开式。

其次,我们需要计算$f(x) = e^x$ 在$x=0$ 处的各阶导数。

根据指数函数的性质,我们可以发现$f(x) = e^x$ 的任意阶导数都是$e^x$ 。

因此,在$x=0$ 处的各阶导数均为$e^0 = 1$。

接下来,我们可以利用泰勒公式的公式形式,得到函数$f(x) = e^x$ 在$x=0$ 处的泰勒展开式:$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$带入我们之前计算得到的各阶导数值,得到:$f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$现在,我们可以使用该泰勒展开式来近似计算函数$f(x) = e^x$ 在$x=0$ 处的极限。

根据泰勒公式的定义,我们可以取足够多的项来逼近目标极限值。

假设我们取前n项来逼近。

那么,当n趋向于无穷大时,求和式$\sum_{k=0}^{n}\frac{x^k}{k!}$ 将无限趋近于函数$f(x) = e^x$ 。

因此,我们可以将$f(x) = e^x$ 在$x=0$ 处的极限近似为泰勒展开式的前n项求和:$\lim_{x \to 0} f(x) \approx \lim_{x \to 0} \sum_{k=0}^{n}\frac{x^k}{k!}$通过不断增大n的值,我们可以得到越来越精确的近似结果。

考研数学:求极限的16个方法总结

考研数学:求极限的16个方法总结

考研数学:求极限的16个方法总结极限的保号性很重要就是说在一定区间内函数的正负与极限一致。

1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。

2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记。

(x趋近无穷的时候还原成无穷小)2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。

必须是X趋近而不是N趋近。

(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。

还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了3)0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e 的x展开sina展开cos展开ln1+x展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决办法。

取大头原则最大项除分子分母!看上去复杂处理很简单。

5、无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

泰勒公式求极限的原理

泰勒公式求极限的原理

泰勒公式求极限的原理泰勒公式求极限的原理极限是数学中的一个基础概念,它在微积分、数列等领域中有着重要的应用。

在数学中,常常需要用到泰勒公式去求解一些函数的极限,那么,泰勒公式求极限的原理是什么呢?首先,我们来了解一下泰勒公式的基本原理。

泰勒公式又叫做泰勒展开式,是数学中经典的函数逼近方法。

其实质就是将某一个光滑的函数在某一个点附近展开成一个多项式函数,通过多项式函数的计算,可以较好地逼近原函数,并求得函数在该点的各种导数值。

那么,我们该如何利用泰勒公式来求求极限呢?其实,利用泰勒公式求极限的方法有许多,下面就来分别介绍几种方法。

(一)常数项求极限法这种方法适用于在极限计算时无法使用洛必达法则求解的情况。

具体来说,假设有函数$f(x)$,其在$x_0$处展开式为$f(x)=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+...$那么,对于该函数在$x_0$处的极限情况,可以利用泰勒公式展开式中的常数项,即$f(x_0)$来求得。

例如,对于函数$\frac{1-\cos x}{x^2}$,在$x=0$处的展开式为$\frac{1}{2}-\frac{x^2}{4!}+\frac{x^4}{6!}-\frac{x^6}{8!}+...+\frac{(-1)^nx^{2n}}{(2n)!}+...$因此,其在$x=0$处的极限为$\frac{1}{2}$。

可以说,常数项求极限法是泰勒公式求极限的最基本方法。

(二)一阶导数求极限法这种方法适用于在极限计算时无法确定常数项的情况。

直接利用$f(x)$的一阶导数值$f'(x_0)$即可确定该函数在$x_0$处的极限。

例如,对于函数$\sqrt{1+x}-1$,在$x=0$处的展开式为$x-\frac{x^2}{4}+\frac{x^3}{8}-\frac{x^4}{16}+...\frac{(-1)^{n+1}x^n}{2^n}+...$因此,其在$x=0$处的导数值为1,因此其在$x=0$处的极限为0。

