运动轨迹问题
求轨迹方程的常见应用及实例分析
求轨迹方程的常见应用及实例分析概述轨迹方程是描述一个物体运动路径的数学表达式。
它在多个领域中都有着广泛的应用。
本文将介绍轨迹方程的常见应用,并通过实例分析加深理解。
利用轨迹方程求解几何问题在几何学中,轨迹方程可以帮助我们求解与几何图形运动相关的问题。
例如,通过分析一个球从斜面滚下的过程,我们可以得出球滚动的轨迹方程,从而计算球与斜面的碰撞点、速度、加速度等参数。
追踪物体运动的轨迹轨迹方程在物理学和工程学中起着重要的作用。
例如,在机械工程中,我们可以通过求解物体在弹簧的作用下的运动轨迹方程,从而设计出合适的机械装置。
在物理学中,轨迹方程可以帮助我们理解各种力学现象,如自由落体、抛体运动等。
仿真和模拟轨迹方程也广泛用于计算机仿真和模拟领域。
通过编写适当的数学方程,我们可以模拟各种现实场景中物体的运动轨迹。
这对于科学研究、工程设计和娱乐产业都有着重要意义。
实例分析:自由落体运动我们以自由落体运动为例进行实例分析。
自由落体是一个简单而常见的物理现象,即物体在不受外力作用下,只受重力加速度影响的运动。
通过应用轨迹方程,我们可以推导出自由落体的运动轨迹方程为:h = 0.5 * g * t^2其中,h表示下落的距离,g表示重力加速度,t表示时间。
利用这个轨迹方程,我们可以计算出在不同时间点下落的距离。
这对于设计和预测物体坠落过程中的运动行为具有重要意义。
结论轨迹方程是一个重要的数学工具,具有广泛的应用领域。
它可以帮助我们求解几何问题、追踪物体运动、进行仿真和模拟等。
通过实例分析,我们更加深入地理解了轨迹方程的应用和意义。
参考文献:。
高中数学动点轨迹问题专题讲解
动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y , 当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF AE =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k +=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=,……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0M N A F =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得k =. 故存在直线l:3y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x y x y x841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x t y t y t y y t y y =++=+++ 2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得2222363(31)31t t t =---考虑几何求法!!解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(y x =) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:||1010AB =⇒=,又11y x =,22y x =,则1221()3y y x x +=-,2112)3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l的距离为d ,已知||2PF =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +b k0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k的取值范围是113(,(,0)(0,)(,)22-∞-+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。
二次函数与运动轨迹问题
二次函数与运动轨迹问题二次函数是数学中一个非常重要的概念,它描述了一个物体的运动轨迹。
在实际生活中,我们经常遇到物体的运动问题,比如投篮、射门、跳高等等。
这些运动问题都可以用二次函数来描述。
首先,我们来了解一下什么是二次函数。
二次函数的一般形式是y=ax^2+bx+c(a≠0),其中a、b、c是常数,x是自变量,y是因变量。
这个函数的图像是一个抛物线,顶点是(−b/2a,c−b^2/4a),对称轴是x=−b/2a。
在运动轨迹问题中,物体的运动可以看作是重复的直线运动和曲线运动的组合。
直线运动是物体在一段时间内沿直线移动,可以用一次函数来描述;曲线运动是物体在一段时间内沿曲线移动,可以用二次函数来描述。
以投篮为例,当篮球离开手后,它会由于重力的作用沿一条弧线运动,这条弧线的形状可以用二次函数来描述。
具体来说,如果以t表示时间,x表示篮球的水平位移,y表示篮球的垂直位移,那么篮球的运动轨迹可以表示为y=kx^2+h(k≠0),其中k和h是常数。
通过这个例子,我们可以看出二次函数在描述物体的运动轨迹方面具有重要作用。
在实际应用中,我们可以通过测量物体的运动数据,比如时间、位置、速度、加速度等,来拟合出物体的运动轨迹方程,从而更好地预测和控制物体的运动。
除了投篮,二次函数还可以描述其他类型的运动轨迹问题。
比如跳高运动中,运动员的腾空高度随时间的变化可以用二次函数来描述;在发射卫星时,卫星的轨道高度随时间的变化也可以用二次函数来描述。
总之,二次函数是描述物体运动轨迹的一个重要工具。
通过掌握二次函数的性质和应用方法,我们可以更好地解决实际生活中的运动轨迹问题,提高我们的生活质量和工作效率。
轨迹类问题
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
轨迹,包含两个方面的问题,凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。
另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
本来以前在初中教学大纲有轨迹的内容,但是已经被删除很久了。
