动态规划讲解+例子共54页
动态规划的应用举例大全
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。
动态规划算法详解及经典例题
动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
动态规划-例题众多-详细讲解
步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
5
f[i] ← f[i-2]+R[i-1]
6
if f[i] > f[i-1]+T[i] then
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
太慢!
动态规划:
F(n)
1 A[0] = A[1] ← 1
这里是某支股票的价格清单: 日期 1 2 3 4 5 6 7 8 9 10 11 12 价格 68 69 54 64 68 64 70 67 78 62 98 87 最优秀的投资者可以购买最多4次股票,可行方案中的一种是: 日期 2 5 6 10 价格 69 68 64 62 输入 第1行: N (1 <= N <= 5000),股票发行天数 第2行: N个数,是每天的股票价格。 输出 输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231) 当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方 案被认为是相同的。
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。
动态规划典型案例解析及计算过程梳理
动态规划典型案例解析及计算过程梳理动态规划(Dynamic Programming)是一种通过将问题分解为子问题来解决复杂问题的算法策略。
它通常用于优化问题,通过将问题的解决方案划分为相互重叠的子问题来降低计算复杂度。
下面将通过几个典型案例,详细解析动态规划的应用及其计算过程。
1. 斐波那契数列斐波那契数列是一种经典的动态规划问题。
它的定义是:F(n) =F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
我们需要计算第n个斐波那契数。
通过动态规划的思想,可以将该问题划分为子问题,即计算第n-1和第n-2个斐波那契数。
可以使用一个数组来保存已经计算过的斐波那契数,避免重复计算。
具体的计算过程如下:1. 初始化一个长度为n+1的数组fib,将fib[0]设置为0,fib[1]设置为1。
2. 从i=2开始遍历到n,对于每个i,计算fib[i] = fib[i-1] + fib[i-2]。
3. 返回fib[n]作为结果。
通过上述过程,我们可以快速地得到第n个斐波那契数。
这个案例展示了动态规划的重要特性,即将问题分解为子问题进行求解,并利用已经计算过的结果来避免重复计算。
2. 背包问题背包问题是另一个常见的动态规划问题。
问题的定义是:有一组物品,每个物品有自己的重量和价值,在限定的背包容量下,如何选择物品使得背包中的总价值最大化。
通过动态规划的思想,背包问题可以被划分为子问题。
我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
具体的计算过程如下:1. 初始化一个大小为n+1行,m+1列的二维数组dp,其中n为物品数量,m为背包容量。
将所有元素初始化为0。
2. 从i=1开始遍历到n,对于每个i,从j=1开始遍历到m,对于每个j,进行如下判断:- 若当前物品的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择当前物品;- 若当前物品的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi),即选择当前物品或不选择当前物品所能获得的最大价值。
《动态规划课件》课件
应用场景:求解最短路径、背 包问题等
注意事项:避免重复计算子问 题和记忆化搜索
定义:将问题划分为 若干个较小的子问题, 并逐个解决子问题, 最终得到原问题的解
特点:将原问题分解为 更小的子问题,通过求 解子问题的最优解得到 原问题的最优解
应用场景:适用于 具有重叠子问题和 最优子结构特性的 问题
示例:背包问题、 最大子段和问题等
分段算法的代码 实现
分段算法的时间 复杂度分析
避免重复计算:使用备忘录或动态规划表来记录已计算过的子问题 减少子问题的数量:通过合并或减少不必要的子问题来降低计算复杂度 选择合适的递归方式:根据问题的特点选择最优的递归方式 优化递归栈:通过减少递归深度或使用循环代替递归来提高性能
优化算法:动态规划可以优化算法,提高计算效率 避免重复计算:通过记忆化搜索,避免重复计算,提高计算速度
添加标题ቤተ መጻሕፍቲ ባይዱ
添加标题
添加标题
添加标题
动态规划与分治法比较:分治法将 问题分解为子问题,而动态规划将 子问题联系起来
动态规划与回溯法比较:回溯法会 穷举所有可能解,而动态规划可以 避免不必要的搜索