浅析泰勒公式在求极限中的应用

浅析泰勒公式在求极限中的应用

版权所有翻印必究 1浅析泰勒公式在求极限中的应用泰勒公式是高等数学中一个非常重要的内容,它可以将一些复杂函数近似的表示为简单的多项式函数,因此应用十分广泛,多用于以下四个方面:1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、泰勒级数可以用来近似计算函数的值,并估计误差。

3、证明不等式。

4、求待定式的极限。

在考研中,多应用于极限的计算和不等式的证明。

而要准确的应用泰勒公式,首先要知道定义,然后要弄清楚泰勒公式应用的方法,本次以其在极限计算中的应用为例讲述。

一、定义泰勒公式是一个将在0x x =处具有n 阶导数的函数()f x 利用关于0x x =的n 次多项式来逼近函数的方法。

若函数()f x 在包含0x 的某个闭区间[,]a b 上具有n 阶导数,且在开区间(,)a b 上具有1n +阶导数,则对闭区间[,]a b 上任意一点x x,成立下式:()20000000()()()=()+()())()()2!!n n n f x f x f x f x f x x x x x x x R x n '''-+-++-+ 其中,表示()f x 的n 阶导数,等号后的多项式称为函数()f x 在0x 处的泰勒展开式,剩余的()n R x 是泰勒公式的余项。

二、应用既然泰勒展开后是多项式,那么在应用时就必须弄清楚三点:1.展开的基点2.展开的阶数3.余项的形式 版权所有翻印必究2在极限计算中,余项的形式是佩亚诺(Peano )余项,是0()nx x -的高阶无穷小,即0()()n n R x o x x =-。

而基点和阶数要根据具体的问题来定。

例:求20444lim x x x x →++-解:这题用洛必达上下求导也可以解出来答案,但分子中含有根号,求导后相应也会变复杂,考生如若马虎很容易出错,但用泰勒公式就会方便很多,首先基点取0x =处,展开的阶段,发现分母是2x ,所以泰勒公式展开到二阶即可。

泰勒公式求极限

泰勒公式求极限

泰勒公式求极限S1:函数极限存在情况讨论根据S2的分析,我们知道函数极限在排除有界变量等特殊情况之下,可通过使用泰勒公式分别将分子分母等价位一个x的幂次项(最低幂次),从而化为式limx→0axkbxl1.极限为0的情况当(,a=0,b≠0)或(a≠0,b≠0,k>l)时,limx→0axkbxl=02.极限为∞的情况当(,a≠0,b=0)或(a≠0,b≠0,k<l)时,limx→0axkbxl=∞3.“上下同阶”的情况此时有k=l且(,a≠0,b≠0)时,limx→0axkbxl=ab毋庸置疑,考研的考点就是第三种情况!在我做题的逻辑上,是先进行S2的“等价无穷小”(泰勒公式),才进行后面的情况探讨,实际上,大家也可以看出来,化成最低幂次的形式,结果显然易得,或许根本不需要分类讨论,这就是我为什么刚开始没写这部分的原因,没有探讨的深度!实际上,你只要用泰勒公式做个30道题左右,自然会体悟出泰勒公式使用的注意点,希望大家身体力行,否则,即便看了我的分享,可能在考场上也无法用到!S2:更为广泛的等价无穷小!那么,就让我们来阐述以下泰勒公式的使用注意点!首先给出常用的8个泰勒展开公式!当x→0时,一些常用函数可用一组多项式来表示,即sinx=x−x36+o(x3)arcsinx=x+x36+o(x3)tanx=x+x33+o(x3)arctanx=x−x33+o(x3)cosx=1−x22+x424+o(x4)ln(1+x)=x−x22+x33+o(x3)ex=1+x+x22+x36+o(x3)(1+x)α=1+αx+α(α−1)2x2+α(α−1)(α−2)6x3+o(x3)(或α=±1或12最常用)tips:在考研数学范围内,以上常用函数和展开项数均达到考研考察的上限!一.x→0一定要注意此处给的泰勒公式仅适用于x→0时的情况,所以,当()x→a(a≠0)或x→∞时的情况,需要先进行代换,即令t=x−a或t=1x,此时,有t→0,即可放心使用泰勒公式。