为什么我们要拿出来说一下,因为从轨迹的观点出发很多动点问题就会变得很容易。
1到已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线。
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线可以看成到线段两个端点距离相等的点的集合2到已知角的两边距离相等的点的轨迹,是这个角的角平分线。
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线3到直线L的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的的两条直线。
到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。
主要解决同底等高面积相等的问题。
4到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
这个是应用最多的。
昨天辅助圆的思想也是用到这个定义。
另外把圆的方程提出来圆的标准方程(x-a)²+(y-b)²=r²中,有三个参数a 、b 、r ,即圆心坐标为(a ,b),只要求出a 、b 、r ,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
在平面直角坐标系中,设有圆O ,圆心O(a,b) 点P(x,y)是圆上任意一点。
圆是平面到定点距离等于定长的所有点的集合。
所以两边平方,得到(丰台一模29)设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离为; (2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值是; (3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.5,平面内有两点A,B ,在平面内找一点P 使得三角形ABP 为等腰三角形。
轨迹方程综合练习题
轨迹方程综合练习题轨迹方程综合练习题在数学中,轨迹方程是描述一个物体运动轨迹的数学表达式。
它可以帮助我们理解和预测物体在空间中的运动规律。
本文将通过一些综合练习题来加深对轨迹方程的理解和应用。
练习题一:抛物线轨迹方程假设有一个抛物线轨迹,顶点坐标为(0,0),焦点坐标为(2,0)。
求该抛物线的轨迹方程。
解答:设抛物线的方程为y = ax^2 + bx + c,由于顶点坐标为(0,0),所以c = 0。
又因为焦点坐标为(2,0),根据抛物线的性质可知焦距等于顶点到直线的距离的两倍,即2a = 2。
解得a = 1。
所以,该抛物线的轨迹方程为y = x^2 + bx。
练习题二:椭圆轨迹方程现有一个椭圆轨迹,长轴长度为6,短轴长度为4。
求该椭圆的轨迹方程。
解答:设椭圆的方程为x^2/a^2 + y^2/b^2 = 1,其中a为长轴长度的一半,b为短轴长度的一半。
根据题意,a = 6/2 = 3,b = 4/2 = 2。
所以,该椭圆的轨迹方程为x^2/9 + y^2/4 = 1。
练习题三:双曲线轨迹方程给定一个双曲线轨迹,焦点坐标为(0,2),离心率为2。
求该双曲线的轨迹方程。
解答:设双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a为双曲线的焦点到中心的距离,b为离心率。
根据题意,a = 2/2 = 1,离心率为2。
所以,该双曲线的轨迹方程为x^2 - y^2/4 = 1。
练习题四:直线轨迹方程给定一个直线轨迹,过点(2,3),斜率为2。
求该直线的轨迹方程。
解答:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据题意,斜率k = 2,过点(2,3),代入方程可得3 = 2*2 + b,解得b = -1。
所以,该直线的轨迹方程为y = 2x - 1。
通过以上练习题,我们可以看到轨迹方程的应用广泛且多样化。
无论是抛物线、椭圆、双曲线还是直线,轨迹方程都可以帮助我们更好地理解和描述物体的运动规律。
机器人控制中运动轨迹规划算法的使用中常见问题解析
机器人控制中运动轨迹规划算法的使用中常见问题解析机器人运动轨迹规划是指在给定的环境中,通过选择合适的路径和动作,使机器人能够从初始位置移动到目标位置。
运动轨迹规划算法是实现机器人运动控制的核心部分,它的正确使用对于机器人的运动效果和精度有着至关重要的影响。
在机器人控制中,常会遇到一些与运动轨迹规划算法相关的问题。
本文将对这些常见问题进行解析。
问题一:如何选择合适的运动轨迹规划算法?在选择运动轨迹规划算法时,需要考虑以下因素:1. 动态障碍物处理能力:机器人在运动过程中可能会遇到动态障碍物,因此选择的算法应能及时响应并进行适当的避障处理。
2. 运动精度要求:不同的任务对于机器人的运动精度有着不同的要求。
在需要精确控制的任务中,需要选择精度较高的算法。
3. 环境地图和传感器信息:运动轨迹规划算法的性能还与环境地图和传感器信息的质量有关,因此需要根据实际情况选择适合的算法。
问题二:如何解决动态障碍物问题?动态障碍物是指在机器人运动过程中,障碍物的位置和状态可能发生变化。
为了解决动态障碍物问题,可以采取以下措施:1. 实时感知和跟踪:机器人需要通过激光雷达、摄像头等传感器实时感知环境中的动态障碍物,并持续跟踪它们的位置和状态。
2. 即时更新规划:通过不断更新运动轨迹规划算法,根据动态障碍物的变化情况及时调整机器人的路径规划。
可以采用启发式搜索算法或优化算法来解决这个问题。
问题三:如何提高运动轨迹规划算法的计算效率?在实际应用中,机器人通常需要快速生成高效的运动轨迹。
为提高算法的计算效率,可以采取以下方法:1. 优化数据结构:合理选择数据结构能够有效地提高算法的计算效率。
例如,使用KD树或R树可以加速搜索过程。
2. 减少搜索空间:对于大型环境,可以采用分层规划的方法,先对全局路径进行规划,再对局部路径进行细化,从而减小搜索空间。
3. 并行计算:利用多核处理器或分布式计算框架,将算法并行化,以提高计算速度。
运动轨迹迷宫 趣题
题目:
小明在跑步时,先向正南方向跑了50米,然后左转跑了30米,接着再左转跑了10米,最后又左转跑了20米。
这时,小明离出发点有多远?
