热力学 统计物理:第七章 玻尔兹曼统计
热力学统计 第七章玻尔兹曼统计
al !
al lal ln ln N ! N ln N al ln al ! l l l x 1 ln x ! x ln x x S k ln S
0
设=1时,S=0 S0=0
ln Z S Nk (ln Z )
2.内能U与广义力Y的统计表达式
2.1 内能U的统计表达式
N N l U al l ll e Z Z l l N Z ln Z N Z
e l l
N al l e l Z Z l e l
配分函数Z :
l
Z l e l
l
分布在能级l 的粒子数:
N al l e l Z
已知(l, l),可求Z——并不容易!
经典粒子: 配分函数Z :
Z l e l
l
Z e
( q . p )
dqdp e D( )d r h
积分因子:
如果 X ( x, y )dx Y ( x, y )dy 不是全微分,但存在函数 ( x, y ) ,使得
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy 为全微分, 即
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy ds ( x, y )
S k ln
满足经典极限的非定域系统:
ln
l
la
l
al !
al S k N ln N al ln l l
S0
lal al ln ln N ln N al ln ln N ! l l al ! l
第7章(热力学与统计物理) 玻耳兹曼统计解析
(V )1 3 h( 1 )1 2
N
2mkT
用分子的德布罗义波长
h p h 2m h 2mkT 分子数密度
N e Z1
U N ln Z1
Y
N
y
ln
Z1
S
Nk (ln
Z1
ln
Z1 )
k
ln
N!
S k ln M .B. N!
F NkT ln z1 kT ln N!
经典系统
Z1
l
el
l
h0r
el
d
h0r
e( p,q)
dq1dq2
dqrdp1dp2 h0r
dpr
N e Z1
U
N
ln
dW Ydy dy
l
l
y
al
l
al d l
考虑内能 U l al 的全微分 l
dU l dal al dl
l
。
ቤተ መጻሕፍቲ ባይዱ
与热力学第一定律
dU dQ dW dQ aldl
l
比较,有
dQ ldal
以上两式说明,在准静态过程中系统从外界吸收的热 量等于粒子在各能级重新分布所增加的内能:外界对系统 所作的功等于粒子分布不变时由于能级改变所引起的内能 变。 化。
l
与(6.6.4) ln N ln N al ln al al ln l
l
l
比较,有玻耳兹曼关系
S k ln
该关系反映了熵的统计意义。
自由能
由自由能的定义,
F U TS
N
ln
Z1
TNk (ln
Z1
ln
Z1 )
TNk ln Z1
热统第七章
麦氏分布率的应用——计算碰壁数。 计算碰壁数。 四.麦氏分布率的应用 麦氏分布率的应用 计算碰壁数 定义: 定义:碰壁数指单位时间内碰到单位面积上的分子数
§7.4 多原子分子理想气体的配分函数与热容量 对于多原子理想气体, 一.对于多原子理想气体,有 对于多原子理想气体 各能量简并度为 ω t、ω r、ω γ 、ω e t r γ e t r γ e − β ( ε i +ε j +ε k +ε l ) 则:z = ωωω ω e
a.其中:平动配分函数为 其中: 其中
1 − βε t z = 3 ∫ e dxdydzdpx dp y dp z h 1 t 2 2 ( p x + p y + p z2 )代入后,得: 将ε = 2m 2πm 3 2 3 ∂ t t z = V ( 2 ) ,∴U = − N ln z = NkT h β ∂β 2
二.双原子分子理想气体的热容量 双原子分子理想气体的热容量 1.分子模型:两质点,六个力学自由度 分子模型:两质点, 分子模型 2.选取坐标:质心坐标系 ( x, y, z )、 选取坐标: 选取坐标 内部运动坐标系 ( r ,θ , ϕ ) 3.双原子能量: 双原子能量: 双原子能量
2 pϕ 1 1 1 2 1 2 2 2 2 ( p x + p y + p z ) + ( pθ + 2 ) + pr + k (r − r0 ) 2 ε= 2m 2I sin θ 2µ 2 mm 上式中:m = m1 + m2 , µ = 1 2 , I = µr 2 ≈ µr02 m1 + m2
第七章 玻尔兹曼统计
1 宏观热力学量的统计表达式
1.1 单粒子配分函数 Z1 及其与参数 α 的关系
粒子数约束
N
al
w e l l
e
wl el
l
l
l
定义单粒子配分函数 Z1 为 Z1 wlel l
N e Z1 或
e N Z1
• 配分函数是统计物理的重要概念,甚至可以说是统计物理 的核心概念。如果知道某个系统的配分函数随热力学参量 (如温度 T ,压强 p 或体积 V )的函数,系统的物理量 都可以表达成为配分函数对某个参量的一次或高阶次偏微 分。
N
d
(
f1
)
(df1
f1d
)
Nd
f1
f1
(N const.)
