平行四边形、矩形、菱形、正方形知识点总结

合集下载

初中平行四边形、矩形、菱形、正方形知识点总结(精)

初中平行四边形、矩形、菱形、正方形知识点总结(精)

平行四边形、矩形、菱形、正方形知识点总结1.平行四边形、矩形、菱形、正方形的性质:平行四边形矩形菱形正方形图形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等,邻角互补四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角对称性只是中心对称图形既是轴对称图形,又是中心对称图形面积ah=S ab=S2121S dd=(注:d1,d2为菱形两条对角线的长度。

)2S a=2. 判定方法小结:(1) 平行四边形:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形。

(2)矩形:有一个角是直角的平行四边形叫做矩形。

①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形。

(3) 菱形:有一组邻边相等的平行四边形叫做菱形.①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形(4) 正方形:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

①有一组邻边相等且有一个角是直角的平行四边形是正方形;②对角线互相垂直且相等的平行四边形是正方形;③有一组邻边相等的矩形是正方形;④对角线互相垂直的矩形是正方形;⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形;⑦对角线互相垂直平分且相等的四边形是正方形。

菱形正方形长方形平行四边形 的特征

菱形正方形长方形平行四边形 的特征

菱形正方形长方形平行四边形的特征一、菱形的特征菱形是一种四边形,它的四条边都相等且相互平行,同时它的对角线相互垂直且长度相等。

菱形的四个内角都是直角,即每个内角为90度。

菱形的特点使得它在几何学中具有重要的地位。

它具有对称性,即通过菱形的对角线可以将它分为两个完全相同的部分。

这种对称性在很多应用中都有着重要的作用。

二、正方形的特征正方形是一种特殊的菱形,它的四条边都相等且相互平行,同时它的四个内角都是直角。

正方形具有对称性和等边性,它的每个内角为90度,每条边的长度也相等。

正方形在日常生活中非常常见,例如我们常见的围棋棋盘、象棋棋盘、西洋棋棋盘等都是正方形的形状。

此外,在建筑中,很多房屋的平面图都是正方形或由多个正方形组成的。

三、长方形的特征长方形是一种特殊的平行四边形,它的两条对边相等且相互平行,同时它的四个内角都是直角。

长方形具有对称性和等边性,它的每个内角为90度,两条相对的边长度不同。

长方形在我们的日常生活中随处可见,例如书本的封面、电视机的屏幕、门窗的形状等都是长方形。

在建筑中,很多房屋的平面图都是长方形,例如我们常见的矩形房屋。

四、平行四边形的特征平行四边形是一种四边形,它的两对边分别相等且相互平行。

平行四边形的两对对边分别平行且相等,而且它的内角之和为360度。

平行四边形在我们的日常生活中也非常常见,例如书桌的形状、电视机架的形状、图画的边框等都是平行四边形的形状。

在建筑中,很多建筑物的地面、墙面等都是由平行四边形组成的。

五、菱形、正方形、长方形和平行四边形的应用菱形、正方形、长方形和平行四边形在我们的生活中有着广泛的应用。

例如,在建筑设计中,很多房屋的平面图都可以使用这些形状来描述。

在城市规划中,很多道路、街区等也是由这些形状组成的。

在工业生产中,很多产品的形状也可以使用这些形状来描述。

例如电视机、电脑显示屏等产品的外形常常是正方形或长方形的。

在艺术设计中,这些形状也常常被用来构图和设计。

1.3平行四边形,矩形,菱形,正方形的性质和判定

1.3平行四边形,矩形,菱形,正方形的性质和判定

第三节 平行四边形,矩形,菱形,正方形的性质和判定(一)平行四边形的性质和判定 一.教学重难点:重点:平行四边形的性质证明. 难点:分析、综合思考的方法.二.知识点和考点:1.平行四边形的定义2.平行四边形的性质,面积3.平行四边形的判定4.三角形的中位线及其性质三.知识点讲解考点一: 平行四边形的定义考点二:平行四边形的性质(1)平行四边形的对边相等注:在证明题时使用格式是:∵四边形ABCD 是平行四边形,定义:有两组对边分别平行的四边形叫做平行四边形。

记做例1:如图:在中,如果E F ∥AD ,GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有 ( ) A .4个 B 、5个 C 、8个 D 、9个例2:如图,E 、F 分别是边AD 、BC 上的点,并且AF ∥CE ,求证:∠AFB=∠DEC 。