机器学习与深度 学习中的动态规 划
自然语言处理中 的动态规划
计算机视觉中的 动态规划
推荐系统中的动 态规划
最大子段和问题的定义 最大子段和问题的应用场景 最大子段和问题的解决方法 最大子段和问题的实际应用案例
定义:矩阵链乘法问题是一种优化问题,通过动态规划算法来求解
应用场景:在科学计算、机器学习、图像处理等领域都有广泛的应用
算法原理:通过动态规划算法,将矩阵链乘法问题转化为子问题,从而避免重复计算,提高 计算效率
应用场景:背包问题在计算机科学、运筹学、经济学等领域都有广泛的应用,如资源分配、路径规划、时间表安 排等。
动态规划实例讲解
阶段 1 阶段 2
阶段 3 阶段 4
阶段 5
13
求 最 短 路 径
将问题分成五个阶段,第k阶段到 达的具体地点用状态变量xk表示,例 如:x2=B3表示第二阶段到达位置B3, 等等。这里状态变量取字符值而不是 数值。 将决策定义为到达下一站所选择的 路径,例如目前的状态是 x2=B3 ,这时 决策允许集合包含三个决策,它们是 D2(x2)=D2(B3)={B3C1,B3C2,B3C3}
max {c 2 d 2 f 3 ( x3 )}
max {80d 2 f 3 ( x 2 3d 2 )}
列出f2(x2)的数值表
35
对于k=1
f 1 ( x1 )
0 d1 x1 / w1 0 d1 x1 / 2
3.动态规划方法的基本步骤
3 .正确地定义决策变量及各阶段的允许 决策集合 Uk(sk) ,根据经验,一般将问题中待 求的量,选作动态规划模型中的决策变量。或 者在把静态规划模型 (如线性与非线性规划 )转 换为动态规划模型时,常取前者的变量 xj为后 者的决策变量uk。 4. 能够正确地写出状态转移方程,至少 要能正确反映状态转移规律。如果给定第 k 阶 段状态变量 sk 的值,则该段的决策变量 uk 一经 确定,第k+1段的状态变量sk+1的值也就完全确 定,即有sk+1=Tk(sk ,uk)
求对三个项目的最优投资分配,使 总投资效益最大。
24
资 源 分 配 问 题
1. 2. 3. 4.
5.
6. 7. 8.
阶段k:每投资一个项目作为一个阶段; 状态变量xk:投资第k个项目前的资金 数; 决策变量dk:第k个项目的投资; 决策允许集合:0≤dk≤xk 状态转移方程:xk+1=xk-dk 阶段指标:vk(xk ,dk)见表中所示; 递推方程: fk(xk)=max{vk(xk ,dk)+fk+1(xk+1)} 终端条件:f4(x4)=0
动态规划实例详解
算法1:递归
#include <iostream.h> #include <string.h> #define MAX 1000 char str1[MAX], str2[MAX]; int commonstr(int,int); void main(){ while(cin>> str1 >> str2){ intlen1=strlen(str1); intlen2=strlen(str2); cout<<commonstr(len1-1,len2-1); cout<<endl; } }
• 动态规划的实质就是
动规的要诀-状态
• 用动态规划解题,关键是要找出“状态”, 和在“状态”间进行转移的办法(即状态 转移方程) • 我们一般在动规的时候所用到的一些数组, 也就是用来存储每个状态的最优值的。
动态规划
• 例2 POJ 1163 数字三角形
7
3 8 1 7 5 2 4 6 8 0 4 5
– 基本思想:将原问题分解为相似的子问题,在 求解的过程中通过子问题的解求出原问题的解 (注意:不是简单分而治之)。 – 只能应用于有最优子结构的问题(即局部最优 解能决定全局最优解,或问题能分解成子问题 来求解)。 – 计算机科学与工程、管理科学(运筹学)等领 域中许多算法的基础,如最短路径、背包问题、 项目管理、网络流优化等。
– 情况一:str1[len1-1] == str2[len1-1],则 f(str1,len1,str2,len2) = 1+ f(str1,len11,str2,len2-1) – 情况二:str1[len1-1] != str2[len1-1],则 f(str1,len1,str2,len2) = max(f(str1,len11,str2,len2), f(str1,len1,str2,len2-1)) – 程序如下:
动态规划算法详解及经典例题
动态规划算法详解及经典例题动态规划什么是动态规划?动态规划的⼤致思路是把⼀个复杂的问题转化成⼀个分阶段逐步递推的过程,从简单的初始状态⼀步⼀步递推,最终得到复杂问题的最优解。
基本思想与策略编辑:由于动态规划解决的问题多数有重叠⼦问题这个特点,为减少重复计算,对每⼀个⼦问题只解⼀次,将其不同阶段的不同状态保存在⼀个⼆维数组中。
1. 拆分问题:根据问题的可能性把问题划分成通过递推或者递归⼀步⼀步实现。
