数控直流恒流源设计报告

合集下载

数控直流电流源设计报告

数控直流电流源设计报告

数控直流电流源作品功能简介:在电子作品的设计、应用或测试中,一个稳定、精度高的电源尤为重要,为直流电源的应用更是广泛。

本作品就是为其它设计的应用或测试提供一个稳定性高、精度高的直流电流源。

本组的作品的设计方向就是稳定性高、精度高、纹波小、驱动能力强。

本作品有两个个主要功能:功能一:输出20到2000mA的稳定电流,并且步进值可调(1mA、5mA、10mA、100mA)。

功能二:可实时测试并显示负载上的电流值。

功能三:有相应的提示功能。

(一) 方案论证与比较从控制论的角度来看,某一系统要达到较高的控制精度,必须采用闭环控制。

闭环的电流控制系统可以由如下的原理框图来表示:由上述原理框图可以知道,数控直流电流源的设计主要考虑三个方面的问题:电流控制器设计、功率放大电路设计和电流检测方法。

此外,从电子系统设计的角度,还需考虑系统电源的设计。

1.电流控制器设计电流控制可以有多种方案,如基于PWM 技术的开关电源方案、基于模拟器件的模拟反馈压控方案、以及基于微控制器的数字反馈数控方案。

方案一:基于PWM 技术的开关电源方案。

通过PWM 技术来调节开关电源的电压输出,控制PWM 信号的调制脉宽就可以控制输出电压,从而达到控制输出电流的目的。

该方案适合要求高功率输出的交流系统,同时电源效率上具有很大的优势,但是开关电源必然引入纹波噪声,在高精度要求的直流系统中,对滤波电路的要求非常高,难以实现。

题目对电流精度及纹波要求很高,该方案难以胜任。

方案二:基于模拟器件的模拟反馈压控方案。

该方案采用三极管或集成运放,组成电流串联负反馈电路,三级管或运放工作在深度负反馈状态下,具有良好的压控恒流特性。

典型的电路结构如图2所示。

图2中,Re 相当于取样电阻,输出R L 上的电流通过Re 在运放的输入端形成负反馈,由运放的虚短虚断,忽略三极管的基极电流,则可得到输出电流I L 的表达式:图2 模拟反馈压控方案典型电路I L =Vi / Re ⑴ 此方案实质上是由模拟器件作为了控制器,调节速度快,系统的跟随性好,即动态性能优越;但是,由于模拟器件固有的非线性特性,式⑴的精确度受到影响,电流控制稳态图1 闭环电流控制系统原理框图性能不够良好。

(数控加工)数控直流电流源设计报告精编

(数控加工)数控直流电流源设计报告精编

(数控加工)数控直流电流源设计报告数控直流电流源一、设计任务和技术要求1.设计壹个数控直流电流源。

2.输出电流0~99mA,手动步进1mA增、减可调,误差不大于0.01mA。

3.具有输出电流大小的数码显示。

4.负载供电电压+12V,负载等效阻值100Ω。

5.电路应具有对负载驱动电流较好的线性控制特性。

6.设计电路工作的直流供电电源电路。

二、系统原理概述本设计要求设计出壹个数控的直流电源,且且输出电流为0~99mA,能够手动控制增减。

在此采用数模转换的原理,只要产生和0~99mA电流相对应的数字量(我们取数字量为0~99),再使用D/A转换器转换为模拟电压量,最后再用V/I转换器将电压量转换为和电压量相对应的电流量即可。

为控制输出电流手动步进为1mA增、减可调,我们只要保证数字量(0~99)——电压量(0~9.9V)——电流量(0~99mA)相对应,通过控制数字量手动增减步进为1可调即可。

综上,整个系统的原理框图如图壹所示:图一系统原理框图三、方案论证1.直流稳压电源电路单元小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成。

如图二所示:图二稳压电源组成示意图方案壹:输出可调的开关电源开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护和过流保护,可是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因此在本设计中不适合此方案。

方案二:由固定式三端稳压器组成由固定式三端稳压器(7805、7812、7912)输出脚V0、输入脚V i和接地脚GND组成,它们的输入端接电容能够进壹步滤波,输出端接电容能够改善负载的瞬间影响,且且此电路也比较稳定,实现简单。

因此在此采用方案二,电路原理图如图三所示:图三固定三端式直流稳压电源电路2.手动增减数字量产生单元方案壹:74LS163为可预置的4位二进制同步加法计数器。

采用俩片74LS163运用反馈清零或者反馈置数法构成十进制计数器,再将俩片73LS163构成2位十进制加法计数器。

数控恒流源实验报告设计

数控恒流源实验报告设计

数控恒流源实验报告设计摘要:本系统是以msp430单片机为控制器,由矩阵键盘、液晶显示器、D/A转换电路、恒流源电路、电流采样电路及直流稳压电源电路组成的数控恒流源实验电路。

该电流源具有输出电流稳定、可调范围输出电流与输入电压呈线性关系的特点。

系统基本工作原理为:键盘设定直流电源的输出电流,单片机通过D/A转换电路控制恒流源的输入电压,由于恒流源输入电压与负载电流的线性关系且负载电流只随输入电压变化而变化从而实现数控恒流的目的,另外单片机通过电流采样电路及A/D转换回检负载电流并通过液晶将采样电流值显示出来。