答案:
首先,我们确定小明每段跑动的方向。
初始方向为正南。
向正南方向跑了50米。
第一次左转,此时的方向变为正东。
沿正东方向跑了30米。
第二次左转,此时的方向变为正北。
沿正北方向跑了10米。
第三次左转,此时的方向变为正西。
沿正西方向跑了20米。
我们接下来要计算小明此时离起点的距离和方向。
首先,我们可以计算小明当前的位置坐标。
小明最初在原点(0,0),第一次跑动后到达点(50,0),第二次跑动后到达点(50+30, 0) = (80, 0),第三次跑动后到达点(80+10, 0) = (90, 0),第四次跑动后到达点(90-20, 0) = (70, 0)。
因此,小明现在的位置是(70, 0)。
最后,我们需要计算小明离起点的距离。
这个距离就是小明现在的位置的x坐标的绝对值,即|70| = 70米。
所以,小明离出发点有70米远。
立体几何中的轨迹问题(详细版)
立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难。
通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。
一、用空间运动的观点来得到点的轨迹。
例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹。
解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。
再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线。
针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。
由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。
由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。
因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B ,求动点B 的轨迹。
结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°>α>β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。
招式八:轨迹问题
招式八:轨迹问题轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特 殊的技巧,易于表述成含 x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、直角坐标系中,点 Q (2, 0),圆C 的方程为X 2 y2 1 ,动点M 到圆C 的切线长与l MQ l的比等于常数(0),求动点M 的轨迹.222【解析】设MN 切圆C 于N,那么|MN ||MO||ON|.设M(x,y),那么◎ ◎如图,圆.1与圆.2的半径都是1,.1.2 4.过动点P 分别作圆.2、圆.2的切线PM , PN ( M ,N 分别为切点),使得PM 虚PN .试建立适当的坐标系,并求动点P 的轨迹方程【解析】以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如下图的平面直角坐标系,那么 01( 2,0), .2(2,0).即(x 6)2 y 2 33.(或 x 2 y 2 12x 3 0) 评析:1、用直接法求动点轨迹一般有建系 意挖〞与补〞.2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义) ,可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.由 PM J2P N 』I|PM 2 2PN 2. 由于两圆半径均为 1,所以____ 2_ _______ 2PO 1 1 2(PO 21).设 P(x, y),那么_ 22(x 2)2 y 2 122[(x 2)21],■-22-22-J x y 1 J (x 2) y化简得(511) 当 1时,万程为x表示一条直线.221)(x1时, 方程化为(x2 2.22y(2 1)2,设点,列式,化简,证实五个步骤,最后的证实可以省略,但要注 表不一"个-,0 ,且与直线x E 相切,其中p 0.求动圆圆心C 的轨迹的方程; 2 2为动圆圆心,2,0为记为F ,过点M 作直线x p 的垂线,2 2垂足为N ,由题意知:|MF| |MN|即动点M 到定点F 与定直线x p 的距离相等,2由抛物线的定义知,点 M 的轨迹为抛物线,其中 F 上,0为焦点,2xR 为准线,所以轨迹方程为 y 2 2px(P 0);2OM 于点P,求点P 的方程.由切线的性质知:|BA|=|BD| , |PD|=|PE| , |CA|=|CE| ,故 |PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC| ,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,22可求得动点P 的轨迹方程为: —支一181 72评析:定义法的关键是条件的转化一一转化成某一根本轨迹的定义条件.三、相关点法: 动点所满足的条件不易表述或求出,但形成轨迹的动点 P(x,y)^随另一动点 Q(x', y')的运动而有规律的运动, 且动点Q 的轨迹为给定或容易求得, 那么可先将x',表示为x,y 的式子,再代入Q 的 轨迹方程,然而整理得 P 的轨迹方程,代入法也称相关点法.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程.