关键就是这个步骤,动态规划有⼀类问题就是从后往前推到,有时候我们很容易知道 : 如果只有⼀种情况时,最佳的选择应该怎么做.然后根据这个最佳选择往前⼀步推导,得到前⼀步的最佳选择 2. 定义问题状态和状态之间的关系:⽤⼀种量化的形式表现出来,类似于⾼中学的推导公式,因为这种式⼦很容易⽤程序写出来,也可以说对程序⽐较亲和(也就是最后所说的状态转移⽅程式) 3. 动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若⼲个⼦问题(阶段),按顺序求解⼦阶段,前⼀⼦问题的解,为后⼀⼦问题的求解提供了有⽤的信息。
在求解任⼀⼦问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。
依次解决各⼦问题,最后⼀个⼦问题就是初始问题的解。
我的理解是:⽐如我们找到最优解,我们应该讲最优解保存下来,为了往前推导时能够使⽤前⼀步的最优解,在这个过程中难免有⼀些相⽐于最优解差的解,此时我们应该放弃,只保存最优解,这样我们每⼀次都把最优解保存了下来,⼤⼤降低了时间复杂度。
动态规划解决问题的过程分为两步:1.寻找状态转移⽅程式2.利⽤状态转移⽅程式⾃底向上求解问题动态规划原理使⽤条件:可分为多个相关⼦问题,⼦问题的解被重复使⽤使⽤条件:可分为多个相关⼦问题,⼦问题的解被重复使⽤Optimal substructure(优化⼦结构):⼀个问题的优化解包含了⼦问题的优化解缩⼩⼦问题集合,只需那些优化问题中包含的⼦问题,降低实现复杂性我们可以⾃下⽽上的Subteties(重叠⼦问题):在问题的求解过程中,很多⼦问题的解将被多次使⽤。
动态规划讲解大全(含例题及答案)
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>
动态规划应用举例
40+13=53
4 0 51
51+0=51
最优解为:
(s1 4) x1* 1, ( s2 s1 x1* 4 1 3) x2* 0, ( s3 s2 x2* 3 0 3) x3* 3
即项目A投资1万元,项目B投资0万元,项目C投资3万元, 最大效益为60万吨。
生产库存问题
442 18s2
对应 x2 13 s2
k 1时
f1 s1 min c1x1 f2 s1 x1` d1
及 x1 9 s1
min 8s1 x1 9s1
7x1 18s1 442
379 11s1
因 s1 2 所以 f1 s1 357 并且 x1 7
与上述运算顺序反推,结合状态转移方程,可得最优策略为:
表4.6
月份(k) 购买单价Ck 销售单价 pk
1
10
12
2
9
8
3
11
13
4
15
17
解 按月份划分为4个阶段, k 1, 2,3, 4
状态变量 Sk 为第 k 月初时仓库中的存货量(含上月订货); 决策变量 xk 为第 k 月卖出的货物数量;决策变量 yk 为第 k 月订购;的货物数量.
状态转移方程为 sk1 sk yk xk 第k段的指标为第k段的盈利: vk pk xk Ck yk
x1 xi
x2 x3 10 0 (i 1, 2,3)
1. 阶段k:每投资一个项目作为一个阶段(k=1,2,3)
2. 状态变量sk:投资第k个项目前的资金数;
3. 决策变量xk:第k个项目的投资额;
4. 决策允许集合:0≤xk≤sk (k=1,2), x3=s3
5. 状态转移方程:sk+1=sk-xk ( k=1,2)
常见动态规划题目详解
常见动态规划题⽬详解1.爬楼梯题⽬描述:假设你正在爬楼梯。
需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。
你有多少种不同的⽅法可以爬到楼顶呢?注意:给定 n 是⼀个正整数。
⽰例 1:输⼊: 2输出: 2解释:有两种⽅法可以爬到楼顶。
1. 1 阶 + 1 阶2. 2 阶⽰例 2:输⼊: 3输出: 3解释:有三种⽅法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶实现代码:class Solution {public:int climbStairs(int n) {vector<int> a(n);a[0] = 1;a[1] = 2;if(n == 1){return 1;}if(n == 2){return 2;}for(int i = 2; i < n;i++){a[i] = a[i - 1] + a[i - 2];}return a[n - 1];}};2.变态跳台阶题⽬描述:⼀只青蛙⼀次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。
求该青蛙跳上⼀个n级的台阶总共有多少种跳法。
实现代码:class Solution {public:int jumpFloorII(int number) {if(number == 0){return 0;}int total = 1;for(int i = 1; i < number; i++){total *= 2;}return total;}};3.n年后⽜的数量题⽬描述:假设农场中的母⽜每年会产⽣⼀头⼩母⽜,并且永远不会死。
第⼀年农场中只有⼀头成熟的母⽜,第⼆年开始,母⽜开始⽣⼩母⽜,每只⼩母⽜三年之后成熟⼜可以⽣⼩母⽜,给定整数N,求N年后母⽜的数量。