∴AB=DC,AD=BC例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE。

例2.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为(2).平行四边形的对角相等注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D例1.已知中,E、F是对角线AC上的两点,且AE=CF。

求证:∠ADF=∠CBE。

例2、在中,∠A、∠B的度数之比为5:4,则∠C等于()A、 B、 C、 D、(3)、平行四边形的对角线互相平分注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴OA=OC,OB=OD例3.如图,,过其对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,求四边形ABEF的周长。

例4.如图,已知:中,AC、BD相交于O点,OE⊥AD于E,OF⊥BC于F,求证:OE=OF。

例5.如图,如果的周长之差为8,而AB:AD=3:2,那么的周长为多少?例6.如图,已知的周长为60cm,对角线AC、BD相交于点O,的周长长8cm,求这个四边形各边长.(4)平行四边形的面积如图(1),,也就是边长×高=ah(2)、同底(等底)同高(等高)的平行四边形面积相等。

四边形知识点总结

四边形知识点总结

四边形知识点总结一、四边形概念四边形是一个平面图形,它有四条边和四个顶点。

四边形是几何学中的一个基本概念,也是我们日常生活中经常遇到的图形。

四边形可以根据其性质和特征分为多种不同的类型,我们可以通过这些性质和特征来研究和分析四边形图形的性质和关系。

二、四边形的分类1. 矩形矩形是一种特殊的四边形,它的对边相等且平行,且每个角都是直角。

矩形是一个非常常见的图形,它有着许多特殊的性质和特征,比如对角线相等,对边平行等。

2. 平行四边形平行四边形是一种四边形,它的对边两两平行。

平行四边形具有许多特殊的性质,比如对角线相等,对边平行等。

3. 梯形梯形是一种至少有一对对边平行的四边形,它有两条并不相等的对边。

梯形也是一种常见的图形,它有着许多特殊的性质,比如对角线平行等。

4. 菱形菱形是一种特殊的平行四边形,它的四边都相等,且对角相等。

菱形具有一些特殊的性质,比如对角线相等,对边平行等。

5. 正方形正方形是一种特殊的矩形和菱形,它的四条边相等且每个角都是直角。

正方形是一种非常常见的图形,它有着许多特殊的性质和特征,比如对角线相等,对边平行等。

三、四边形的性质1. 对角线性质对于任意一个四边形,其对角线之间的距离是相等的,即对角线相等。

这个性质是许多四边形的共同性质,比如矩形、菱形和正方形。

2. 对边平行性质对于平行四边形和梯形,它们的对边两两平行。

这个性质为我们研究和分析这些四边形图形提供了重要的线索。

3. 相邻角性质四边形的相邻两个角的和为180度。

这个性质可以帮助我们计算出四边形内部角的大小,以及判断四边形的类型。

4. 对边长度性质对于矩形、菱形和正方形,它们的对边长度相等。

这个性质可以帮助我们判断四边形的类型,以及求解四边形的边长。

5. 对角度性质对于矩形和正方形,它们的每个角都是直角。

菱形的每个角也都相等。

这些性质可以帮助我们判断四边形的类型,以及求解四边形的角度大小。

四、四边形的计算1. 周长四边形的周长等于其四条边的长度之和。

中考专题复习——矩形菱形正方形

中考专题复习——矩形菱形正方形

中考专题复习第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2016•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=105cm,且tan∠EFC=34,那么该矩形的周长为()A.72cm B.36cm C.20cmD.16cm对应训练1.(2016•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为()A.12B.33C.23D.22考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2016•泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .对应训练2.(2016•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.1 D.17考点三:和正方形有关的证明题例3 (2016•湘潭)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.思路分析:(1)根据正方形的性质可得AO=CO ,OD=OF ,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF ,再利用“边角边”证明△AOD 和△COF 全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD ,连接DF 交OE 于G ,根据正方形的对角线互相垂直平分可得DF ⊥OE ,DG=OG=12OE ,再求出AG ,然后利用勾股定理列式计算即可求出AD . 解:(1)AD=CF .理由如下:在正方形ABCO 和正方形ODEF 中,AO=CO ,OD=OF ,∠AOC=∠DOF=90°, ∴∠AOC+∠COD=∠DOF+∠COD ,即∠AOD=∠COF ,在△AOD 和△COF 中,AO CO AOD COF OD OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COF (SAS ), ∴AD=CF ;(2)与(1)同理求出CF=AD ,如图,连接DF 交OE 于G ,则DF ⊥OE ,DG=OG=12OE ,∵正方形ODEF 的边长为2,∴OE=2×2=2,∴DG=OG=12OE=12×2=1, ∴AG=AO+OG=3+1=4,在Rt △ADG 中,AD=22224117AG DG +=+=,∴CF=AD=17.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,(1)熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.对应训练3.(2016•三明)如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.3.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠DPE=∠DCE,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.考点四:四边形综合性题目例4 (2016•资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.思路分析:(1)证明△ADF≌△DNC,即可得到DF=MN;易证△MND ∽△DFA,∴ND DMAF AD=,即ND a tat aa t-=-,得ND=t.∴ND=CM=t,AN=DM=a-t.若△MNF为等腰三角形,则可能有三种情形:(I)若FN=MN,则由AN=DM知△FAN≌△NDM,∴AF=DM,即ata t-=t,得t=0,不合题意.∴此种情形不存在;(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,∴t=12a,此时点F与点B重合;(III)若FM=MN,显然此时点F在BC边上,如下图所示:易得△MFC≌△NMD,∴FC=DM=a-t;又由△NDM∽△DCF,∴DN DCDM FC=,即t aa t FC=-,∴FC=()a a tt-.∴()a a tt-=a-t,∴t=a,此时点F与点C重合.