例3、如图,从双曲线 x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为 No 求线段QN 的中点P 的轨迹 方程. 【解析】设动点 P 的坐标为(x,y),点Q 的坐标为(x 1,y 1)第2页共6页◎ ◎圆O 的方程为x 2+y 2=100,点A 的坐标为(-6, 0), M 为圆O 上任一点, AM 的垂直平分线交例2、动圆过定点【解析】如图,设M【解析】由中垂线知,|PA |PM | 故 |PA |PO ||PM| |PO | |OM| 10,即P 点的轨迹为以 A 、 O 为焦点的椭圆,中央为( -3, 0),故P 点的方程为(x 3)2 252y 16125 ◎ ◎ A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6 , 0O'切直线l 于点A,又 过B 、C 作.O'异于l 的两切线,设这两切线交于点P,求点P 的轨迹方程.【解析】设过B 、C 异于l 的两切线分别切.O'于D 、E 两点,两切线交于点P.p 2贝U N ( 2x-x i,2y-y i)代入x+y=2得2x-x i+2y-y i=2①又PQ垂直于直线x+y=2,故^y一y1 1,即x-y+y i-x i=0② x x i_ ............ __ ________ 3 i i 3由①②解方程组得x i 3x」y i,y i ,x 3y i,2 2 2 2代入双曲线方程即可得P点的轨迹方程是2x2-2y2-2x+2y-i=02 2◎ ◎椭圆 : 与i〔a b 0〕的左、右焦点分别是a b F i 〔―c, 0〕、F2 〔c, 0〕, Q是椭圆外的动点,满足|F i Q| 2a.点P是线段F i Q与该椭圆的交点,点T在线段F2Q上,并且满足PT TF2 0,|TF2 | 0.求点T的轨迹C的方程;【解析】解法一:〔相关点法〕设点T的坐标为〔x, y〕.当|PT| 0时,点〔a, 0〕和点〔一a, 0〕在轨迹上当| PT | 0且|TF2 | 0时,由PT TF2 0 ,得PT TF2 .又| PQ| | PF? | ,所以T为线段F2Q的中点.设点Q的坐标为x c 2 y . 2因此2x c, 2y.由|EQ| 2a 得(x c)2 y 2 4a2.将①代入②,可得x2 y2 a2.综上所述,点T的轨迹C的方程是x2 y2 a2.解法二:〔几何法〕设点T的坐标为〔x, y〕.当|所| 0时,点〔a, 0〕和点〔—a, 0〕在轨迹上当| PT | 0且|TF2 | 0时,由|PT| |TF2 | 0,得PT TF2. 又|PQ| |PF z|,所以T为线段F2Q的中点.在△ QF1F2 中,—— 1|OT | -| F I Q | a ,所以有综上所述,点T的轨迹C的方程是x2 y2评析:一般地: 定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法.四、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,那么可借助中间变量〔参数〕,使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程.例4、在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B 满足AO± BO〔如图4所示〕.求△ AOB的重心G 【解析】〔即三角形三条中线的交点〕的轨迹方程;解法一:以OA的余^率k为参数由k x 解得A (k, k2) x•.OA, OB, ..OB: y 1 -x 2k x设△ AOB勺重心G 〔x, y),那么k21J?消去参数k得重心G的轨迹方程为y3x2解法二:设^ AOB的重心为G〔x,y〕,A〔x i,y i〕,B 〔x2,y2〕,那么…(1)小y23-• OA± OB k OA k OB 1,即x1x2 y〔y21, (2)又点A, B在抛物线上,有y1 2X I , y2 代入〔2〕化简得x〔x2y1 y2 1/2 •• y -;- -(x13 3 x;)13[(x1x2)22x1x2 ] 3 (3x)23x2所以重心为G的轨迹方程为y3x2◎ ◎如图,设抛物线C : y x2的焦点为F,动点P在直线l : x y 0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.求△ APB的重心G的轨迹方程.【解析】设切点A、B坐标分别为〔x,x;〕和〔X1,X12〕〔〔X1 X o〕, ,切线AP的方程为:2x0x y x20;2 _切线BP的万程为:2x1 x y x1 0;解得P点的坐标为:x P Xo——X~,y P x o x12所以△ APB的重心G的坐标为x G ^0一X1一X P X P,V G v.必y p32 2X0 % X0X13〔X0 %〕2X0X1 4x P2y p所以y p 3V G 4x G,由点p在直线i上运动,从而得到重心G的轨迹方程为:1x 〔 3y 4x2〕 2 0,即y -〔4x2x 2〕.五、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法, 也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程.可以说是参数法的一种变种.2例5、抛物线y 4Px〔P 0〕的顶点作互相垂直的两弦OA、OB,求抛物线的顶点O在直线AB上的射影M的轨迹.2 2 解1〔交轨法〕:点A、B在抛物线y2 4px〔p 0〕上,设A〔无,y A〕,B〔34p 4p ,y B〕所以k oA= _P k OB=V A4p .