实现代码:class solution{ public: int f(int n){ if(n < 1){ return 0; } if(n == 1|| n== 2||n == 3){ return n; } int res = 3; int pre = 2; int prepre = 1; int tmp1=0; int tmp2 = 0; for(int i = 4;i < n;i++){ tmp1 = res; tmp2 = pre; res = pre + prepre; pre = tmp1; prepre = tmp2; } return res; }};4.矩形覆盖题⽬描述:我们可以⽤2*1的⼩矩形横着或者竖着去覆盖更⼤的矩形。
算法设计与分析动态规划实例讲解
f k (sk ) = Opt [ Vk (sk ,uk ) + f k+1 (s k+1) ] fn+1 (s n+1 ) = 0 Opt 最优化(max,min)
f1(s1) 是整个问题的最优策略,最优值。 f k(sk) 表示从第k阶段(状态sk)到终点 的最优指标值。(距离、利润、成本等)
5、策略:相互连接的决策序列称为一个策略。 从第k阶段开始到第n阶段结束称为一个子策略。 Pk,n , 全策略 P1,n . 所有策略当中有最优值的策略称为最优策略。
6、状态转移方程:是确定过程由一个状态到另一 个状态的演变过程,描述了状态转移规律。
7、指标函数和最优值函数:用来衡量所实现过程优 劣的一种数量指标,为指标函数。
小结: 无后效性 动态规划本质上是多阶段决策过程;
概念 : 阶段变量k﹑状态变量sk﹑决策变量uk; 方程 :状态转移方程 sk 1 Tk (sk , uk ) 指标: Vk ,n Vk ,n (sk , uk , sk 1, uk 1,, sn1 )
效益
f k ( sk ) opt V k ,n ( sk , u k ,, sn1)
f s opt v s , u
k k
u ,,u
k n
k ,n
k
k
, , sn 1
(二)、动态规划的基本思想
1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
动态规划(运筹学讲义).
)
min
d d
( (
E2 E2
, ,
F1) F2 )
f6 (F1) f6 (F2 )
min
5 2
4 3
5
u*5 (E2 )= F2
f5
(E3
)
min
d d
( (
E3 E3
, ,
F1) F2 )
f6 (F1) f6 (F2 )
min
fk
(sk
)
opt
uk Dk ( sk
)
vk (sk ,uk ) fk1(sk1)
fn1(sn1) 0
k=n, n 1, ,1
(8.4a) (8.4b)
Opt 可根据题意取 min 或 max
11
动态规划的基本思想如下:
(1)动态规划方法的关键在于正确写出基本递推关系式和恰当的边界条 件,因此必须将多阶段决策过程划分为n个相互联系的阶段,恰当地选取 状态变量、决策变量及定义最优指标函数,从而把问题化为一族同类型 的子问题,然后逐个求解 (2)求解时从边界条件开始,逆(或顺)过程逐段递推寻优。在每一个 子问题求解中,均利用了它前面子问题的最优结果,最后一个子问题的 最优解,就是这个问题的最优解。 (3)动态规划方法既把当前阶段与未来阶段分开,又把当前效益和未来 效率结合,因此每段的最优决策选取是从全局来考虑。 (4)在求这个问题的最优解时,由于初始状态是已知,而每阶段的决策 都是该段状态的函数,故最优策略所经过的各各阶段状态可逐次变换得 到,从而确定最优路线。
量最高。
决策
决策
决策
第6章动态规划PPT课件
动态规划问题实例
例6-1 给定一个线路网络,要从A向F铺设一条输油管,
各点间连线上的数字表示距离,问应选择什么路线,可
使总距离最短?
C1 6
5
1
B1 3
6
8
3
C2 5
D1 2
2
E1 3
5
F1 4
5
A
3
3
87
C3 3
1
D2
2
E2 2
6
G
3
F2
B2 6
8
C4 4
3
D3 3
6
E3
第5页/共55页
动态规划
所谓多阶段决策问题是指这样的决策问题:其过程可分 为若干个相互联的阶段,每一阶段都对应着一组可供选择 的决策,每一决策的选定即依赖于当前面临的状态,又影 响以后总体的效果。当每一阶段的决策选定以后,就构成 一个决策序列,称为一个策略,它对应着一个确定的效果。 多阶段决策问题就是寻找使此效果最好的策略。
最优指标函数 fk(xk) 表示从目前状态到E的最短路径。终 端条件为:
f7 (s7) = f7(G) = 0 其含义是从G到G的最短路径为0。 递推方程为:
fk (sk )
=
Min
ukDk ( sk
){Vk
(
sk
,
uk
)
+
fk+1(sk+1)}
第21页/共55页
贝尔曼最优化原理
作为一个全过程的最优策略具有这样的性质:对于最 优策略过程中的任意状态而言,无论其过去的状态和决 策如何,余下的诸决策必构成一个最优子策略。
第8页/共55页
动态规划问题实例