考研数学中求极限方法的总结

考研数学中求极限方法的总结

考研数学中求极限方法的总结1.引言19 世纪建立的极限理论奠定了微积分的基础[1],使数学这门古老的学科有了质的飞跃,由此建立起来的理论及其应用开创了一个崭新的数学时代。

但是对于数列及函数极限的求解问题,看似简单,但实则方法过于多种多样,往往就是一个比较难一点的极限问题,就会导致学者因选错方法而浪费大量的时间或者根本做不出来。

因此本文针对求极限的方法进行总结归纳,给学者梳理出了一些求极限的方法。

2.利用几种已知公式求极限2.1.和差化积公式积化和差公式解题思路:此方法一般求解的比较简单的极限,比较明显的是两个三角函数相减或相乘的形式。

2.2.伯努利不等式己知实数x>-1 ,当n≥1时,有(1+x)n≥1+ nx;当0≤n≤1,有(1+x)n≤1+ nx。

解题思路:此种类型一般是在求解极限的过程中,所以在这里就不举例说明。

2.3.泰勒公式[2]解题思路:对于型不定式中,如果运用洛必达则比较麻烦。

此类题目比较明显的特征是含有 e x,sin x,cos x,ln (1+ x)等混在一起的混合运算,此类题大多数是用洛必达做不出来的,而用泰勒公式进行简单的替换就很容易求出来的。

例1.3 求极限解:由泰勒公式展开到第三项得:3.利用洛必达法则求极限[3]定理:对在数列 x n与 y n间有一定关系的商的极限,我们可以用序列的洛比达法则。

满足4.利用单调有界性求极限单调有界定理[3]:在实数系中,有界的单调数列必有极限。

有上界的递增数列必有极限,有下界的递减数列必有极限。

5.利用迫敛性(两边夹定理)求极限迫敛性[3]:设收敛数列{a n },{b n }都是以a为极限,则数列{c n }满足,存在正数N0,当n >N0时有 a n≤c n≤b n,则数列收敛,且满足。