-- 油OA垂直OB得k OA k OB = -1,得y A y B= -16p,又AB方程可求得y y A y B2 V A V B入,V A、〔x4p 4py--4px--y A y B=0,把y A y B= -16p2代入得AB 方程〔y A+y B〕y--4px+16p2=0 ① 又OM 的方程为y V A V B --- X4P由①②消去得y A+y B即得x2 y2 4px 0, 2 2.2即得〔x 2p〕 y 4p.所以点M的轨迹方程为〔X 2p〕2 2 ,2 ................ ....... _ _ ,一 , ,,一一一 ...y 4p,其轨迹是以〔2p,0〕为圆心,半径为2 P的圆,除去点〔0, 0〕.评析:用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可.交轨法实际上是参数法中的一种特殊情况.3以由圆的几法性质可知:M点的轨迹是以(2p,0)为圆心,半径为2P的圆.所以方程为2 2.2(x 2p) y 4p ,除去点(0, 0).1、定点F(1, 0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N,且P M PF 0,|而| | PN|. (1)动点N的轨迹方程;(2)线l与动点N的轨迹交于A, B两点,假设OA OB 4,且4j6 | AB| 4^30 ,求直线l的斜率k的取值范围.⑴ 设动点N的坐标为(x,y),那么M( x,0), P(0,-y)(x 0), PM* ( x, -y), 2 22PF (1,)),由丽PF 0得x 匕0,因此,动点的轨迹方程为y24x(x 0).2 4(2)设l与抛物线交于点A (x1,y1),B(x2,y2),当l与x轴垂直时, 那么由OAOB 4,得y1 2< 2, y2 2j2,|AB|4四4®不合题意,故与l与x轴不垂直,可设直线l的方程为y=kx+b(k W0那么由OA OB 4,得X1X2y1 y2 4由点A, B在抛物线y2 4x(x 0)上,有y; 4x, y; 4x2,故yy? 8.又y2=4x, y=kx+b 得ky2—4y+4b=0,所以,, / , 2 〞4b 2 2 1 k 16一8,b 2k. 16(1 2k ),|AB| —— (— 32)内为k k k4 , 21 k 164^6 | AB | 4430,所以96 ——(― 32) 480.k2 k2解得直线l的斜率的取值范围是[1 1] [1,1].’2 2第6页共6页。
高中物理运动轨迹讲解教案
高中物理运动轨迹讲解教案
一、教学目标
1. 知识目标:掌握运动轨迹的基本概念和相关公式,能够分析和计算简单的运动轨迹问题。
2. 能力目标:培养学生观察、分析和解决问题的能力,培养学生对物理学的兴趣和探索精神。
3. 情感目标:培养学生独立思考和合作交流的能力,培养学生对物理学知识的热爱和好奇心。
二、教学重点与难点
1. 教学重点:运动轨迹的概念及计算方法。
2. 教学难点:运动轨迹问题的分析解决方法。
三、教学过程
1. 导入:通过实际生活中的例子引入运动轨迹的概念,引发学生对问题的思考和探索。
2. 授课:介绍运动轨迹的定义、类型和相关公式,示范如何计算运动轨迹问题。
3. 练习:组织学生进行练习,让学生独立分析和解决运动轨迹问题,加深对知识的理解和
应用。
4. 讨论:引导学生进行讨论,分享自己的思考和解决方法,提高合作交流和问题解决能力。
5. 总结:总结本节课的重点内容,强调知识的重要性和应用价值,激发学生的学习兴趣和
探索欲望。
四、作业布置
1. 完成课堂练习题目,巩固运动轨迹的相关知识。
2. 自选一个实际生活中的例子,分析其运动轨迹问题并提出解决方法。
五、教学反思
通过本节课的教学活动,学生对运动轨迹的概念和计算方法有了更深入的理解,培养了学
生分析和解决问题的能力。
同时,通过合作交流和讨论,激发了学生的学习兴趣和探索精神,达到了预期的教学目标。
下一步可以通过更多实例和案例的引入,进一步拓展学生的
知识面和思维方式,提高学生的学习能力和创新精神。
带电粒子在电场中运动轨迹类问题+讲义
带电粒子在电场中运动轨迹类问题知识回顾:1、由运动轨迹分析可知:(1)带电粒子的速度方向为该点轨迹的切线方向;(2)带电粒子的受力方向指向轨迹凹侧;(3)加减速的判断:力与速度的夹角若为锐角,则加速;若为钝角,则减速。
2、电场线和等势面的特点(1)电场强度的强弱判断。
A. 电场线:越密越强B. 等差等势面:越密越强(2)粒子电性和电场方向的判断。
A.正电荷受力方向沿电场线方向,负电荷受力方向逆着电场线方向。
B.沿电场线方向电势降低。
3、功能转化关系电场力做正功则动能增加,速度增加,电势能减小;电场力做负功则动能减少,速度减少,电势能增加。
4、从电势高低角度来判断电势能的高低关系式:P E q ϕ=正电荷电势越高,电势能越大;负电荷电势越高,电势能越低。
练习题一、单选题1、如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,粒子在M 点和N 点时加速度大小分别为M a 、N a ,速度大小分别为M v 、N v ,下列判断正确的是( )A.M N a a <,M N v v <B.M N a a <,M N v v >C.M N a a >,M N v v <D.M N a a >,M N v v >2、一个电子只在电场力作用下从a 点运动到b 点的轨迹如图中虚线所示,图中一组平行实线可能是电场线也可能是等势面,则以下说法正确的是( ) A.如果实线是等势面,a 点的场强比b 点的场强小B.如果实线是电场线,a 点的场强比b 点的场强小C.如果实线是电场线,电子在a 点的速率一定大于在b 点的速率D.