即 也是 Q 的积分因子
概据微分方程关于积分因子的理论(参阅汪志诚书附录):
当微分方程有一个积分因子时,它就有无穷多个积分因 子,任意两个积分因子之比是 S 的函数(dS 是用积分因
子乘以变分 Q 后所得的完整微分)。
即有 1 k(S) 1
2.1 单粒子平均量与系统的宏观平均量的关系 由于整个系统是近独立系统
系统内能:U N : 一个粒子的平均能量
系统压强:p N p p : 一个粒子对器壁的压强贡献
2.2 近独立粒子玻尔兹曼系统的单粒子统计行为
微观状态由 μ 空间 (x, y, z, px , py , pz )的相格描述。
1
若将
V 3 N
理解为气体中分子的平均距离:d ave
,
则经典极限条件可以表述为:
d thermal _ ave
ave
若令 n N V
,则经典极限条件可以表述为:
第七章玻耳兹曼统计
第七章玻耳兹曼统计7.1据公式l l lp a V ε∂=-∂∑证明,对于非相对论粒子()222221222xy z p n n n m m L πε⎛⎫==++ ⎪⎝⎭h 有23U p V =。
解:边长L 的立方体中,粒子能量本征值:()2222122x y zn n n x y z n n n m L πε⎛⎫=++ ⎪⎝⎭h ,简记为23l aV ε-= 其中3V L =是系统体积,常量()()222222xy z a nn n mπ=++h ,并以指标l 代表,,x y z n n n 三个量子数。
从而得:5132233l l aV V V εε--∂=-=-∂,代入压强公式,有21233l l l l ll Up a a V V V εε∂=-==∂∑∑。
7.2试根据公式l l lp a V ε∂=-∂∑证明,对于相对论粒子()122222xyzcp cnn nL πε==++,有13Up V=。
解:边长为L 的立方体中,极端相对论粒子的能量本征值为:()122222x y zn n nxyzcnn nLπε=++ 用指标l 表示量子数,,,x y z n n n V 表示系统的体积3V L =,可将上式简记为13l aV ε-=其中:()122222.xyza c n n nπ=++由此4311.33l l aV V V εε-∂=-=-∂代入压强1.33l l l l ll U p a a V V V εε∂=-==∂∑∑ 7.3选择不同的能量零点,粒子第l 个能级的能量可以取为l ε或*l ε。
以∆表示二者之差,*.l l εε∆=-试证明相应配分函数存在关系*11Z e Z β-∆=,并讨论由配分函数1Z 和*1Z 求得的热力学函数有何差别. 解:当选择不同的能量零点时,粒子能级的能量可以取为l ε或*.l l εε=+∆配分函数()**11l l l l l l lllZ e ee e e Z βεβεβεββωωω-+∆---∆-∆====∑∑∑,故*11ln ln .Z Z β=-∆根据内能的统计表达式:1ln U NZ β∂=-∂,容易证明*,U U N =+∆ 根据压强的统计表达式:1ln N p Z Vβ∂=∂,容易证明*,p p =根据熵统计表达式:11ln ln S Nk Z Z ββ⎛⎫∂=- ⎪∂⎝⎭,容易证明*,S S =其他热力学函数请自行考虑。
第七章 玻尔兹曼统计
7.8
固体热容量的爱因斯坦理论
由能量均分定理可得固体的定容摩尔热容量:
CV ,m 3R
(1818年得到实验验证)
存在的问题:固体的热容量在绝对零度下趋向于0. Einstein首先采用量子理论研究了固体的热容量问题,并成功解决了上述问题 假定固体中的原子的热运动为3维简谐振动,且每个振子具有相同的频率 则振子的能级: 假设原子的振动可以分辨,遵循玻尔兹曼分布,对应的配分函数为
平均速率 方均根速率
因此
讨论:碰壁数(单位时间内碰到单位面积器壁上的分子数)
在dt时间内,碰到器壁的dA面积上,速 度在dvxdvydvz范围内的分子数
分子数
体积
练习:289/7.13-14
7.4
能量均分定理
能量均分定理:对于处在温度为T的平衡状态的经典系统,粒子能量中每 一个平方项均等于1/(2kT) 经典物理中的粒子动能:
固体的内能 其中第二项为温度为T时3N个振子的热激发能量
定容热容量 定义 Einstein 特征温度: 定容热容量可写为:
金刚石的热容量实验结果与 Einstein理论得出的曲线
其中的Einstein 温度取1320K
定容热容量可写为:
在高温区: 所以
所以
能级间隔远小于kT,所以能量的量子化效应可以忽略,经典统计理论是有效的
4. 对于封闭的空窖 空窖内的辐射场可以视为无穷多的单色平面波的叠加 单色平面波的电矢量 波矢的三个分量
考虑到辐射场的波矢和能量的对应关系
(考虑了偏振)
(瑞利-金斯 公式) 可得有限温度下平衡辐射的总能量
实验结果(也可从热力学理论推导出)
原因:由经典电动力学可得辐射场具有无穷多个振动自由度,经典统计 的能量均分定理可得每个振动自由度的平均能量为kT,故而一定 会出现紫外发散的结论。