最后经实验验证,本系统输出电流稳定,不随负载变化而变化。

关键字:键盘、D/A、恒流源、采样电路、A/D一、方案论证与比较1.1直流稳压电源方案一:采用单极开关电源,由220V交流整理后,经开关电源稳压输出。

该方案的优点是电路效率高,但是此方案产生的直流纹波和干扰比较大,而且开关电源结构复杂。

方案二:采用交流电压经桥式电路整流滤波输出,直接进入稳压电路。

此方案的优点是电路简单、容易实现、方便调试,只是该方案功率损耗较大,但是在小型非连续工作系统中这些功耗可以承受。

综合考虑,选择方案二。

1.2恒流源模块方案一:由运算放大器、大功率场效应管、采样电阻、负载电阻等组成恒流源。

此方案既能满足输出电流达到2A的要求,也能较好地实现电压近似线性控制电流。

方案二:可通过由集成稳压器构成开关恒流源来构成恒流电路。

通过三端集成稳压器可构成开关稳压源。

当把电阻设为一定值时,当回路中负载发生变化时可有集成稳压器进行自动补偿从而使输出电流保持不变,但此电路带负载能力及调节精度存在一定难度。

综合考虑,本系统采用了方案一。

集成稳压器构成的开关恒流源电路图如下:二、系统设计2.1系统方案设计本系统以直流电流源为核心,msp430单片机为控制器,通过矩阵键盘来设置直流电源的输出电流,由单片机程控输出数字信号,经过D/A转换模块输出模拟量,控制直流电流源的输入电压,随着输入电压的变化而输出不同的电流,设置步进等级可达1mA。

数控恒流源设计报告参考模板

数控恒流源设计报告参考模板

数控恒流源的设计摘要:本设计采用STC单片机STC12C5A60S2作为直流恒流源的控制、显示和输出电流检测核心,实现了0A到2A数控可调直流恒流源。

系统的显示部分采用数码管实时显示设定电流值和实测电流值;输出电流控制采用STC12C5A60S2单片机的D/A口输出模拟量;电流测量采用基本没有温度漂移的康锰铜电阻丝作为精密取样电阻,利用TLV2543的A/D输入口进行电流检测和监控。

硬件电路恒流部分的控制端采用多个精密运算放大OP07接成闭环反馈控制形式,受控部分采用达林顿管进行扩流、精确输出设定电流。

电源部分采用大功率变压器供电,多级电容滤除纹波干扰;电源输出采用三端稳压芯片进行稳压,并且利用大功率达林顿管进行扩流以满足后级功率需求。

关键字:STC12C5A60S2 恒流源一、方案论证如题目要求,系统主要由控制器模块、电源模块、电流源模块、负载模块及键盘显示模块构成,下面分别论证这几个模块的选择。

1、控制模块的选择方案方案一:采用AT89C51单片机进行控制。

本设计需要使用的软件资源比较简单,只需要完成数控部分、键盘输入以及显示输出功能。

采用AT89C51进行控制比较简单,但是51单片机内存只有2k,程序比较多时可能存储不够。

方案二:采用STC12C5A60S2单片机进行控制。

STC12C5A60S2单片机具有强大功能的16位微控制器,它内部集成10位ADC和2通道10位 DAC,可以直接用于电流测量时的数据采集,以及数字控制输出;I/O口资源丰富,可以直接完成对键盘输入和显示输出的控制;存储空间大,能配合LCD液晶显示的字模数据存储。

采用SPCE061A单片机,能将相当一部分外围器件结合到一起,使用方便,抗干扰性能提高。

鉴于上面分析,本设计采用方案二。

2、电流源模块的选择方案方案一:由晶体管构成镜像恒流源该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。

数控直流电流源设计与总结报告

数控直流电流源设计与总结报告

数控直流电流源设计与总结报告摘要:本系统以直流电流源为核心,MSP430F149单片机为控制系统,输出数字信号,经过D/A转换器(TLV5638)输出模拟量,将实际值输出到单片机,由单片机进行比较调整,控制电流输出。

通过键盘来设置直流电源的输出电流,设置步进等级可为1mA,并可由1602液晶显示实际输出电流值和电流设定值。

由于使用了电流采样反馈调整控制技术,输出电流误差范围±5mA,输出电流可在20mA~2000mA范围内任意设定。

实际测试结果表明,本系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,因而可实际应用于需要高稳定度小功率恒流源的领域。

关键词:恒流源MSP430F149 OP07 IRF540NAbstract: This system to direct current source as the core, MSP430F149 microcontroller as control system, digital signal output, through D/A converter (TLV5638) output analog, through the keyboard to set the dc power output current step level, set up to 1 mA, and can be made of 1602 LCD tube show the actual output current value and current value. The actual test results show that the system output current stability, not with the load and environmental temperature change, and has a high precision, and can be used in need high stability small power constant current source fields. By sampling will the actual value to the output of microcomputer chip, comparison, adjust the control current output. Using the current feedback control technology, adjust the sampling error of plus or minus 5 output current range, the output current mA in 20 mA ~ 2000 mA range set arbitrary, the system has good reliability, the advantages of high precision.Keyword: CCONSTANT CURRENT SOURCE;MSP430F149;OP07 ;IRF540N目录1方案设计与论证 (3)1.1 整体设计要求 (3)1.2 控制部分方案比较和选择 (3)1.3 恒流源模块方案比较和选择 (3)2 系统设计 (6)2.1 总体设计 (6)2.2 各单元模块功能介绍及电路设计 (6)2.2.1 数据采集处理模块 (6)2.2.2 恒流源模块 (7)2.2.3 数模DAC模块 (8)2.3 特殊器件的介绍; (9)3 软件设计 (9)3.1 设计思路 (9)3.2 软件流程图 (10)4 系统测试 (11)4.1 测试方法 (11)4.2 测试结果 (11)4.3 结果分析 (14)5 结论 (14)参考文献 (15)附录: (15)附1:元器件明细表: (15)附2:仪器设备清单 (15)附3:电路图图纸 (16)附4:程序清单 (17)1方案设计与论证1.1 整体设计要求根据要求恒流源系统由如下几部分组成(如图1所示):图1 要求系统设计框图1.2 控制部分方案比较和选择对于控制电路部分有以下三种方案来实现:方案1:采用中小规模集成电路构成的控制电路。

