南京秦淮外国语学校数学全等三角形单元测试卷 (word版,含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京秦淮外国语学校数学全等三角形单元测试卷(word版,含解

析)

一、八年级数学轴对称三角形填空题(难)

1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1

2

BC,则△ABC的顶角的度数为

_____.

【答案】30°或150°或90°

【解析】

试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.

解:①BC为腰,

∵AD⊥BC于点D,AD=1

2 BC,

∴∠ACD=30°,

如图1,AD在△ABC内部时,顶角∠C=30°,

如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,

②BC为底,如图3,

∵AD⊥BC于点D,AD=1

2 BC,

∴AD=BD=CD,

∴∠B=∠BAD,∠C=∠CAD,

∴∠BAD+∠CAD=1

2

×180°=90°,

∴顶角∠BAC=90°,

综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.

故答案为30°或150°或90°.

点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.

2.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.

【答案】4

【解析】

【分析】

由A点坐标可得2,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.

【详解】

(1)当点P在x轴正半轴上,

①如图,以OA为腰时,

∵A的坐标是(2,2),

∴∠AOP=45°,OA=2,

当∠AOP为顶角时,2,

当∠OAP为顶角时,AO=AP,

∴OPA=∠AOP=45°,

∴∠OAP=90°,

∴2OA=4,

∴P的坐标是(4,0)或(2,0).

②以OA为底边时,

∵点A的坐标是(2,2),

∴∠AOP=45°,

∵AP=OP,

∴∠OAP=∠AOP=45°,

∴∠OPA=90°,

∴OP=2,

∴P点坐标为(2,0).

(2)当点P在x轴负半轴上,

③以OA为腰时,

∵A的坐标是(2,2),

∴OA=22,

∴OA=OP=22,

∴P的坐标是(﹣22,0).

综上所述:P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0).

故答案为:4.

【点睛】

此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.

3.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为

___________.

【答案】4

【解析】

【分析】

延长AC 至E ,使CE=BM ,连接DE .证明△BDM ≌△CDE (SAS ),得出MD=ED ,

∠MDB=∠EDC ,证明△MDN ≌△EDN (SAS ),得出MN=EN=CN+CE ,进而得出答案.

【详解】

延长AC 至E ,使CE=BM ,连接

DE .

∵BD=CD ,且∠BDC=140°,

∴∠DBC=∠DCB=20°,

∵∠A=40°,AB=AC=2,

∴∠ABC=∠ACB=70°,

∴∠MBD=∠ABC+∠DBC=90°,

同理可得∠NCD=90°,

∴∠ECD=∠NCD=∠MBD=90°,

在△BDM 和△CDE 中,

BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,

∴△BDM ≌△CDE (SAS ),

∴MD=ED ,∠MDB=∠EDC ,

∴∠MDE=∠BDC=140°,

∵∠MDN=70°,

∴∠EDN=70°=∠MDN,

在△MDN和△EDN中,

MD ED

MDN EDN

DN DN

∠∠

=,

∴△MDN≌△EDN(SAS),

∴MN=EN=CN+CE,

∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;

故答案为:4.

【点睛】

本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.

4.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.

【答案】40°

【解析】

【分析】

作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.

【详解】

如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,

∵PP1关于OA对称,

∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°

同理,∠P2OP=2∠NOP,OP=OP2,

∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,

∴△P1OP2是等腰三角形.

∴∠OP2N=∠OP1M=50°,

∴∠P1OP2=180°-2×50°=80°,

∴∠AOB=40°,

相关文档
最新文档