《第七章玻耳兹曼统计》小结
《第七章 玻耳兹曼统计》小结一、基本概念: 1、1>>αe 的非定域系及定域系遵守玻耳兹曼统计。
2、经典极限条件的几种表示:1>>αe ;12232>>⎪⎭⎫ ⎝⎛⋅h m kT NVπ;m kTh N V π231>>⋅⎪⎭⎫⎝⎛;()λ>>⋅31n3、热力学第一定律的统计解释:Q d W d dU +=l ll l ll da d a dU ∑∑+=εεl ll d a W d ε∑=l ll da Q d ∑=ε即:从统计热力学观点看,做功:通过改变粒子能量引起内能变化;传热:通过改变粒子分布引起内能变化。
二、相关公式1、非定域系及定域系的最概然分布l e a l l βεαω--=2、配分函数:量子体系:∑-=ll leβεω1Z∑---==ll l l l ll le e e a βεβεβεωωωNZ N 1半经典体系:()r rr p q r hdp dp dp dq dq dq e h d e l2121,1Z ⎰⎰⎰==-βεβεω 经典体系:()r rr p q r hdp dp dp dq dq dq e h d e l2121,01Z ⎰⎰⎰==-βεβεω 3、热力学公式(热力学函数的统计表达式) 内能:β∂∂=1lnZ -NU物态方程:VlnZ N 1∂∂=βp定域系:自由能:1-NkTlnZ F = 熵:B M k .ln S Ω=或⎪⎪⎭⎫ ⎝⎛∂∂-=ββ11lnZ ln Nk S Z1>>αe 的非定域系(经典极限条件的玻色(费米)系统): 自由能:!ln -NkTlnZ F 1N kT += 熵:!ln kln S .N k BM Ω=Ω=或!ln lnZ ln Nk S 11N k Z -⎪⎪⎭⎫⎝⎛∂∂-=ββ三、应用: 1、求能量均分定理①求平均的方法要掌握:()dx x xp ⎰=x②能量均分定理的内容---能量均分定理的应用:理想气体、固体、辐射场。
热力学_统计物理学答案第七章
mγ
2
由条件(3)知 计算得
∫p
z
f ( p x , p y , p z ) dp x dp y dp z = Np0
co m
∑
⎞ ⎟ ⎟ ⎠
⎛ Sk ⎞ ⎜ e −α − βε s′′ ⎟ ⎜ ⎟ S ′′ ⎝ S = S1 ⎠
∑
⎤ ……⎥ ⎥ ⎦
)
离开正 常位置而占据图中×位置时,晶体中就出现缺位和填隙原子,晶体这种缺陷 叫做弗伦克缺陷。 (1)假设正常位置和填隙位置数都是 N,试证明由于在晶体中形成 n 个缺位和 填隙原子而具有的熵等于 S = 2k ln
S
习题 7.5 固体含有 A、B 两种原子。试证明由于原子在晶体格点的随机分布引起 的混 合熵为 S = k ㏑
ww
是A 原子的百分比, (1-x )是 B 原子的百分比。注意 x<1,上式给出的熵为正值。 证: 显然 Ω=
习题 7.6 晶体含有 N 个原子。原子在晶体中的正常位置如图中 O 所示。当原子
P = −∑ a l
∂ε l ; ∂V
co m
5
2U ,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。 3V
对极端相对论粒子 类似得
ε = cp = c P = −∑ al
l
1 2πℏ 2 ( nx + n y 2 + n z 2 ) 2 L 1 1 − ∂ 2 ( 2πℏ )( ∑ ni ) 2 V 3 ∂V 1 4 3
统计物理学第7章
(dU Ydy )
ln Z1 ln Z1 ln Z1 N d d (N ) N dy y
17
ln Z1 ln Z1 ln Z1 (dU Ydy) N d d (N ) N dy y
dQ 1 (dU Ydy ) dS T T
热力学基本方程
说明1/T是积分因子,根据积分因子的理论,1/T
与β应同为积分因子,两者相差一个常数 k,称为玻耳
兹曼常数:
1 kT ,
k R N0
16
dQ (dU Ydy )
ln Z1 N d ( ln Z1 ) N dy y
V 3 e h
2m
2 2 ( px p2 p y z)
dpx dp y dpz
2m
2 px
dpx e
2 px
2m
p2 y
dp y e
0
2m
2 pz
dpz
V 3 ( e h
2m
dpx )
3
I (0)
e
x 2
l
l
受到外界 的作用力
N 1 ( ) Z1 N e Z1 Z1 y
N ln Z 1 y
8
N Y ln Z1 y
当
Y p y V ,
时,
这时广义力的统计表达式简化为:
N p ln Z 1 V
第七章_玻尔兹曼统计
曼分布一样,但系统的微观状态数为 ΩB(F )
=
ΩM ⋅B N!
,所以直接由分布函数导出的内能和广义
力的表达式与玻尔兹曼系统一样。(∵ 它由分布函数直接导出)
而由系统的微观状态数决定的熵
SB( F )
=
k
ln
ΩB(F )
=
k
ln
⎛ ⎜⎝
ΩM ⋅B N!