数控直流电流源设计,毕业论文,毕业设计,数控,直流电源

数控直流电流源设计,毕业论文,毕业设计,数控,直流电源

数控直流电流源设计摘要本设计大致分五个模块:单片机控制模块、数模(D/A)转换模块、恒流源模块、模数(A/D)转换模块、显示模块。

单片机控制模块以单片机为核心,对输入电流信号进行转换成数字量输出;恒流源模块将D/A转换来的电压模拟量通过恒流源电路变成恒流;显示模块采用数码管显示译码芯片与74LS47设计成10进制4位数码动态显示电路。

键盘模块采用常见单路复位开关,做成4×4矩阵键盘,用动态扫描方式读取外部按键动作,这样设计可靠,配合凌阳AT89S52单片机,可以很轻松的实现按键输入。

此外,本设计可实现电流0-2A且有±1mA和±10mA的两种步进,同时有数码显示输入的电流值。

关键词单片机键盘控制D/A转换恒流源A/D转换译码显示Constant Current Resource Digital ControlledABSTRACTThe design is divided into five modules: Single-chip control, digital-to-analog (D / A) conversion module, constant current source module, the output display module. To single-chip single - chip control module as the core of the input current signals to digital output; Constant current source modules will be D / A converter to the voltage analog circuit through the constant current source into a constant current; display module display digital 74LS47 decoder chip designed with 10-band digital dynamic display four circuits. Common use of the keyboard module reset single switch, make 4 * 4 matrix keyboard, using dynamic scanning button to read the external action, so that the design of reliable, with Sun plus AT89S52 microcontroller, can easily achieve the keystrokes. In addition, the design can achieve the current 0-2A and a ± 10mA and ± 1mA Step two, at the same time digital display of the current input.KEY WORDS Single - chip Keyboard control D / A converter A / D conversion Decoding show目录中文摘要 (I)英文摘要 (II)1 绪论 (1)1.1概述 (1)1.2课题的背景和意义 (1)1.3数控直流恒流源简介 (2)1.4恒流源的应用 (2)2 数控直流电流源整体设计 (3)2.1整体结构设计与论证 (3)2.2系统原理与基本框图 (5)3 硬件电路设计 (6)3.1单片机模块的设计 (6)3.1.1 单片机的选择 (6)3.1.2 单片机最小系统组成及AT89S52介绍 (6)3.1.2.1 AT89S52单片机功能特性描述 (6)3.1.2.2 AT89S52引脚功能描述 (7)3.2D/A转换模块设计 (11)3.2.1 D/A转换方案 (11)3.2.2 12位串行D/A转换芯片MAX538介绍 (11)3.2.2.1 性能特点 (11)3.2.2.2 主要参数 (12)3.2.2.3 内部结构 (12)3.2.2.4 引脚结构 (12)3.2.2.5 输入接口 (13)3.2.3 D/A转换模块电路 (14)3.3V/I转换模块设计 (14)3.3.1 V/I转换方案 (14)3.3.2 V/I转换电路 (15)3.4A/D转换模块设计 (17)3.4.1 A/D转换方案 (17)3.4.2 12位串行A/D转换芯片MAX197介绍 (18)3.4.2.1 MAX197的特性 (18)3.4.2.2 MAX197的结构 (18)3.4.3 A/D转换模块电路 (20)3.5显示模块设计 (21)3.5.1 显示电路方案 (21)3.5.2 译码器74LS47简要介绍 (21)3.5.3 LED显示器的工作原理 (23)3.5.4 显示模块电路 (25)3.6键盘模块设计 (26)3.6.1 键盘电路方案选择 (26)3.6.2 键盘模块的电路 (26)3.7电源模块设计 (28)3.7.1 稳压电路电源方案 (28)3.7.2 电源原理 (28)3.7.3 LM7805、LM7812简要介绍 (28)3.7.4 电源模块电路 (29)4 软件设计 (30)总结 (33)致谢 (34)参考文献 (35)附录 (36)1绪论1.1概述随着科学技术的迅速发展,人们对物质需求也越来越来高,特别是一些高新技术产品。

直流恒流源设计报告

直流恒流源设计报告

直流恒流源设计报告
一、实验目的
1、制作直流恒流源电路板,了解直流恒流源原理。

2、通过认识相应的元器件更多的了解相关知识。

二、实验要求
设计普通直流恒流电源,输入AC220V ,输出电流稳定,在20mA 至100mA 范围可调,输出电流误差范围mA 10
三、实验原理
恒流源相当于一个高压稳压电源与一个高阻值电阻的串联,其特点是外部阻抗的变化对其输出电流的影响极小(因为其内部的“高阻值”可能高出外部阻抗几个数量级,外部阻抗变化对整个串联阻值的影响极小)。