解题思路:一般适用于较复杂的通项。

首先要把从 x n的表达式写出来,然后通过放缩法找到两个有相同极限值的数列。

例题4.1 求极限解:因为由迫敛性得。

考研数学-专题7 泰勒公式及其应用

考研数学-专题7  泰勒公式及其应用

专题7 泰勒公式及其应用(一) 泰勒公式定理1(皮亚诺型余项泰勒公式) 如果)(x f 在点0x 有直至n 阶的导数,则有)()(!)()(!2)())(()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +−++−′′+−′+=L常称))(()(0nn x x o x R −=为皮亚诺型余项. 若00=x ,则得麦克劳林公式:).(!)0(!2)0()0()0()()(2n nn x o x n f x f x f f x f +++′′+′+=L定理2(拉格朗日型余项泰勒公式)设函数)(x f 在含有0x 的开区间),(b a 内有1+n 阶的导数,则当),(b a x ∈时有)()(!)()(!2)())(()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +−++−′′+−′+=L其中10)1()(1)()(++−)!+(=n n n x x n f x R ξ,这里ξ介于0x 与x 之间,称为拉格朗日型余项. 几个常用的泰勒公式 (拉格朗日型余项)12)!1(!!21)1(+++++++=n x nxx n e n x x x e θL121213)!12(cos )1()!12()1(!3sin )2(+−−+−+−−++−=n nn n x n x n x x x x θL 22122)!22(cos )1()!2()1(!21cos )3(+++−+−++−=n n n n x n x n x x x θL1112)1)(1()1()1(2)1ln()4(++−++−+−++−=+n n nnn x n x n x x x x θL n x n n x x x !)1()1(!2)1(1)1()5(2+−−++−++=+αααααααL L11)1()!1())(1()1(+−−++−+−−+n n x x n n n αθααααL(二) 泰勒公式本质及两个泰勒公式的异同点1. 本质(相同点)1)用多项式逼近函数 2) 用已知点信息表示未知点 3) 建立函数与高阶导数的关系2. 不同点1)条件不同皮亚诺型余项: )(x f 在点0x 有直至n 阶的导数拉格朗日型余项:)(x f 在含有0x 的开区间),(b a 内有1+n 阶的导数2)余项不同皮亚诺型余项: ))(()(0nn x x o x R −=; 定性;局部.拉格朗日型余项:10)1()(1)()(++−)!+(=n n n x x n f x R ξ;定量;整体. 【注】通常称皮亚诺型余项泰勒公式为局部泰勒公式,主要用来研究函数的局部性态(如:极限,极值);而称拉格朗日型余项泰勒公式为整体泰勒公式,主要用来研究函数的整体性态(如:最值,不等式).(三) 泰勒公式的应用1.利用高阶导数研究函数性态【例1】若,0)()()(0)1(00===′′=′−x f x f x f n L )2(0)(0)(≥≠n x f n ,则当n 为偶数时)(x f 在0x 处有极值.其中0)(0)(>x fn 时极小,0)(0)(<x f n 时极大;当n 为奇数时)(x f 在0x 处无极值.【例2】设函数)(x f 在]1,0[上二阶可导,且,1)(,0)0(,1)0(≤′′=′=x f f f 试证:)(x f 在]1,0[上的最大值不超过.232.计算函数近似值【例1】计算e 的近似值,使误差不超过.106−【解】 )(!!212x R n xx x e n nx+++++=L11)!1()!1()(+++<+=n xn n x n e x n e x R ξ取1=x ,得 !1!2111n e ++++≈L 其误差 )!1(3)!1(+<+=n n e R n当10=n 时,误差不超过.106−得.718282.2≈e3.求极限【例1】 ._________cos 11lim 0=−−−−+→xx xe x x ]3[−【解】【例2】设)(x f 在0=x 的某邻域内二阶可导,且0)(3sin lim 230=⎟⎠⎞⎜⎝⎛+→x x f xx x ,则 (A) 0)(3lim 220=⎟⎠⎞⎜⎝⎛+→x x f x x (B)3)0(=f(C)3)0(=′f (C)9)0(=′′f (D)【例3】(2001年1)设)(x f y =在)1,1(−内具有二阶连续导数,且0)(≠′′x f ,试证: (1)对于)1,1(−内的任一0≠x ,存在唯一的)1,0()(∈x θ,使))(()0()(x x f x f x f θ′+=成立;(2)21)(lim 0=→x x θ. 【证】(1)任给非零)1,1(−∈x ,由拉格朗日中值定理得).1)(0())(()0()(<<′+=x x x f x f x f θθ因为)(x f ′′在)1,1(−内连续,且0)(≠′′x f ,所以)(x f ′′在)1,1(−内不变号,不妨设0)(>′′x f ,则)(x f ′在)1,1(−内严格单增,故)(x θ唯一.(2)由泰勒公式得2)(21)0()0()(x f x f f x f ξ′′+′+=, ξ在0与x 之间.所以 2)(21)0()0()())((x f x f f x f x x f x ξθ′′+′=−=′,从而 ).(21)()0())(()(ξθθθf x x f x x f x ′′=′−′由于)0()()0())((limf xx f x x f x ′′=′−′→θθ,)0()(lim 0f f x ′′=′′→ξ,故 21)(lim 0=→x x θ. 4.