⎞ ⎟⎠
=
k
ln
ΩM ⋅B
−k
ln
N!=
SM ⋅B
玻尔兹曼系统的一样。
不同的 h0 的值对经典统计结果的影响。
经典玻尔兹曼分布
al
= e−α −βεl
Δωl h0r
由 e−α = N 得: Z1
al
=
N e−βεl Z1
Δωl h0r
式中的 h0r 与配分函数 Z1 所含的 h0r 相互抵消,与 h0 无关。
一个粒子的运动状态处于 Δωl 的概率:
n
n
n
∴ S = k ln Ω = k ln ∏ Ωi = ∑ k ln Ωi = ∑ Si 。
i =1
i =1
i =1
(2)非平衡态的熵: S = k ln Ω 可推广到非平衡态只不过在平衡态时, Ω 是系统最多的微观 状态数,而在非平衡态时, Ω 也是系统的微观状态数,但不是最多的,所以系统在由非平衡
k = 1.381×10−23 J ⋅ K −1 玻尔兹曼常数
玻尔兹曼常数 k 在统计物理学中所起的作用相当于普朗克常数 在量子力学中所起的作用。
dS
=
dQ T
= kβ dQ
=
Nkd
⎛ ⎜ ⎝
ln
Z1
热力学与统计物理 第七章 玻尔兹曼统计
e Z1 r dq1 dqr dp1 dpr h0
粒子自由度为3
e Z1 3 dxdydzdpx dp y dpz h0
15
Z1
V Z1 3 h0
方法一:
e
2 2 px p2 y pz
2m
h
3 0
dxdydzdp x dp y dp z
ln Z1 S Nk ln Z1
7
ln Z1 S Nk ln Z1 ln Z1 Nk ln Z1 T Nk ln Z1 自由能 F U TS N kT F NkT ln Z1
l l Z1 r e h0
体积元 l 取得足够小时,
l d dq1 dqr dp1 dpr
l l Z1 r e h0
Z1
e
h
r 0
dq1 dqr dp1 dpr
14
§7.2
理想气体的物态方程
N ln Z1 p V
Z1 l e l
Z1 l ln Z1 U N
l e l
l l e l l
2
三、广义力
Y 广义力
dW pdV
y
外参量
dW Ydy
Y l作用在该粒子上 当某个粒子处在 l 能级上,若有一“外力”
e
2 2 px p2 y pz
2m
dp x dp y dp z
V Z1 3 h0
4V Z1 3 h0
则
1 e t t 2 dt
热力学统计物理课件第7章ok
l
llel
e ( )
l
el l
(7.1.4)
N
Z1 ( )Z1 N ln Z1
在热力学中, 系统在无穷小过程前后内能的变化dU等于在
过程中外界对系统所作的功dW及系统从外界吸收的热量dQ之
和
dU dW dQ (7.1.5)
如果过程是准静态的,dW可以表达为Ydy的形式, 例如,当 系统在准静态过程中有体积变化时,外界对系统所作的功
如果应用经典统计理论求理想气体的物态方程,应将分子平动能 的经典表达式(6.1.3)代入配分函数式(7.1.18),积分后得到的 配分函数与式(7.2.3)相同,只有h0 h的差别,由此得到的物态方 程与式(7.2.5)完全相同。所以,在这问题上,由量子统计理论和 由经典统计理论得到的结果是相同的。值得注意,在这问题上,除
xy
1 2m
(
px2
p2y
pz2 )
在dx宏d观yx dy大zzd小p的xd容py器d内pz,范动围量内值,和分能子量可值能实的际微上观是状连态续数的为。在
dxdydzdpxdpy
1
Z1 h3 ....
dpz h3由此可得配分函数为
e
2m
(
p2x
p2y
pz2
)
dxdydzdpx
dp
l
e l
表述为气体中分子间的平均距离远大于德布罗意波的热波长。
§7.3 麦克斯韦速度分布 本节根据律玻耳兹曼分布研究气体分子质心的平移运动,导出气
体分子的速度分布律。
设气体含有N个分子,体积为V。在§7.2已经说明,气体满足经 典极限条件,遵从玻耳兹曼分布,而且在宏观大小的容器内,分子
的平动能可以看作准连续的变量。因此在这问题上,量子统计理论
热力学统计物理第七章
U N ln Z1
由微观状态决定的物理量,与玻尔兹曼系统不同: 由玻尔兹曼关系
M . B. S k ln k ln Nk (ln Z1 ln Z1 ) k ln N! N!
F U TS NkT ln Z1 kT ln N !
Z1 l e l 配分函数的求法:
l
根据 Z1 定义,要求得粒子的能级和简并度,可通 过量子力学理论计算,或分析有关实验数据得到。
六、满足经典极限条件的玻色(费米)系统 由分布决定的物理量,与玻尔兹曼系统相同:
Z1 l e l
N e Z1
N Y ln Z1 y
7.2 理想气体的物态方程
一般气体满足经典极限条件,遵从玻耳兹曼分布。以 下将理想气体看作满足经典极限条件的粒子,用玻耳兹 曼分布导出单原子分子理想气体的物态方程。 一、理想气体的配分函数及物态方程 组成理想气体的一个单原子分子的能量:
1 2 2 2 ( px p y pz ) 2m
量子统计
n 能级 l ( 相格 h r )
连续 l ( 相格 h0 )
r
配分函数Z1
热力学量 U , P, S
经典统计 kT
能均分定理 表达式
内能U N
§7.1 热力学量的统计表达式
定域系统和满足经典极限条件的玻色系统和费米系统 都遵从玻尔兹曼分布,本章将讨论服从玻尔兹曼分布的 系统的热力学性质。 一、引入粒子配分函数