如果真的需要制作一个,也就是这样处理的。

大多数情况下,“恒流源”只是一个用于电路分析的的概念,不需要实物的。

四、实验所用工具及原器件
电压表、电烙铁、线路板、可调电阻、W7805、电容、导线等
五、实验步骤
1、将电烙铁打开,查找电器元件准备电路板,并用砂纸打磨光滑。

2、并根据电器元件设计元器件的安排,理清思路将电器元件插入电路板。

然后将元器件依次焊上去(注意正负极不要接反,争取一步到位)。

3、连接线路有的地方可以用线连接有的地方可以直接用原来的接头连接(注意不要将正负极连接在一起)。

4、检查线路首先用眼检查准确后在用电流表检查,确保准确后再通电。

5、通电后验证各个输出端是否正常,都正常后调节滑动变阻器记录数据制作表格。

六、实验总结
1、制作电路要认真争取一步到位。

2、连接线路要一步一步测,确保每一步都准确无误。

3、要举一反三不会就查,解决更多的盲点。

4、对待什么事都要有恒心有毅力。

数控直流电流源报告(硬件部分)

数控直流电流源报告(硬件部分)

这是模电书(P454)上给出的一个电压—电流转换电路,功率器件采 用功率集成运放OPA548T。当R1=R2=R3=R4时,流过负载端的电流 I=Uin/R0。图中R0必须采用大功率的电阻,且电阻随温度变化应该很小。 RL和Rs分别为负载电阻和康铜丝采样电阻。
这个电路结构很简单,但它的缺点就是电源 的效率较低,有一部分功耗消耗在电阻R0上,这 的效率较低,有一部分功耗消耗在电阻R0上,这 无形之中就增加了供电电源的负担,特别是在大 电流的时候,负载电路的功率几乎都由这1 电流的时候,负载电路的功率几乎都由这1片 OPA548T来提供,芯片发热很快,如果散热及相 OPA548T来提供,芯片发热很快,如果散热及相 应的措施没有处理好的话,芯片就无法正常工作, 导致负载电流波动较大。 由于OPA548T自身就有2mv的偏置电流,这 由于OPA548T自身就有2mv的偏置电流,这 也给提高电流源的精度带来了一些困难。 这个电路在20~200mA的范围内有较好的效 这个电路在20~200mA的范围内有较好的效 果,也即适用在小电流恒流源的场合,但是当电 流大了之后,就很难正常工作。
二、系统整体方案论证:
1、压控恒流源模块
电压控制的电流源模块,可采用的方案有以下三 种: ① 功率集成运放,如OPA501、OPA541、 功率集成运放,如OPA501、OPA541、 OPA548、 OPA549等; OPA548、 OPA549等; ②采用电流串联负反馈机理构成恒流源。
③运放+晶体三极管构成的电流放大;
方案二:采用电流串联负反馈机理构成恒流 源。其原理图如下:
T2 !NPN R3 5 V1 15 T1 !NPN R1 300
IOP1 + R2 500m +
C1 10u

高效数控恒流源设计报告

高效数控恒流源设计报告

2020年TI杯四川省大先生电子设计竞赛设计报告书设计标题:高效数控恒流电源〔D题〕参赛队代码:LG-3-本-D竞赛时间:2020-7摘要本数控恒流源系统主要由恒流源控制电路、DC/DC变换电路和单片机控制局部三个功用模块组成。

恒流源控制电路由硬件闭环稳流电路完成输入电流的动摇控制。

DC/DC转换模块采用单端正激式DC/DC变换电路,可完成降压和升压的功用,扩展输入电压范围至8-20V。

单片机控制模块以MSP430单片机为控制中心,结合键盘、DAC和LCD完成系统的控制和显示功用。

一、总体方案设计1、方案论证与比拟〔1〕恒流源电路方案方案1:采用软件闭环控制方式。

键盘预置电流值,经MCU处置后送入DAC将其转换为电压信号从而控制输入电流。

采样电路采集实践输入电流值,再经过ADC转换送回单片机,与预置电流值停止比拟并经过适当的控制算法,调整输入电流值使其与设定电流值相等,从而构成闭环控制系统。

方案2:采用硬件闭环控制。

硬件的闭环稳流的典型电路如图1所示,依据集成运放的虚短概念,可失掉:I L≈Vi/R1式中I L为负载电流,R1为取样电阻,Vi为运算缩小器同相端输入信号。

假定固定R1,那么I L完全由V i决议,此时无论Vcc或是R L发作变化,应用反应环的自动调理作用,都能使I L坚持动摇。

方案1最大的效果是:假定输入电源电压或负载发作变化,都需求经过一段时间调整后才干使电流动摇。

而方案2硬件电路不仅复杂而且又能快速得完成动摇的电流输入,故本系统采取方案2。

图1 硬件闭环稳流电路〔2〕DC/DC电压转换电路方案最基本的斩波电路如图2所示,斩波器负载为R。

当开关S合上时,U out=U r=U in,并继续t1时间。

当开关切断时U out=U r=0,并继续t2时间,T=t1+t2为斩波器的任务周期,斩波器的输入波形如图1〔b〕所示。

定义斩波器的占空比D=t1/T,t1为斩波器导通时间,T 为通断周期。

高效数控恒流源设计报告

高效数控恒流源设计报告

高效数控恒流源设计报告一、引言数控恒流源(Numerical Control Constant Current Source)是一种广泛应用于电子设备和工业生产中的电源设备,主要用于稳定输出恒定的电流信号。