如果实线是等势面,电子在a 点的速率一定大于在b 点的速率3、如图所示,虚线a b c 、、代表电场中的三条电场线,实线为一带负电的粒子仅在电场力作用下通过该区域时的运动轨迹,P R Q 、、是这条轨迹上的三点,由此可知( )A.带电粒子在R 点时的速度大小大于在Q 点时的速度大小B.带电粒子在R 点时的速度大小等于在Q 点时的速度大小C.带电粒子在R 点时的动能与电势能之和比在Q 点时的小,比在P 点时的大D.带电粒子在R 点时的动能与电势能之和比在Q 点时的大,比在P 点时的小4、如图所示,虚线a b c 、、代表电场中三根电场线,实线为一带正电的质点仅在电场力作用下通过该区域的运动轨迹,P Q 、是这条轨迹上的两点,则( )A.P 点的电势最高B.带电质点通过P 点时电势能最小C.带电质点通过Q 点时动能最大D.带电质点通过P 点时加速度较小5、如图所示,虚线a 、b 、c 代表电场中的三条电场线,实线为一带负电的粒子仅在电场力作用下通过该区域时的运动轨迹,P 、R 、Q 是这条轨迹上的三点,由此可知( )A .带电粒子在R 点时的速度大于在Q 点时的速度B .带电粒子在P 点时的电势能比在Q 点时的电势能大C .带电粒子在R 点时的动能与电势能之和比在Q 点时的小,比在P 点时的大D .带电粒子在R 点时的加速度小于在Q 点时的加速度二、多选题6、如图所示,空间有a b 、两个点电荷,实线为电场线,虚线为某带电粒子只在电场力作用下的运动轨迹,M N 、为轨迹上的两点,则( ) A.M 点的电势比N 点的高B.M 点的电场强度比N 点的大C.a b 、为异种电荷,a 的电荷量小于b 的电荷量D.粒子从M 点运动到N 点电势能减小7、如图所示,实线为三条电场线,虚线1、2、3分别为三条等势线,三条等势线与其中一条电场线的交点依次为M N Q 、、三点,MN NQ ,电荷量相等的a b 、两带电粒子从等势线上的点沿着等势线的切线方向飞入电场,仅在静电力的作用下,两粒子的运动轨迹分别如图中的弯曲实线所示,已知a 粒子到达等势线1时的动能与b 粒子到达等势线3时的动能相等,下列说法正确的是( )A.a 粒子一定带负电,b 粒子一定带正电B.a b 、两粒子从O 点飞入电场时的动能相等C.a 的加速度逐渐减小,b 的加速度逐渐增大D.a 的电势能逐渐减小,b 的电势能逐渐增大8、如图所示的实线为某静电场的电场线,虚线是仅在电场力作用下某带正电粒子的运动轨迹,A B C D 、、、是电场线上的点,其中A D 、两点在粒子的轨迹上,下列说法正确的是( )A.该电场可能是正电荷产生的B.B 点的电势一定低于C 点电势C.粒子在A 点的加速度一定大于在D 点加速度D.将该粒子在C 点由静止释放,它可能一直沿电场线运动9、某电场的三条等势线如图所示,一带电量大小为1e 的粒子只在电场力作用下从A 点运动至B 点,轨迹如图中实线所示,下列说法中正确的是( )A.带电粒子带正电B.带电粒子在A 点处电势能为+5JC.运动过程中电场力对粒子做正功D.带电粒子在B 点处的动能和电势能的总和大于A 处的动能和电势能的总和10、如图所示,虚线a b c 、、代表电场中三个等势面,相邻等势面之间的电势差相同,实线为一带电的粒子仅在电场力作用下通过该区域的运动轨迹,P Q 、是这条轨迹上的两点,由此可知( )A.P点电势高于Q点的电势B.带电粒子通过Q点时动能较大C.带电粒子通过P点时电势能较大D.带电粒子通过Q点时加速度较大11、一粒子从A点射入电场,从B点射出,电场的等差等势面和粒子的运动轨迹,其余等势面不再是平面,最右如图所示,图中最左端等势面是平面,电势为120V端等势面电势为40V,不计粒子的重力。
平面几何中的轨迹问题例题和知识点总结
平面几何中的轨迹问题例题和知识点总结在平面几何的世界里,轨迹问题是一个既有趣又具有挑战性的领域。
它不仅要求我们对几何图形的性质有深入的理解,还需要我们具备灵活的思维和解题技巧。
接下来,让我们通过一些具体的例题来深入探讨平面几何中的轨迹问题,并对相关的知识点进行总结。
一、轨迹问题的基本概念轨迹,简单来说,就是一个动点在平面内按照一定的条件运动所形成的图形。
要确定一个轨迹,需要明确两个关键要素:动点满足的条件和动点运动的范围。
例如,一个点到定点的距离等于定长,那么这个点的轨迹就是一个圆。
这就是根据点的运动条件来确定轨迹的典型例子。
二、常见的轨迹类型1、直线型轨迹到两定点距离之和为定值的点的轨迹是椭圆(当定值大于两定点间的距离时)。
到两定点距离之差的绝对值为定值的点的轨迹是双曲线(当定值小于两定点间的距离时)。
到一条定直线的距离等于定长的点的轨迹是两条平行于该直线且与直线距离为定长的直线。
2、圆型轨迹到定点的距离等于定长的点的轨迹是圆。
3、抛物线型轨迹到定点和定直线的距离相等的点的轨迹是抛物线。
三、例题解析例 1:已知点 A(-2,0),B(2,0),动点 P 满足|PA| |PB| = 2,求点 P 的轨迹方程。
解:因为|PA| |PB| = 2 <|AB| = 4,所以点 P 的轨迹是以 A、B 为焦点的双曲线的右支。
2a = 2,a = 1,c = 2,b²= c² a²= 3所以点 P 的轨迹方程为 x² y²/3 = 1(x ≥ 1)例 2:一动点到直线 x = 4 的距离等于它到点 A(1,0)的距离,求动点的轨迹方程。
解:设动点坐标为(x,y),则动点到直线 x = 4 的距离为|x 4|,动点到点 A(1,0)的距离为√(x 1)²+ y²由题意可得:|x 4| =√(x 1)²+ y²两边平方得:(x 4)²=(x 1)²+ y²展开化简得:y²= 6x 15所以动点的轨迹方程为 y²= 6x 15例 3:在平面直角坐标系中,点 P 到点 F(1,0)的距离比它到 y 轴的距离大 1,求点 P 的轨迹方程。
轨迹问题