S Nk (ln Z1 ln Z1 )
熵的统计意义:
因为 N al e Z1
l
Z1 e N
两边取对数得 ln Z1 ln N
热力学与统计物理:第七章 玻耳兹曼统计
§7.2 理想气体的物态方程
一.基本模型
1.先考虑单原子分子 2.近独立粒子
3.三维自由粒子( =3)
4.能量表达式:
1 2m
(
px2
p
2 y
pz2 )
5.满足经典极限条件,遵从玻耳兹曼分布的经典表达式。
二.配分函数与物态方程
Z
1 h3
e d
e
2m
(
px2
p2y
pz2
)
dxdydzdpxdp
y
dpz
积分得
Z
V
(
2 m h2
)
3
2
得物态方程
p N ln Z NkT
V
V
由于计及多原子分子后,并不改变Z对V的依赖关 系,因此物态方程不变。
三、关于经典极限条件
e
Z
/
N
V N
2 mkT
h2
3/ 2
1
即N/V愈小,即气体愈稀薄;温度愈高; 分子质量愈大,经典极限条件愈易得到满 足
1
kT
k称为玻尔兹曼常数,是一个普适常量。其数值 需将理论应到具体系统中去才能得到
由此可以令
dS Nkd (ln Z ln Z )
S Nk(ln Z ln Z )
熵的物理意义:
ln Z ln N
U N ln Z
S k N ln N N U
k
N
ln
N
l
定域系统遵从玻耳兹曼分布。
2.配分函数的经典表达式
对应于Z
l
ell , 有:Z
l
e l
热力学统计物理第七章 玻耳兹曼统计
第七章 玻耳兹曼统计7.1 试根据公式lllp a Vε∂=-∂∑证明,对于非相对论粒子 ()222221222x y z p n n n m m L πε⎛⎫==++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±±有2.3U p V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立. 解: 处在边长为L 的立方体中,非相对论粒子的能量本征值为()2222122x y zn n n x y z n n n m L πε⎛⎫=++ ⎪⎝⎭, (),,0,1,2,,x y z n n n =±± (1)为书写简便起见,我们将上式简记为23,l aV ε-= (2)其中3V L =是系统的体积,常量()()222222xy z a nn n mπ=++,并以单一指标l 代表,,x y z n n n 三个量子数.由式(2)可得511322.33aV V Vεε-∂=-=-∂ (3) 代入压强公式,有22,33l ll l llUp a a V VVεε∂=-==∂∑∑ (4) 式中l l lU a ε=∑是系统的内能.上述证明示涉及分布{}l a 的具体表达式,因此式(4)对玻耳兹曼分布、玻色分布和费米分布都成立.前面我们利用粒子能量本征值对体积V 的依赖关系直接求得了系统的压强与内能的关系. 式(4)也可以用其他方法证明. 例如,按照统计物理的一般程序,在求得玻耳兹曼系统的配分函数或玻色(费米)系统的巨配分函数后,根据热力学量的统计表达式可以求得系统的压强和内能,比较二者也可证明式(4).见式(7.2.5)和式(7.5.5)及王竹溪《统计物理学导论》§6.2式(8)和§6.5式(8). 将位力定理用于理想气体也可直接证明式(4),见第九章补充题2式(6).需要强调,式(4)只适用于粒子仅有平衡运动的情形. 如果粒子还有其他的自由度,式(4)中的U 仅指平动内能.7.2 试根据公式lllp a Vε∂=-∂∑证明,对于相对论粒子 ()122222xyzcp cnn nLπε==++, (),,0,1,2,,x y z n n n =±±有1.3Up V=上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立.解: 处在边长为L 的立方体中,极端相对论粒子的能量本征值为()122222x y zn n nxyzcnn nLπε=++ (),,0,1,2,,x y z n n n =±± (1)用指标l 表示量子数,,,x y z n n n V 表示系统的体积,3V L =,可将上式简记为13,l aV ε-= (2)其中()122222.xyza c n n nπ=++由此可得4311.33l l aV V Vεε-∂=-=-∂ (3) 代入压强公式,得1.33l ll l llUp a a V V V εε∂=-==∂∑∑ (4) 本题与7.1题结果的差异来自能量本征值与体积V 函数关系的不同. 式(4)对玻耳兹曼分布、玻色分布和费米分布都适用.7.3 当选择不同的能量零点时,粒子第l 个能级的能量可以取为l ε或*.l ε以∆表示二者之差,*.l l εε∆=-试证明相应配分函数存在以下关系*11Z e Z β-∆=,并讨论由配分函数1Z 和*1Z 求得的热力学函数有何差别.解: 当选择不同的能量零点时,粒子能级的能量可以取为l ε或*.l l εε=+∆显然能级的简并度不受能量零点选择的影响. 相应的配分函数分别为1,ll lZ e βεω-=∑ (1) **1l ll ll lZ eeeβεβεβωω---∆==∑∑1,e Z β-∆= (2) 故*11ln ln .Z Z β=-∆ (3)根据内能、压强和熵的统计表达式(7.1.4),(7.1.7)和(7.1.13),容易证明*,U U N =+∆ (4)*,p p = (5)*,S S = (6)式中N 是系统的粒子数. 