在很多应用场景中,对电流的精确控制和稳定性要求较高。

本文将介绍一种高效数控恒流源的设计方案,并详细讨论其工作原理、电路结构和性能指标。

二、设计方案2.1 工作原理数控恒流源的工作原理基于负反馈机制,通过对输出电流进行监测并与设定值进行比较,调整反馈回路中的控制信号,使输出电流保持在设定值附近。

典型的数控恒流源由四个主要部分组成:直流电源、电流检测电路、比较器和功率调节器。

2.2 电路结构本设计方案采用基本的电流控制回路,电路结构如下:电路示意图电路示意图主要组成部分包括:•直流电源:提供基准电压以供电路工作。

•电流检测电路:通过高精度电流传感器对输出电流进行实时监测,并输出检测信号。

•参考电流源:提供设定值参考电流作为比较器的输入。

•比较器:将检测信号与设定值参考电流进行比较,并产生误差信号。

•误差放大器:对比较器输出的误差信号进行放大,以提供足够的调节信号给功率调节器。

•功率调节器:根据误差信号的大小和方向,控制输出电流的大小和稳定性。

2.3 性能指标为了评估数控恒流源的性能,我们需要考虑以下指标:•稳定性:输出电流的稳定性是衡量数控恒流源性能的重要指标,要求输出电流在设定值附近波动幅度小。

•精度:指数控恒流源输出的电流与设定值之间的偏差程度,要求尽可能小。

•响应速度:数控恒流源对于设定值的改变能够快速响应并调整输出电流,要求响应速度较快。

•效率:数控恒流源的电能转换效率,要求尽可能高。

三、实验步骤3.1 集成电路选择和布局设计为了实现高效的数控恒流源设计,我们首先需要选择适合的集成电路并进行布局设计。

考虑到稳定性和性能需求,我们选择了XXX型号的集成电路,并根据电路结构进行布局设计。

3.2 元器件选型和连接根据设计方案,选择适合的元器件,并根据电路结构进行连接。

数控直流恒流电源设计

数控直流恒流电源设计

1 方 案论 证
S 3 2 组成 的 P G 55 WM电路 . 改变 占空 比. 从而改变 主电路的开关工作
状态进而调节输出电流. 使输 出电流正确的跟随给定值 。 方案一 : 采用 目 比较通用的 5 系列单片机 。 前 1 此单片机 的运算能 本系统在硬件上主要 分为控 制单元 、 电流调整单元 、WM信号产 P 力强, 编程灵 活, 软件 自由度大 。虽然该系统采用单片机 为核心, 能够实 生单元 、 键盘及显示单元 、 检测报警等 四个单元。 现对外围电路的智 能控制. 但核心控制部件使 用 8C 1 为达到设计 9 5 时. 21 控制单元 . 精度 的要求 - 围 电路必须加 上 1 位的 AD和 DA 这就使得 整个系 夕 2 / /. 控 制单元是 以 A U 8 2 S 核心及其 附加组 成如 图( ) D C 1B 为 3 所示 。 统硬件 电路变得复杂. 而且 l 位 的 A D和 D A器件价格较 高, 2 / / 使得系 A U 82 S D C 1B 是以 8 C 1 9 5 为内核 .内部集成 了 8 A D转换单元及 2 路 / 统的性价比偏低。如图 1 所示 。 路 1 位高精度 DA转换单元 .由于本设计需要连续变化 的电压输 出 2 / I 来控 制输出电流 .这样采用 A U 2 1B 不仅具有 C 1 片机 的一 D C 82 S 5单 切优 点 .而且它内部的 DA及 A D转换单元 为我们的设计带来 了方 / / 8 I 9 簟片机 便, 使我们 的系统结构更加精 简 , 工作更加 可靠 , 同时软件 开发时间也 l 大大的缩减
21 年 01
第 2 期 9
S IN E&T C N L G F R A I N CE C E H O O YI O M TO N

设计报告恒流源.doc

设计报告恒流源.doc

数控恒流电源设计报告摘要:本系统创造性地采用精密低功耗仪表运放INA118和DC-DC变换器及低功耗单片机MSP430F149结合的方式,很好地实现了题目输出电流变化范在200mA~2000 mA,并且电压输出值小于10V,输出噪声纹波电流小于等于30 mA,整机效率达到70%以上。

高效数控恒流电源可预测并显示,经测试,基本指标已达到要求。

关键词:数控恒流电源MSP430F149 DC/DC变换电路目录1.总体方案论证与比较: (1)1.1.DC/DC变换电路的方案论证和选择 (1)1.2.控制电路的方案论证和选择 (2)1.3.开关电源模块的方案论证和选择 (2)1.4.显示模块的方案论证和选择 (4)1.5.电流取样电阻的方案论证和选择 (4)2.硬件电路的设计 (5)2.1.系统电路方框: (5)2.2.各部分模块电路简介: (5)2.2.1.DC/DC变换电路.................................................................................................................. 错误!未定义书签。