综上所述,当t=a或t=12a时,△MNF能够成为等腰三角形.点评:本题是运动型几何综合题,考查了相似三角形、全等三角形、正方形、等腰三角形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)运用分类讨论的数学思想,避免漏解.对应训练4.(2016•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.4.解:(1)①BF=AD ,BF ⊥AD ;②BF=AD ,BF ⊥AD 仍然成立,证明:∵△ABC 是等腰直角三角形,∠ACB=90°,∴AC=BC ,∵四边形CDEF 是正方形,∴CD=CF ,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,在△BCF 和△ACD 中BC ACBCF ACD CF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△ACD (SAS ),∴BF=AD ,∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF ⊥AD ;(2)证明:连接DF ,∵四边形CDEF 是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF ,即∠BCF=∠ACD ,∵AC=4,BC=3,CD=43,CF=1,∴34BC CF AC CD ==,∴△BCF ∽△ACD ,∴∠CBF=∠CAD ,又∵∠BHC=∠AHO ,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=AC2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=43,CF=1,∴DF2=CD2+CF2=(43)2+12=259,∴BD2+AF2=AB2+DF2=25+259=2509.【聚焦山东中考】1.(2016•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF2.(2016•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3-1B.3-5C.5+1D.5-13.(2016•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.4.(2016•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为.5.(2016•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).6.(2016•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,ABE DAFAB ADBAE D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则与(1)的情况完全相同.7.(2016•青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明)8.(2016•淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD 剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).8.解:(1)正方形的最大面积是16.设AM =x (0≤x ≤4),则MD =4-x .∵四边形MNEF 是正方形,∴MN =MF ,∠AMN +∠FMD =90°.∵∠AMN +∠ANM =90°,∴∠ANM =∠FMD .∵在△ANM 和△DMF 中A D ANM FMD MN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANM ≌△DMF (AAS ).∴DM =AN .∴S 正方形MNEF =MN 2=AM 2+AN 2,=x2+(4-x)2,=2(x-2)2+8∵函数S正方形MNEF=2(x-2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.9.(2016•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.9.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,【备考真题过关】一、选择题1.(2016•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2016•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.104.(2016•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm 5.(2016•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1636.(2016•巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.237(2016•茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC 的长是()A.2B.4C.2 3D.438.(2016•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.4 9.(2016•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S210.(2016•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.(2016•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm12.(2016•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题13.(2016•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.14.(2016•淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.15.(2013•无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.16.(2016•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.17.(2016•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan ∠DBE的值是.18.(2016•南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .19.(2016•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).20.(2016•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.21.(2016•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.22.(2016•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.23.(2016•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.24.