轨迹问题轨迹专题动点的轨迹在初中范围内一般有两种(1)弧线(2)线段判定方法:描出三个点:起点,终点,中间点如果是弧线要做到以下几点:确定圆心(一般按照斜边中线等于斜边的一半来确定)确定半径确定圆心角(把圆心和起点,终点相连)注意:点的轨迹有时候存在返回典例:1、例1、已知AB是⊙O的直径,点C是圆上一个动点,OD⊥AC于D,如果点C在圆上运动一周,则点D运动的路线长是2、一个矩形按照如图翻转61次,AB=2,AD=1,则点D走过的路程为如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为______.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()如图,将半径为1cm的圆形纸板,沿着边长分别为8cm和6cm的矩形外侧滚动一周并回到开始的位置,则圆心所经过的路线长约为(精确到0.01)如图,将半径为1cm的圆形纸板,沿着周长为8cm三角形外侧滚动一周并回到开始的位置,则圆心所经过的路线长约为1、如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点。
P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D。
(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动。
请直接写出点H所经过的路径长。
(不必写解答过程)2、如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO 向终点O运动,动点O从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了xs。
圆周运动车轮线轨迹问题
圆周运动车轮线轨迹问题一、当车轮做匀速圆周运动时,车轮上某一点在地面上的轨迹是?A. 直线B. 曲线C. 圆圈D. 抛物线(答案) C二、车轮半径为R,以速度v做匀速圆周运动,车轮上距离轴心R/2的点在地面上的轨迹形状是?A. 半径为R的圆B. 半径为R/2的圆C. 半径为2R的圆D. 椭圆(答案) B三、当车轮做加速圆周运动时,车轮上某一点在地面上的轨迹会如何变化?A. 轨迹半径逐渐增大B. 轨迹半径逐渐减小C. 轨迹变为螺旋线D. 轨迹仍然是圆,但速度变化(答案) C四、车轮以恒定角速度ω旋转,车轮上某一点在地面上的轨迹半径与什么因素有关?A. 车轮的半径B. 车轮的质量C. 车轮的材料D. 车轮的颜色(答案) A五、车轮在水平面上做匀速圆周运动,车轮上某一点在地面上的轨迹圆心与车轮轴心的关系是?A. 两者重合B. 两者有一定距离C. 轨迹圆心在车轮轴心下方D. 轨迹圆心位置与车轮运动状态无关(答案) A六、车轮以恒定线速度v沿斜面做圆周运动时,车轮上某一点在斜面上的轨迹形状是?A. 圆圈B. 椭圆C. 抛物线D. 与斜面倾斜角度有关的曲线(答案) D七、当车轮做减速圆周运动时,车轮上某一点在地面上的轨迹会如何变化?A. 轨迹半径逐渐增大B. 轨迹半径逐渐减小C. 轨迹变为逐渐收缩的螺旋线D. 轨迹仍然是圆,但速度变化(答案) C八、车轮以恒定速率在竖直平面上做圆周运动,车轮上某一点在地面上的投影轨迹是?A. 圆圈B. 椭圆C. 直线D. 复杂的曲线(答案) B九、车轮半径为R,以角速度ω在水平面上做圆周运动,车轮上最高点在地面上的轨迹半径是?A. RB. 2RC. 与ω有关D. 与车轮质量有关(答案) B十、当车轮做非匀速圆周运动时,车轮上某一点在地面上的轨迹会呈现什么特点?A. 轨迹半径不变B. 轨迹形状为圆C. 轨迹速度均匀D. 轨迹为不规则曲线(答案) D。
行星运动轨迹问题的解析
行星运动轨迹问题的解析行星是宇宙中最神秘的天体之一,它们的运动轨迹一直是人们探究的热点问题之一。
早在古代,人类就开始观察天体运动,并尝试推导其规律。
而如今,我们已经通过科学方法对行星运动轨迹的问题进行了深入的探索,掌握了其中的奥秘。
下面,我将从不同角度出发,对这个问题进行深入探讨。
一、天文学原理天文学的基本原理早在古代就已经形成了。
在欧洲,世界上第一台现代天文望远镜是伽利略发明的。
有了望远镜,人类对天体的观察范围大大提高,同时也促进了人们对宇宙运动的认识。
在天文学中,我们通过质点的匀速直线运动来描述天体在宇宙中的运动轨迹。
而行星的运动轨迹则是通过地球和其他星体之间的引力交互作用得出的。
二、基础理论行星运动轨迹问题的解析需要借助数学工具。
众所周知,开普勒三定律是研究行星运动轨迹最基础的理论。
具体来说,这三个定律分别是:1. 行星绕太阳的轨道是椭圆;2. 行星在轨道上的速度在不同位置不同,但天文学家发现轨道半径相同的行星其公转周期也相同;3. 此外,更准确的公式是,半长轴的平方与公转周期的平方成正比,即T^2 = k a^3,其中T为公转周期,a为半长轴长度,k为一个常数。
三、近似方法在研究行星运动轨迹问题时,我们不需要一直使用数学公式去推导轨迹方程。
实际上,通过一些近似方法,我们可以得到比较精确的结果。
例如,在描述行星轨道形状时,如果我们认为行星公转所受的引力是圆心对称的,那么我们就可以用古老的牛顿万有引力定律来推导行星轨道的方程。
四、数值模拟最后,我们还可以使用计算机软件来模拟行星运动轨迹问题。
类比于物理中的“N体问题”,我们可以将行星看作质点,通过数值模拟软件如Matlab来求解其运动轨迹。
这种方法不仅可以得到数值上的答案,而且对于行星运动特点的直观认识也很有帮助。
总之,行星运动轨迹问题的解析是一项复杂的工作,需要掌握扎实的物理和数学知识,但是总的来说具有很高的学术价值。
通过研究行星运动轨迹问题,我们不仅可以更深入地了解宇宙世界,更重要的是对科学方法、理论研究等方面的理解和掌握都有很大促进作用。
天体运动轨迹问题