2.2.2.采样电路的设计,由低噪声高精度满量程运放INA118芯片与精密低功耗仪表放大器TLC2202组成。

. 6 2.2.3 MSP430内部A/D与外部D/A转换电路(核心芯片) (6)2.2.4.键盘控制电路的设计 (8)2.2.5.液晶显示的设计 (8)3..软件设计 (10)3.1.软件流程设计 (10)4.系统仿真和实际电路测试数据 (13)4.1.测试方法与数据分析 (13)4.2.输出电流测试表表1: (13)4.3.电流调整率 (13)4.4.负载调整率 (13)4.5.输出噪声纹波电流 (13)4.6.整机效率 (14)4.7.过压保护电压 (14)4.8.误差的分析与进一步改进: (14)5.参考文献 (14)6.附录1:所使用的TI芯片清单及其它的基本特性 (16)7.附录2 系统整体原理图: (17)8.附录3 作品照片 (18)1.总体方案论证与比较:经过仔细地分析和论证,我们认为此次高效数控恒流电源可分为电源电路,整流滤波电路,DC/DC 转换电路,负载电路,放大电路,单片机控制电路,人机界面这几个模块。

数控恒流源设计

数控恒流源设计

数控恒流源设计题目任务要求1、任务设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其原理示意图如下所示。

2、要求1>基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。

2>发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA;(4)纹波电流≤0.2mA;(5)其他。

总体方案用单片机和FPGA数控恒流源。

通过键盘预置电流值,单片机输出相应的数字信号给D/A转换器,D/A转换器输出的模拟信号送到运算放大器,控制主电路电流大小。

实际输出的电流再通过采样电阻采样变成电压信号,A/D转换后将信号反馈到单片机中。

单片机将反馈信号与预置值比较,根据两者间的差值调整输出信号大小。

这样就形成了反馈调节,提高输出电流的精度。

本方案可实现题目要求,当负载在一定范围内变化时具有良好的稳定性,而且精度较高。

具体电路设计1.电源电路控制部分供电电源电路还需要大功率供电电源,专门为VMOS管供电。

因为负载中最大电流要达到2A,输出直流电压≤10V,所以该电源的输出功率至少要大于210=20W。

作为大功率电源,我们选用220V-16V/50W的变压器,稳压芯片是金属封装的三端可调稳压芯片LM317K STEEL P+,理论上安装散热片后最大输出电流可达3.4A,经实际测试,能够输出2A电流的指标。

高效数控恒流源设计报告最终版

高效数控恒流源设计报告最终版

高效数控恒流源设计报告最终版本报告主要介绍了一种高效数控恒流源的设计方案,该方案采用了一种基于集成电路控制的恒流源电路,其具有响应速度快、精度高、稳定性好等优点,可以用于正负载电压变化大的场合,能够有效地提高恒流源的输出精度和稳定性。

本报告结合具体设计实例,详细介绍了该恒流源电路的设计原理、电路结构、参数选择等关键技术,以及在实验验证中的性能表现。

本文旨在为电子工程师和研究人员提供参考,供其在设计和应用过程中参考。

一、方案设计原理在电子设备中,恒流源作为一种重要的电源单元,通常用于需要稳定电流输出的场合,例如电池充电、LED 灯驱动、电流测量等等。

传统的恒流源通常采用电阻调节电流大小,但这种方式存在电流漂移大、电阻热耗大、温度漂移大等缺陷。

为解决这些缺陷,本设计方案采用了一种基于集成电路控制的电路方案。

该电路的基本原理是利用采样电阻将负载电流转化为一个电压信号,然后经过运算放大器等电路进行放大,再利用控制器对输出电压进行控制,以保证输出电流的大小。

其中,控制器可以选用数字型或模拟型,数字型采用微处理器或FPGA芯片,更能提高设备的灵活性和精度;而模拟型则采用集成运算放大器,实时控制输出电流。

这种电路方案具有响应速度快、精度高、稳定性好等优点,能够满足大部分恒流源的应用需求。

二、方案设计细节1. 采样电阻的选取采样电阻是恒流源电路中的重要元器件之一,它起到将负载电流转化为电压信号的作用。

为保证其响应速度和精度,需要选用阻值尽可能小、精度尽可能高的采样电阻。

同时,为避免采样电阻过小导致的功耗过大和温度漂移过大,还需根据负载电流和制程工艺等因素进行合理的选择。

2. 运算放大器的设计由于采样电阻的阻值较小,其输出电压也相应很小,需要经过放大才能得到较大的量级。

因此,在电路中采用高精度的运算放大器进行放大,并对其负载容量、增益稳定等因素进行严格控制,以保证输出电压与输入电流之间的比值达到恒定。

3. 控制器的选取恒流源的控制器可以选择数字型或模拟型,其中数字型采用微处理器或FPGA 芯片,更能提高设备的灵活性和精度;而模拟型则采用集成运算放大器,实时控制输出电流。

数控直流恒流源

数控直流恒流源

数控直流恒流源 Last updated on the afternoon of January 3, 2021数控恒流源设计与总结报告摘要:本设计以89C52为主控器件,采用了高共模抑制比低温漂的运算放大器OP07和大功率场效应管IRF640构成恒流源,通过12位A/D、D/A转换芯片,完成了单片机对输出电流的实时检测和实时控制,控制界面直观、简洁,具有良好的人机交互性能,人机接口采用4*4键盘及LCD液晶显示器。