能量零点相差为∆时,内能相差N ∆是显然的. 式(5)和式(6)表明,压强和熵不因能量零点的选择而异. 其他热力学函数请读者自行考虑.值得注意的是,由式(7.1.3)知*,ααβ=-∆所以l l l a e αβεω--=与***l l l a e αβεω--=是相同的. 粒子数的最概然分布不因能量零点的选择而异. 在分析实际问题时可以视方便选择能量的零点.7.4 试证明,对于遵从玻耳兹曼分布的定域系统,熵函数可以表示为ln ,s s sS Nk P P =-∑式中s P 是粒子处在量子态s 的概率,1,s ss e e P N Z αβεβε---==s∑是对粒子的所有量子态求和.对于满足经典极限条件的非定域系统,熵的表达式有何不同? 解: 根据式(6.6.9),处在能量为s ε的量子态s 上的平均粒子数为.s s f e αβε--= (1)以N 表示系统的粒子数,粒子处在量子态s 上的概率为1.s ss e e P N Z αβεβε---== (2)显然,s P 满足归一化条件1,s sP =∑ (3)式中s∑是对粒子的所有可能的量子态求和. 粒子的平均能量可以表示为.s s sE P ε=∑ (4)根据式(7.1.13),定域系统的熵为()()1111ln ln ln ln s s sS Nk Z Z Nk Z Nk P Z βββεβε⎛⎫∂=- ⎪∂⎝⎭=+=+∑ln .s s sNk P P =-∑ (5)最后一步用了式(2),即1ln ln .s s P Z βε=-- (6)式(5)的熵表达式是颇具启发性的. 熵是广延量,具有相加性. 式(5)意味着一个粒子的熵等于ln .s s sk P P -∑ 它取决于粒子处在各个可能状态的概率s P . 如果粒子肯定处在某个状态r ,即s sr P δ=,粒子的熵等于零. 反之,当粒子可能处在多个微观状态时,粒子的熵大于零. 这与熵是无序度的量度的理解自然是一致的. 如果换一个角度考虑,粒子的状态完全确定意味着我们对它有完全的信息,粒子以一定的概率处在各个可能的微观状态意味着我们对它缺乏完全的信息. 所以,也可以将熵理解为信息缺乏的量度. 第九章补充题5还将证明,在正则系综理论中熵也有类似的表达式. 沙农(Shannon )在更普遍的意义上引进了信息熵的概念,成为通信理论的出发点. 甄尼斯(Jaynes )提出将熵当作统计力学的基本假设,请参看第九章补充题5. 对于满足经典极限条件的非定域系统,式(7.1.13′)给出11ln ln ln !,S Nk Z Z k N ββ⎛⎫∂=-- ⎪∂⎝⎭上式可表为0ln ,s s sS Nk P P S =-+∑ (7)其中()0ln !ln 1.S k N Nk N =-=--因为,s s f NP =将式(7)用s f 表出,并注意,ssfN =∑可得ln .s s sS k f f Nk =-+∑ (8)这是满足玻耳兹曼分布的非定域系统的熵的一个表达式. 请与习题8.2的结果比较.7.5 因体含有A ,B 两种原子. 试证明由于原子在晶体格点的随机分布引起的混合熵为()()()()!ln!1!ln 1ln 1,N S k Nx N x Nk x x x x =-⎡⎤⎣⎦=-+--⎡⎤⎣⎦其中N 是总原子数,x 是A 原子的百分比,1x -是B 原子的百分比. 注意1x <,上式给出的熵为正值.解: 玻耳兹曼关系给出物质系统某个宏观状态的熵与相应微观状态数Ω的关系:ln .S k Ω= (1)对于单一化学成分的固体(含某种元素或严格配比的化合物),Ω来自晶格振动导致的各种微观状态. 对于含有A ,B 两种原子的固体,则还存在由于两种原子在晶体格点上的随机分布所导致的Ω。
热力学统计物理第七章
三,最可几速率,平均速率,方均根速率 1,最概然速率 m 。 使速率分布函数取极大值的速率称为最概然速率, 用 表示
v
v
m
由: 得:
d e v 0 dv
mv 2 2 kT 2
2kT v m
m
2, 分子的平均速率
m v 4 2kT
x y z
x
v fdv dv dv
x x y
z
v
v dt
x
dA
1 kT nv n 2m 4
小结 麦克斯韦速度分布律
m f (v , v , v )dv dv dv n e 2kT
x y z x y z
3/ 2
1
U e e e e N Z N ln Z Z
l l l l l 1 1
1
二,广义力的统计表达式: 在热力学中有:dU dQ dW 准静态过程: dW Ydy Y 对于p,V,T系统,外参量为:V
( X ) ( Y ) 满足完整微分条件: y x
dz 是一个完整微分,
称为 dz 的积分因子
dz ds
如果 是 dz 的积分因子,则 ( s) 也必是 其中 是s的任意函数。因为: (s)dz (s)ds d
dz 的积分因子
当微分式有一个积分因子时,它就有无穷多个积分因子。 任意两积分因子的比是s 的函数。 例: 验证 ( x, y) x y 是方程 (3 y 4 xy )dx (2 x 3x y)dy
第七章玻尔兹曼统计
分子光谱学:通过玻尔兹曼分布解释光谱线强度和偏振现象
化学反应动力学:通过玻尔兹曼分布描述反应速率常数和活化能
在生物学中的应用
分子动力学模拟
蛋白质折叠研究
生物膜与跨膜运输
基因表达调控