如何由牛顿运动定律和万有引力定律导出天体运动轨迹? 忽略行星对恒星的引力摄动,根据角动量守恒定律 L v m=⨯ρ即mL v=⨯ρ在极坐标下有 n n e e dtd e dt d vρρθρρτ=+=, 则dt d e e dt d e dt d v n n θρρθρρρτ2-=⨯+=⨯)( 则mL dt =θρd -2① 根据能量守恒定律E GMm mv =-ρ221 极坐标下 222)()(dtd dt d v θρρ+= 则mEGM dt d dt d 2222=-+ρθρρ)()(② 联立①②两式得m E GM d d m L =-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛ρρθρρ224222 整理得Ld L GMm mE d θρρρρ=-+22222 两边积分得⎰-+=22222LGMm mE d Lρρρρθ根据公式)0(42arcsin 122<-+-=++⎰c acb xc bx c cbx ax xdx得C mELGMm L GMm ++-=222222)(arcsinρρθ,亦即()C mEL GMm GMm L -+-=θρsin 2)(22222整理得()C e ep+-=θρsin 1其中322221m M G EL e +=,22222)(mELGMm L p +=这是一个圆锥曲线方程,曲线形状取决于能量E 的正负,当0<E 时,1<e ,天体运动轨迹为椭圆,长半轴21e epa -=,短半轴21eep b -=;当0=E 时,1=e ,天体运动轨迹为抛物线;当0>E 时,1>e ,天体运动轨迹为双曲线。
特别地,根据所导出的公式,当23222-L m M G E =时,0=e ,天体运动轨迹为圆。
对于圆轨道,我们有rGMmmv E -=221 rv m r GMm 22= mvr L =联立解得23222-Lm M G E =,这与公式相吻合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D
C ′ B ′
D ′ 【专题】运动轨迹问题
1、如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.等边△ABC 的边长为1,它的一边AC 在MN 上,且顶点A 与M 重合.现将等边△ABC 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.
(1)请在所给的图中,画出顶点A 在等边△ABC 整个翻滚过程中所经过的路线图;
(2)求等边△ABC 在整个翻滚过程中顶点A 所经过的路径长;
2、如图:在等边△ABO 中,AB =2cm ,线段AB 绕点O 旋转一周,则线段AB 所扫过区域
的面积为 cm 2.
第2题 第3题 第
4题 3、如图,在Rt △ABC 中,∠BAC=90o
,BC=6,点D 为BC 的中点,将△ABD 绕点A 按逆时针方向旋转120o 得到△AB'D',则点D 在旋转过程中所经过的路程为_________.
4、如图,将边长为2cm 的正方形ABCD 绕点A 顺时针旋转到AB′C′D′的位置, ∠B′AD=120°, 则C 点运动到C′点的路径长为 cm .
5、已知线段AB=10,C .D 是AB 上两点,且AC=DB=2,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为 .
第5题 第6题
6、如图,在扇形纸片AOB 中,OA=10,∠AOB=36°,OB 在桌面内的直线l 上.现将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为_______________.
7、如图,等边三角形ABC 的边长和⊙O 的周长相等,当⊙O 按箭头方向从某一位置沿△ABC 的三边做无滑动旋转,直至回到原出发位置时,则⊙O 共转了___________ 圈?
第7题 第9题 第10题 第11题
8、如第7题图,等边三角形ABC 的边长为3,当⊙O 按箭头方向从某一位置沿△ABC 的三边做无滑动旋转,直至回到原出发位置时,则圆心O 共转了所经过的轨迹长为________
9、如图,将半径为2cm 的圆形纸板,沿着长和宽分别为16cm 和12cm 的矩形的外侧滚动一周并回到开始的位置,圆心所经过的路线长度是______cm.
10、如图,正方形ABCD 的边长为4,将长为4的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线的长为
11、如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为8cm ,母线OF 长为8cm ,在母线OF 上的点A 处有一块爆米花残渣,且FA=2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离为
12、如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为
第12题 第13题 13、如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o ,∠A =30o ,若△RtABC 由现
在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示)
14、如图,直线AB 、CD 相交于点O ,∠AOC=30°,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为6cm .如果⊙P 以1cm ∕s 的速度,沿由A 向B 的方向移动,那么多少秒种后⊙P 与直线CD 相切?
O A
B
C A
B C l ………。