该系统电流输出范围为20mA~2000mA的数控直流电流源。

该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。

关键词: 89C52 恒流源 AD DA1 系统设计设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其原理示意图如下所示。

图数控直流电流源原理示意图设计要求题目要求设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其要求如下:1.1.1 基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。

1.1.2 发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置 (可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的%+1 mA;(4)纹波电流≤;(5)其他。

总体设计方案本设计要设计的基于单片机控制的直流恒流源,以直流稳压电源和稳流电源为核心,结合单片机最小系统实现对输出电流的控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控直流恒流源设计报告本系统以直流电流源为核心,AT89s52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由液晶显示电流设定值和实际输出电流值。

本系统由单片机程控设定数字信号,经过D/A转换器(tlv5618)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。

单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。

实际测试结果表明,本系统能有效应用于需要高稳定度的小功率恒流源的领域关键字压控恒流源智能化电源闭环控制设计任务与要求1.1设计任务设计并制作一个数控直流电流源。

输入的交流电压220~240V,50Hz;输出的直流电压≤10V。

其原理示意图1如下所示。

图1 设计任务示意图1.2技术指标基本要求:(1)要求电压输出范围:200~2000mA;(2)可设置并输出电流给定值,要求输出电流和给定电流的偏差的绝对值≤给定值的1%+10mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流的变化的绝对值≤ 输出电流的1%+10mA;(5)纹波电流≤ 2mA;(6)自制电源。

发挥部分:(1)输出电流范围为20~2000mA,步进为1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值或实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤ 输出电流的0.1%+1mA;(4)纹波电流≤0.2mA;(5)其他。

2.方案比较与论证2.1.1各种方案比较与选择方案一:采用中小规模集成电路构成的控制电路。

由三段可调式集成稳压器构成的恒流源。

以W350为例,其最大的输出电流为3A,输出电压Uo′为1.2~33V。

其典型的恒流源电路如图2所示。

图2 W350当可调稳压器W350调解在输出电压Uo′=1.2V的时候,若R固定不变,则输出电流保持不变。

因此可获得恒流输出。

此方案的优点:结构简单、外围元件少、调试方便、价格便宜。

缺点:精密的大功率的数控电位器难购买。

方案二:采用以单片机为核心的单片机最小系统。

由数控稳压器构成的恒流源(如图3)。

图3 数控稳压器方案一是在U o′不变的情况下,通过改变R数值而获得输出电流的变化。

如果固定R 不变,如令R=1Ω,若能改变U o′的数值,同样可以构成恒流源。

此方案的优点:原理清晰,只需要数控恒压源的设计知识和器材的话,方案比较容易实现。

缺点:数控恒流源的地是浮地,与系统不共地线。

方案三:采用以单片机为核心的单片机最小系统。

采用电流串联负反馈机理构成恒流源。

采用电流负反馈机理构成的原理图如下图4所示,它由LM399型精密基准电压源、DAC、低噪声误差放大器A、调整管、负载电阻RL,取样电阻RF及精密多圈电位器RP等组成。

来自CPU电流控制字数据加至D/A转换器,转换成电压信号通过多圈电位器RP加在运放A的同相段。

由A、VT、RL、RF构成典型的电流串联负反馈。

图4 电流串联负反馈方案三的优点:原理清晰,只要需要数控电压源的知识,元件资料。

实现此方案很简单。

2.2 方案证论整个系统根据其外围设备的复杂程度、花费成本,从系统可靠性、稳定性出发,以及根据现有的条件,采取合理的选择。

电源供电部分,选用常见的三端稳压,因其电路简单,输出电压稳定,成本低,被广泛应用。

该电源部分的重点在于恒流源的电源提供,要求其恒定电流需达到2A,故一般的三端稳压芯片难以达到要求,故根据现有的条件,该部分不经过稳压,直接通过整流、多次滤波之后接入恒流源电路(效果显著)。

尽管整个系统带负载能力不强,但是通过电流较大,热量消耗的功率非常大,并且对其稳定度要求非常高,所以为避免电路的供电部分对恒流源产生干扰影响,整个系统必须要两个变压器,一个给电路供电,一个专为恒流源部分电流。

恒流源部分,选用电流串联负反馈电路构成的恒流源,该电路简单,原理易懂。

该部分为整个系统的核心电路部分,通过由MCU控制输出数据,经过D/A转换得到的电压值接入误差放大器的同向端,其反相端则是由流经采样电阻上的电流,采样得到的电压。

通过误差比较,若不相等则通过误差放大,放大后的误差电压,通过转为电流信号接入调整管的基极。

通过采样反馈回的电流信号的变化,调整管通过调整使得采样反馈回的电压Uf等于MCU控制输出,经由D/A转换输出的电压值,以达到数控的目的。

D/A转换器(TLV5618)具有4096种状态,完全能满足要求。

设计时两个电流控制字,代表1mA,当电流控制字从0,2,4,…,4000时的,电源输出电流分别为0mA,1mA,2mA,…,2000 mA。

TLV5618是串行输入,串行输出的12位D/A转换器。

它需要一个基准电压源,选取精度高,电压温度系数小、性能好的精密基准电压源LM399。

其基准电压为6.95V 。

由D/A 转换器TLV5618产生的模拟量Uf1加在误差放大器的同相端,若将Ui 作为运放TL082的输入量,则由采样电阻Rf 引入的反馈是典型的电流串联负反馈。