求高阶导数【例1】(2015年2) 函数xx x f 2)(2=在0=x 处的n 阶导数.________)0()(=n f])2)(ln 1([2−−n n n【解1】 【解2】【例2】设),()()(x a x x f nϕ−=其中)(x ϕ在a x =处n 阶可导,若m 为不超过n 的正整数,则)()()(=+a fm n(A)!)()(n a m ϕ (B)!)()(m a n ϕ(C))(!)!()(a m m n m ϕ+ (D))()!(!)(a m n n n ϕ+ (C)【解1】【解2】【解3】5.证明不等式或等式【例1】设1)(lim,0)(30)4(=>→xx f x f x ,试证:)0()(3≠>x x x f .【例2】(1996年1,2)设)(x f 在[0,1]上具有二阶导数,且满足条件a x f ≤|)(|,b x f ≤′′|)(|,其中b a ,都是非负常数,c 是(0,1)内任一点.(1)写出)(x f 在点c 处带拉格朗日型余项的一阶泰勒公式; (2)证明 .22|)(|ba c f +≤′ 【证】(1) 2)(!2)())(()()(c x f c x c f c f x f −′′+−′+=ξ (2)在以上泰勒公式中,分别令0=x 和1=x 则有21)0(!2)()0)(()()0(c f c c f c f f −′′+−′+=ξ (1) 22)1(!2)()1)(()()1(c f c c f c f f −′′+−′+=ξ (2)(2)式减(1)式得])()1)(([21)()0()1(2122c f c f c f f f ξξ′′−−′′+′=−]|)(|)1(|)([|21)1()0(|)(|2122c f c f f f c f ξξ′′+−′′++≤′])1[(2222c c b a +−+≤又因为当)1,0(∈c 时,,1)1(22≤+−c c 故.22|)(|b a c f +≤′【例3】(1999年2)设函数)(x f 在闭区间]1,1[−上具有三阶连续导数,且0)1(=−f ,1)1(=f ,0)0(=′f ,证明:在开区间)1,1(−内至少存在一点ξ,使3)(=′′′ξf .【证法1】 由麦克劳林公式得32)(!31)0(!21)0()0()(x f x f x f f x f η′′′+′′+′+=, 其中η介于0与x 之间,]1,1[−∈x . 分别令1−=x 和1=x ,并结合已知条件,得01),(61)0(21)0()1(011<<−′′′−′′+=−=ηηf f f f .10),(61)0(21)0()1(122<<′′′+′′+==ηηf f f f两式相减,可得.6)()(21=′′′+′′′ηηf f因)(x f ′′′连续,)(x f ′′′在闭区间],[21ηη上有最大值和最小值,设其分别为M 和m ,则有.)]()([2121M f f m ≤′′′+′′′≤ηη再由连续函数的介值定理知,至少存在一点)1,1(],[21−⊂∈ηηξ,使.3)]()([21)(21=′′′+′′′=′′′ηηξf f f【证法2】【例4】设)(x f 在[0,1]上二阶可导,2)(max ,0)1()0(10===≤≤x f f f x .试证存在点)1,0(∈ξ使16)(−≤′′ξf .【证法1】设2)(max )(10==≤≤x f c f x ,则10<<c ,且0)(=′c f ,由泰勒公式知2)(!2)())(()()(c x f c x c f c f x f −′′+−′+=ξ 在上式中分别令0=x ,和1=x 得214)(cf −=′′ξ ),0(1c ∈ξ 22)1(4)(c f −−=′′ξ )1,(2c ∈ξ若21≤c ,则16)21(44)(221−=−≤−=′′c f ξ若21>c ,则16)21(4)1(4)(222−=−≤−−=′′c f ξ 故存在点)1,0(∈ξ使16)(−≤′′ξf .【证法2】【例5】设)(x f 在],[b a 上有二阶连续导数,且,0)()(==b f a f ,)(max ],[x f M b a x ′′=∈证明:.12)()(3M a b dx x f ba−≤∫【证1】由泰勒公式得21)(!2)())(()()(x a f x a x f x f a f −′′+−′+=ξ (1) 22)(!2)())(()()(x b f x b x f x f b f −′′+−′+=ξ (2)(1)式加(2)式得2221)(!2)()(!2)()2)(()(20x b f x a f x b a x f x f −′′+−′′+−+′+=ξξ 两端从a 到b 积分得 +−++=∫∫baba x df xb a dx x f )()2()(20dx x b f x a f ba])(!2)()(!2)([2221−′′+−′′∫ξξ 又∫∫∫=+−+=−+bababa badx x f dx x f x f x b a x df x b a )(2)(2)()2()()2( 则 =∫ba dx x f )(4dx x b f x a f ba ])(!2)()(!2)([2221−′′+−′′−∫ξξ dx x b M dx x a M dx x f b a b a b a ∫∫∫−+−≤22)(2)(2)(4 333)(3)(6)(6a b Ma b M a b M −=−+−=故.12)()(3M a b dx x f ba−≤∫【证2】∫bax x f d )(∫−=baa x x f )d()(∫−′−−=baba x a x x f x f a x d ))(()()(∫−−′−=bab x a x x f )d())((∫∫−′+−−′′+′−−−=bababa dxb x x f x b x a x x f x f b x a x ))((d ))()(()())(( ∫∫−+−−′′=ba bax df b x x b x a x x f )()(d ))()((∫∫−−−′′=babadx x f x b x a x x f )(d ))()((则 ∫ba x x f d )(∫−−′′=bax b x a x x f d ))()((21∫−−′′=ba xb x a x f d ))((2)(ξ (积分中值定理)∫−−′′=b a a x b x f 2)d()(4)(ξ3)(12)(a b f −′′−=ξ 故 .12)()(3M a b dx x f ba−≤∫思考题: 1.