在其他领域的应用
物理学:描述气体分子在平衡态时的分布情况
化学:研究反应速率和化学平衡
工程学:热传导、热力学等领域
信息科学:数据压缩、信息编码等方面
1896年:玻尔兹曼提出了熵的概念,为热力学第二定律提供了微观解释
1900年:玻尔兹曼提出了玻尔兹曼统计,用于描述气体分子的分布状态
重要人物和事件
背景:对气体分子运动的研究
影响:奠定了统计力学的理论基础
人物:路德维希·玻尔兹曼
事件:1877年提出玻尔兹曼统计
理论的意义和影响
玻尔兹曼统计的方法和思想对其他学科领域的发展也产生了积极的影响,如化学反应动力学、材料科学等。
玻尔兹曼统计在复杂系统中的应用
玻尔兹曼统计与机器学习算法的结合
对未来发展的展望和预测
新的理论框架的建立
跨学科研究的融合
人工智能和大数据的应用
实验验证和观测技术的发展
汇报人:XX
感谢观看
05
玻尔兹曼统计的局限性和发展
理论局限性和不足之处
玻尔兹曼统计不适用于描述具有高度非线性的复杂系统
玻尔兹曼统计无法准确描述微观粒子的量子行为
玻尔兹曼统计无法解释某些特殊系统的相变现象
玻尔兹曼统计在处理多体问题时存在困难
理论的发展和改进方向
统计力学的其他理论:如微正则分布、巨正则分布等,可作为玻尔兹曼统计的补充或替代。
玻尔兹曼统计的提出为现代科学和技术的发展奠定了重要的基础。
热力学统计物理_第七章_玻耳兹曼统计
ln Z ' S S Nk ln Z
ln Z S' S Nk ln Z U Nk ln N S ' N k N ln N N U S '
Z1 l e l
l
粒子 配分 函数
1 kT
热统 西华大学 理化学院
e
N Z1
6
2、粒子配分函数的物理意义
粒子处在该 能级的几率
有效状 态数
N l al l e Z1
玻耳兹 曼因子
al l e N Z1
l
l e l e
S k N ln N N U S '
lnMB N ln N N U
lnFD lnBE N U N
S MB k ln MB
e ' S k ( N ln N N ) Nk ln N
14 热统 西华大学 理化学院
我们已经学习了什么?
1、粒子运动状态的描述
经典粒子:-空间、相轨道的概念、 量子粒子:量子数、可能量子状态数目的计算
2、系统微观状态的经典和量子描述
经典系统:-空间中的N个点 量子系统:定域和非定域、全同性、统计特性
3、等几率原理
平衡状态下系统的任何微观状态出现的几率都相等
4、系统的微观状态数 目的计算及其关系
对于遵从玻尔兹曼分 U=-N lnZ 布的定域系统、满足 经典极限条件的玻色、 费米系统,从玻尔兹 N Y - lnZ 曼分布得到系统的内 y 能和广义力的统计表 达式: 可分辨粒子系统:
第七章 玻耳兹曼(Boltzmann)统计
P* = P ,
S* = S
(2).试证明对于遵从 Boltzmann 统计分布的系统,熵函数可以 表示为 S = − Nk ∑ p s ln p s , p s 是粒子处在量子态 s 的概率
s
因为对于 Boltzman 分布 al = ω l e −α = βε , 所以,
7.3 麦克斯韦(Maxwell)速度分布率
目的: 应用经典玻耳兹曼统计理论推倒出麦克斯韦速度分布率 与速率分布率,并且求得麦克斯韦速率分布的最概然速率 vm , 平 均速率 v , 方均根速率 v s 1. 速度分布率表达式的推导 经典玻耳兹曼统计表达式为:
E= al = e −α − βEl
Δω l
经典统计理论中的简并度可以表达为 经典统计理论中的配分函数可以写为
Z 1 = ∑ e − β El
l
Δω l h0
r
,所以
Δω l h0
r
,
如果 Δωl 足够小,则配分函数可以写成积分。
dq1 dq 2 ...dq r dp1 dp 2 ...dp r h0
r
Z1 = ∫
… ∫ e − βE ( q , p )
l
l
目的 2: 由系统的配分函数
Z 1 ,求系统的宏观物理量: (1)内
能U , (2)总粒子数 N , (3)广义力 Y , (4)熵 S ,自由能 F , (5) 系数 β 。 (1) U = − N
∂ ln Z 1 ∂β
(2) N = e −α Z1 (3) Y = −
N ∂ ln Z 1 β ∂y ∂ ln Z 1 ) , ∂β ∂ ln Z 1 ) - k ln N ! ∂β S = k ln Ω M , B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
与温度的关系
(dU Ydy) Nd ( ln Z1 ) N ln Z1 dy
y
配分函数Z1是和y的函数,所以ln Z1的全微分为:
d (ln
Z1 )
ln Z1
d
ln Z1 y
dy
ln Z1 y
dy
d
(ln
Z1 )
ln Z1
d
(dU Ydy) Nd ( ln Z1 ) N ln Z1 dy
内能的统计表达式
玻尔兹曼分布:al le l
U
l al
e l ll
l
l
引入配分函数(Partition - Function):Z1
el l
l
则:N
al
e l l
e Z1
l
l
al
l e l
elel
N Z1
l
e
l
内能的统计表达式
玻尔兹曼分布:al le l
U
U
N
ln Z1
讨论:
N e Z1 ln N ln Z1 ln Z1 ln N
S
Nk (ln
Z1