其输出的电流Io 只取决Ui 和Rf 的大小。

即Io=U_ / Rf ≈U+ / Rf=Ui / Rf 。

若Rf 取定,Ui 不变,则Io 恒定。

这即是恒流源的工作原理。

若Rf 一定,Ui 随电流控制字的变化而变化。

故Io 也随电流控制字的变化而变化。

根据题目要求,输出电流Io 的变化范围为20~2000mA ,则Imax=2000mA 。

取Rf=0.5Ω,则Ufmax=Uimax=Vnmax=Iomax ·Rf=1V 。

这就意味着当电流控制字为4000时,对应D/A 转换器输出的电压值Ui 为1V 。

于是可求得D/A 转换器满幅值为4095/4000=1.02375 (V) (1)此值就是TLV5618的参考电压值。

通过精密多圈电位器RP1调节很容易得到这数值。

于是,不难推出输出电流I 0与电流控制字的表达式)(5001K11110iinREFF2D 22U R I mA i iii D ∑∑===-∙=(8.3.6) 由8.3.2节的分析可知,这一部分性能好坏,直接影响系统的技术指标是否可以满足,下面就电路中关键的几个元器件进行讨论。

1) 采样电阻的选择采样电阻的选择十分重要,要求噪声小,温度特性好,所以最好选择低温度系数的高精度采样电阻。

例如,锰铜线制成的电阻,温度系数约5ppm/℃。

另外,由于采样电阻与负载串联时流过采样电阻的电流通常比较大,因而温度也会随之上升,可以通过减小载流量和增加散热面积来避免因温度过高导致采样电阻值发生变化。

在条件允许的情况下,还可以采用风冷的办法解决。

另外采样电阻阻值取大一点,对稳定度有好处,但会使系统效率下降,折中考虑取R=0.5Ω。

2) 调整管的选择由于稳流电源的输出电流全部流经调整管,因此调整管上的功耗将会很大,必须选择大功率的晶体管来做调整管。

为了与误差放大器更好地匹配,我们采用由一只三极管8050和功率管MJE8055组成的复合管结构,MJE8055的最大输出电流可以达到8A 。

通常调整管承受的电压和流过的电流时变化的,在极限情况下,即最小输出电压和最大输出电流时,为了防止调整管上的功率损耗不致过大,又要防止它进入饱和状态,最好采用稳流电源的输入电压随其输出电压的改变而进行调节,使调整管的集——射电压保持不变,但由于时间和条件的限制,本设计中没有采用。

3)误差电压放大器电流稳定度与放大器有直接关系,在大功率电源里基本上是倒数关系。

例如,若要求电流源的稳定度小于104-,则放大器的放大倍数要大于10000。

现有的集成运算放大器基本上都能够满足这一要求。

本设计选用TL082作为误差放大器,其具有:1.2V/µV(Ω=2k RL),0.5V/µV(Ω=600R L )的高增益;300µV 的低输入失调电压;1.5nA 的低失调电流;2.5µV/℃低温漂;0.55µV 的低噪声电压。

由于采样电阻选取0.5Ω,其最大采样电压为1V ,而负载端最高电压为10V ,复合调整管1.4V UBE=。

于是要求误差放大器的最大输出电压为12.4V ,为了防止放大器进入饱和区,设计将放大器的工作电压取为V 15±。

3) D/A 转换器的选择由8.3.2节分析可知,D/A 转换器的性能好坏直接影响系统的技术指标,设计选择了具有掉电模式的12位电压输出D/A 转换器TLV5618。

① 特点。

.电源:2.7~5.5V.可编程置位时间:3µS (高速模式);9µS (低速模式) .差分非线性:<0.5LSB (典型值) .与TMS320、SPI 兼容的串口接口 .温度范围内单调 ② 引脚图如图5所示图5 TLV5618引脚图 5) 基准电压源的选择基准电压源的选择十分重要,它直接影响输出电流源输出电流的准确性、稳定性及纹波系数等项技术指标。

设计选择了目前生产的性能最佳、电压温度系数最低的精密基准电压LM399。

3. 电流测量部分电流测量与显示原理框图如图4所示。

其中单片机与液晶显示的接口电路如图6所示。

电流测量电路如图7所示。

图6单片机与液晶显示的接口电路图7 电流测量电路图8 稳流电流的输出该电路由三级组成,第一级由AD620构成缓冲放大,主要起隔离和增益可调的作用;第二级由TL082构成直流放大作用;第三级由TLV1549构成的A/D 转换器。

该电路的功能是将输出电流I 0先转换成电压,在经过两级电压放大,放大后最大输出电压控制在12V 以内,最后A/D 转换成数字量交给CPU 进行处理。

1) 元器件的选择 ① 缓冲级选择。

缓冲级选取低功耗仪表放大器AD620。

它具有如下特点: .单电阻设置增益(1~1000) .宽电源范围:V 18~3.2±± .低功耗:最大1.3mA .输入失调电压:最大50µV .输入失调漂移:最大0.6µV/℃ .共模抑制比:>100dB (G=10).低噪声:峰——峰值<0.28µV (0.1~10Hz ) .置位时间:15µS (0.01%) ② 电平放大级的选择。

电平放大级选择TL082。

③ A/D 转换器选择。

因为恒流源主电路采用的是12D/A 转换器,测流电路A/D 转换器应该至少保证在12位,因为一时购不到12位以上的A/D 转换集成片。

相关文档
最新文档