(2016•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD 上一动点,分别以AP 、PB 为边向上、向下作正方形APEF 和PHKB ,设正方形对角线的交点分别为O 1、O 2,当点P 从点C 运动到点D 时,线段O 1O 2中点G 的运动路径的长是 .25.(2016•荆州)如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1、BC 1.若∠ACB=30°,AB=1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x=1时,四边形ABC 1D 1是菱形;③当x=2时,△BDD 1为等边三角形;④s=38(x -2)2 (0<x <2); 其中正确的是 (填序号).三、解答题26.(2016•南通)如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.26.证明:∵∠BAD=∠CAE ,∴∠BAD -∠BAC=∠CAE -∠BAC ,∴∠BAE=∠CAD ,∵在△BAE 和△CAD 中AE AD BAE CAD AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CAD (SAS ), ∴∠BEA=∠CDA ,BE=CD ,∵DE=BC ,∴四边形BCDE 是平行四边形,∵AE=AD ,∴∠AED=∠ADE ,∵∠BEA=∠CDA ,∴∠BED=∠CDE ,∵四边形BCDE 是平行四边形,∴BE ∥CD ,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE 是矩形.27.(2016•广州)如图,四边形ABCD 是菱形,对角线AC 与BD相交于O ,AB=5,AO=4,求BD 的长.27.解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO=2254-=3,∴BD=2BO=2×3=6.28.(2013•厦门)如图所示,在正方形ABCD 中,点G 是边BC 上任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于点F .在线段AG 上取点H ,使得AG=DE+HG ,连接BH .求证:∠ABH=∠CDE .28.证明:如图,在正方形ABCD 中,AB=AD ,∠ABG=∠DAF=90°,∵DE ⊥AG ,∴∠2+∠EAD=90°,又∵∠1+∠EAD=90°,∴∠1=∠2,在△ABG 和△DAF 中, 1 290AB AD ABG DAF =⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABG ≌△DAF (ASA ),∴AF=BG ,AG=DF ,∠AFD=∠BGA ,∵AG=DE+HG ,AG=DE+EF ,∴EF=HG ,在△AEF 和△BHG 中,AF BG AFD BGA EF HG =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BHG (SAS ),∴∠1=∠3,∴∠2=∠3,∵∠2+∠CDE=∠ADC=90°,∠3+∠ABH=∠ABC=90°,∴∠ABH=∠CDE .29.(2013•黔东南州)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F .求证:AM=EF .29.证明:过M 点作MQ ⊥AD ,垂足为Q ,作MP 垂足AB ,垂足为P ,∵四边形ABCD 是正方形,∴四边形MFDQ 和四边形PBEM 是正方形,四边形APMQ 是矩形,∴AP=QM=DF=MF ,PM=PB=ME ,∵在△APM 和△FME 中,AP MF APM FME PM ME =⎧⎪∠=∠⎨⎪=⎩, ∴△APM ≌△FME (SAS ), ∴AM=EF .30.(2016•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE .(1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.30.(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,∴四边形AEBD 是平行四边形,∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB=90°,∴平行四边形AEBD 是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC ,AD 是△ABC 的角平分线,∴AD=BD=CD ,∵由(1)得四边形AEBD 是矩形,∴矩形AEBD 是正方形.31.(2016•南宁)如图,在菱形ABCD 中,AC 为对角线,点E 、F 分别是边BC 、AD 的中点.(1)求证:△ABE ≌△CDF ;(2)若∠B=60°,AB=4,求线段AE 的长.31.解:(1)∵四边形ABCD 是菱形,∴AB=BC=AD=CD ,∠B=∠D ,∵点E 、F 分别是边BC 、AD 的中点,∴BE=DF ,在△ABE 和△CDF 中,∵AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS );(2)∵∠B=60°,∴△ABC 是等边三角形,∵点E 是边BC 的中点,∴AE ⊥BC ,在Rt △AEB 中,∠B=60°,AB=4,sin60°=4AE AE AB =, 解得AE=23.32.(2016•贵阳)已知:如图,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E ,连接EC .(1)求证:AE=EC ;(2)当∠ABC=60°,∠CEF=60°时,点F 在线段BC 上的什么位置?说明理由.32.(1)证明:如图,连接AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE=EC ;(2)解:点F 是线段BC 的中点.理由如下:在菱形ABCD 中,AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=60°,∵AE=EC ,∠CEF=60°,∴∠EAC=12∠BAC=30°, ∴AF 是△ABC 的角平分线,∵AF 交BC 于F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点.33.(2016•曲靖)如图,点E 在正方形ABCD 的边AB 上,连接DE ,过点C 作CF ⊥DE 于F ,过点A 作AG ∥CF 交DE 于点G .(1)求证:△DCF ≌△ADG .(2)若点E 是AB 的中点,设∠DCF=α,求sinα的值.33.(1)证明:在正方形ABCD 中,AD=DC ,∠ADC=90°,∵CF ⊥DE ,∴∠CFD=∠CFG=90°,35.(2016•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.35.证明:(1)∵∠BAC=90°,∠ABC=45°,线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.36.解:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠PBA=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FPC=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)结论:四边形EPCF是平行四边形,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°∵在△PBA和△FBC中,AB BCPBA ABCBP BF=⎧⎪∠=∠⎨⎪=⎩,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,。