ln Z1 )
Nk (ln
N
U N
)
k(N ln N N U ) k[N ln N al lal ]
T
T
(dU
Ydy)
Nd (ln
Z1
ln Z1
)
1
kT
dS
1 T
(dU
Байду номын сангаас
Ydy)
1
T
(dU
Ydy)
kNd(ln
Z1
ln Z1 )
S
Nk (ln
Z1
ln Z1 )
S0
S00 S
Nk (ln
Z1
ln Z1 )
S
Nk (ln
Z1
ln Z1 )
熵函数的统计意义
S
Nk (ln
Z1
ln Z1 )
§7.1热力学量的统计表达式
❖ 定域系统和满足经典极限条件的玻色(费米)系 统都遵从玻尔兹曼分布。
❖ 本节将根据玻尔兹曼分布的结果讨论这两类系统 的热力学性质,首先推导出热力学量的统计表达 式。
目录
❖ 一、内能的统计表达式; ❖ 二、广义力的统计表达式; ❖ 三、熵的统计表达式; ❖ 四、自由能的统计表达式; ❖ 五、热力学基本量的求解方法; ❖ 六、经典统计理论中热力学函数的表达式
所以:d~W aldl Ydy。 l
广义力的统计表达式
d~W aldl Ydy
l
Y
l
al
l
y
N Z1
l
el l
l
y
N
Z1 y
l
el l
N
Z1
Z1 y
N
ln Z1 y
Y
N
(
ln Z1 y
)
对于简单系统:y V ,Y p
Y
N
(
ln Z1 y
)
p
N
(
ln Z1 V
广义力的统计表达式
U all dU ldal aldl
l
l
l
ldal :由于粒子分布的改变而引起的内能改变,而粒子数 l
分布的改变是由系统与外界的热交换引起的,所以:
d~Q ldal
l
aldl :由于各能级能量的改变而引起的内能改变,而能级
l
能量的改变是由于系统外参量y的改变(做功)而引起的,
)
与温度的关系
根据热力学基本微分方程: dU Ydy TdS 1 (dU Ydy) dS
T 说明 1 是dU Ydy的积分因子。
T
与温度的关系
dU Ydy Nd ( ln Z1 ) N ln Z1 dy
y
(dU Ydy) Nd ( ln Z1 ) N ln Z1 dy
N
(
ln Z1
)
y
一般来说,粒子的能量是外参量的函数,例如,三维运动
的自由粒子,设粒子处在边长为L的立方容器内,粒子的能 量可能值为:
1 2m
(
px2
p
2 y
pz2 )
2 22
m
nx2
ny2 L2
nz2
目录
❖ 一、内能的统计表达式; ❖ 二、广义力的统计表达式; ❖ 三、熵的统计表达式; ❖ 四、自由能的统计表达式; ❖ 五、热力学基本量的求解方法; ❖ 六、经典统计理论中热力学函数的表达式
U
l
l al
l
e l ll
e
l
llel
e ( )
l
el l
N Z1
(
)Z1
N
(ln
Z1 )
内能的统计表达式。
l l (y)
Z1
el l
Z(, y)
l
U
N
(ln
Z1 )
N
(
ln Z1
)
y
内能的统计表达式
l l (y)
Z1
el l
Z(, y)
l
U
N
(ln
Z1 )
el l
l
则:N
al
e l l
e Z1
l
l
对于配分函数,从分立到连续:Z1
el l
l
el
d
hr
;
(l
d
hr
)
f
N
e l
N
e l Z1e
1 el Z1
若从 f N e S e eS e
S
S
S
N eS
N Z1
,
Z1
S
eS。
S
以上两种写法一样,但求和范围不同。
y
Nd (
ln Z1
)
Nd
(ln
Z1 )
N
ln Z1
d
Nd
(ln
Z1 )
[ Nd
(
ln Z1
)
N
ln Z1
d
]
Nd (ln
Z1)
Nd (
ln Z1 )
Nd (ln
Z1
ln Z1
)
与温度的关系
也是dU Ydy的积分因子。
1 是dU Ydy的积分因子。 T
可令 1 ,其中k为玻尔兹曼常数:
kT k R 1.38 10 23 J / K
NA
目录
❖ 一、内能的统计表达式; ❖ 二、广义力的统计表达式; ❖ 三、熵的统计表达式; ❖ 四、自由能的统计表达式; ❖ 五、热力学基本量的求解方法; ❖ 六、经典统计理论中热力学函数的表达式
熵的统计表达式
1 d~Q 1 (dU Ydy) dS
目录
❖ 一、内能的统计表达式; ❖ 二、广义力的统计表达式; ❖ 三、熵的统计表达式; ❖ 四、自由能的统计表达式; ❖ 五、热力学基本量的求解方法; ❖ 六、经典统计理论中热力学函数的表达式
内能的统计表达式
玻尔兹曼分布:al le l
U
l al
e l ll
l
l
引入配分函数(Partition - Function):Z1
l al
e l ll
l
l
引入配分函数(Partition - Function):Z1
el l
l
则:N
al
e l l
e Z1
l
l
U
l
l al
l
e l ll
e
l
llel
e ( )
l
el l
N Z1
(
)Z1
N
(ln
Z1 )
内能的统计表达式。
内能的统计表达式
第七章 玻尔兹曼统计
第六章近独立粒子的最概然分布
❖ §7.1热力学量的统计表达式 ❖ §7.2理想气体的物态方程 ❖ §7.3麦克斯韦速度分布率 ❖ §7.4能量均分定理 ❖ §7.5理想气体的内能和热容 ❖ §7.6理想气体的熵 ❖ §7.7固体热容的爱因斯坦理论 ❖ §7.8顺磁性固体 ❖ §7.9负温度状态