试证 ).0(1812112>+<−+x x x x2.设)(x f 在],[b a 上连续,在),(b a 内二阶可导,试证存在),(b a ∈ξ,使)(4)()()2(2)(2ξf a b a f b a f b f ′′−=++−. 3.设)(x f 三阶可导,且0)(lim,1)1(,0)1(0===−→xx f f f x ,试证存在)1,1(−∈η,使3)(≥′′′ηf .4. 若)(x f 在]1,0[上二阶可导,且0)1()0(,1)1(,0)0(=′=′==f f f f ,试证: ]1,0[∈ξ,使2)(≥′′ξf .5. 设)(x f 在0x x =的某邻域内1+n 阶可导,且,0)(0)1(≠+x fn).)((!)(!21)()()(0)(20000h h x f n h h x f h x f x f h x f n n θ+++′′+′+=+L 求极限).(lim 0h h θ→答案提示:1.【证】)(!2)121(21211)1(12221x R x x x x +−++=+=+ )(8121122x R x x +−+=其中).10(,)1(!3)221)(121(21)(33212<<+−−=−θθx x x R 由于当0>x 时,,0)(2>x R 则).0(1812112>+<−+x x x x2.【证1】2)2(!2)()2)(2()2()(b a x f b a x b a f b a f x f +−′′++−+′++=ξ 在上式中分别令b x a x ==,得4)(!2)()2)(2()2()(21a b f b a b a f b a f a f −′′+−+′++=ξ4)(!2)()2)(2()2()(22a b f a b b a f b a f b f −′′+−+′++=ξ上式两端相加得8)()]()([)2(2)()(221a b f f b a f b f a f −′′+′′++=+ξξ由)(x f 二阶可导及导函数的介值性知,存在ξ使得).(2)()(21ξξξf f f ′′=′′+′′则)(4)()2(2)()(2ξf a b b a f b f a f ′′−++=+【证2】令)()2()(x f ab x f x −−+=ϕ 2)]()2([2)()()2(a b c f a b c f a b c a b a −′−−+′=−′=−+ϕϕϕ 4)()(2a b f −′′=ξ即 4)()()2(2)()(2a b f b a f a f b f −′′=+−+ξ 3.提示:由0)(lim=→xx f x 知,.0)0(,0)0(=′=f f 写出)(x f 在0=x 处拉格朗日余项的二阶泰勒公式,再将1,1=−=x x 代入便可证明.4. 提示:分别写出)(x f 在1,0==x x 处拉格朗日余项的二阶泰勒公式,然后两式相减便可证明.5. 提示:参见:3.求极限中的例3,.11)(lim 0+=→n h h θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研高数:泰勒公式求极限
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。

凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方
面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。

判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。

还要深入了解教师的学术背景、资料著述成就、辅导成就等。

凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。

而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。

在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。

对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

最好的办法是直接和凯程老师详细沟通一下就清楚了。

建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。

例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。

有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。

凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。

此外,最好还要看一下他们的营业执照。

相关文档
最新文档