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“2.熟练掌握性质”表示平行四边形,例如:平行四边形 ABCD 记作ABCD,读作“平行四边形 ABCD”.平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S =底⨯高 =a h;3.平行四边形的判别方法②平行四边形的对角线将四边形分成 4 个面积相等的三角形.①定义:两组对边分别平行的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念②方法1:两组对角分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;③对角线:对角线互相平分且相等;(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;④对称性:轴对称图形(对边中点连线所在直线,2 条).②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为 450;④对称性:轴对称图形(4 条).④对称性:轴对称图形(对角线所在直线,2 条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;④有一个角是直角的菱形③对角线互相垂直的矩形.⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的任意一个角为直角.②先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的对角线相等.③说明四边形 ABCD 的三个角是直角.(2)识别菱形的常用方法①先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的任一组邻边相等.②先说明四边形 ABCD 为平行四边形,再说明对角线互相垂直.③说明四边形 ABCD 的四条相等.(3)识别正方形的常用方法①先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的一个角为直角且有一组邻边相等.②先说明四边形 ABCD 为平行四边形,再说明对角线互相垂直且相等.③先说明四边形 ABCD 为矩形,再说明矩形的一组邻边相等.④先说明四边形 ABCD 为菱形,再说明菱形 ABCD 的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形 ABCD 为梯形,再说明两腰相等.②先说明四边形 ABCD 为梯形,再说明同一底上的两个内角相等.③先说明四边形 ABCD 为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形 ABCD 的两邻边长分别为 a,b,则 S 矩形=ab.1②设菱形 ABCD 的一边长为 a,高为 h,则 S 菱形=ah;若菱形的两对角线的长分别为 a,b,则 S 菱形= ab.21③设正方形 ABCD 的一边长为 a,则 S 正方形= a 2 ;若正方形的对角线的长为 a,则 S 正方形= a2 .21④设梯形 ABCD 的上底为 a,下底为 b,高为 h,则 S 梯形= (a b)h .2平行四边形矩形菱形正方形图形1.对边1.对边且1.对边且四条边都2.对角1.对边且四条边都2.对角且;;;;2.对角邻角;;2.对角;且四个角都是;3.对角线且四个角都是;性质3.对角线且每3.对角线;3.对角线条对角线且每条对角;;;线面积。

四边形的分类知识点

四边形的分类知识点

四边形的分类知识点四边形是指具有四条边的平面图形,它们在几何学中属于重要的基础概念。

根据四边形的特征和属性,可以将其进行分类。

本文将介绍四边形的分类知识点,包括平行四边形、矩形、正方形和菱形。

1. 平行四边形平行四边形是指四边形的对边两两平行。

特点如下:- 两对对边分别平行:即AB∥CD, AD∥BC。

- 对角线互相平分:即AC和BD互相平分。

- 对边长度相等:即AB=CD, AD=BC。

- 对角线长度不等:即AC≠BD。

平行四边形的性质:- 对角线互相平分:即AC和BD互相平分。

- 内角和为360°:即∠A+∠B+∠C+∠D=360°。

- 对边共线:即AB和CD共线,AD和BC共线。

2. 矩形矩形是指四边形的四个内角均为直角的特殊平行四边形。

特点如下:- 对边两两平行:即AB∥CD, AD∥BC。

- 对角线互相平分:即AC和BD互相平分。

- 对边长度相等:即AB=CD, AD=BC。

- 内角均为直角:即∠A=∠B=∠C=∠D=90°。

矩形的性质:- 对边共线:即AB和CD共线,AD和BC共线。

- 对角线相等:即AC=BD。

- 相对边长度相等:即AB=CD, AD=BC。

- 两个相邻内角的和为直角:即∠A+∠B=90°,∠B+∠C=90°,∠C+∠D=90°,∠D+∠A=90°。

3. 正方形正方形是指四边形的四条边长均相等且四个内角均为直角的特殊矩形。

特点如下:- 对边两两平行:即AB∥CD, AD∥BC。

- 对角线互相平分:即AC和BD互相平分。

- 对边长度相等:即AB=CD, AD=BC。

- 内角均为直角:即∠A=∠B=∠C=∠D=90°。

- 边长相等:即AB=BC=CD=DA。

正方形的性质:- 对边共线:即AB和CD共线,AD和BC共线。

- 对角线相等:即AC=BD。

- 相对边长度相等且相等于对角线长度的平方根:即AB=BC=CD=DA=AC=BD。

多边形平行四边形矩形菱形正方形的知识点总结

多边形平行四边形矩形菱形正方形的知识点总结

多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。

中考数学_专项_矩形、菱形、正方形考点及题型

中考数学_专项_矩形、菱形、正方形考点及题型

【中考数学】矩形、菱形、正方形的5大考点及题型汇总矩形、菱形、正方形是八年级下册特殊平行四边形这一章节的重要组成部分。

他们都是基于平行四边形的性质衍生出来的其基本的性质都和平行四边形是一样的。

所以大家在进行学习和记忆的时候只需要紧抓其特殊部分,就能把他们都区分出来。

熟练掌握矩形,菱形,正方形的性质,定义和判定是这部分学习的重点,同时这部分也是中考数学几何部分的重要考点。

只有把这些性质和判定融会贯通。

那么在遇到综合题或者是类似题型的几何才能应对自如,尽快的形成自己的解题思路。

今天就给大家分享初中数学矩形、菱形、正方形的5大考点及题型,同学们赶紧来查漏补缺。

一、矩形、菱形、正方形的性质1.矩形的性质①具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形是轴对称图形,它有两条对称轴;⑤直角三角形斜边上的中线等于斜边的一半。

2.菱形的性质①具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,每条对角线所在的直线都是它的对称轴;⑤菱形的面积=底×高=对角线乘积的一半。

3.正方形的性质: 正方形具有平行四边形,矩形,菱形的一切性质①边:四边相等,对边平行;②角:四个角都是直角;③对角线:互相平分;相等;且垂直;每一条对角线平分一组对角,即正方形的对角线与边的夹角为45度;④正方形是轴对称图形,有四条对称轴。

例1 矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.360 B.90C.270 D.180例2 如图,矩形ABCD中,AE⊥BD于点E,对角线AC与BD相交于点O,BE:ED =1:3,AB=6cm,求AC的长。

例3 如图, O是矩形ABCD 对角线的交点, AE平分∠BAD,∠AOD=120°,求∠AEO 的度数。

例4 菱形的周长为40cm,两邻角的比为1:2,则较短对角线的长________ 。

精华总结:平行四边形、矩形、菱形、正方形知识点

精华总结:平行四边形、矩形、菱形、正方形知识点

平行四边形、矩形、菱形、正方形知识点总结一般平行四边形特殊平行四边形矩形菱形(正方形图形·定义两组对边分别平行的四边形是平行四边形~有一个角是直角的平行四边形是矩形有一组邻边相等的平行四边形是菱形有一个角是直角,且有一组邻边相等的平行四边形叫做正方形性质①边:对边平行且相等②角:对角相等,邻角互补~③对角线:对角线互相平分除具有平行四边形的性质外,还有①角:四个角都是直角②对角线:对角线相等,且互相平分除具有平行四边形的性质外,还有①边:四条边相等②对角线:对角线互相垂直平分,且每一条对角线平分一组对角*具有矩形、菱形的所有性质(正方形=矩形+菱形)①边:四条边相等②角:四个角是直角③对角线:对角线相等,互相垂直平分,每一条对角线平分一组对角;判定边:!①两组对边分别平行的四边形是平行四边形②两组对边分别相等的四边形是平行四边形③一组对边平行且相等的四边形是平行四边形角:④两组对角分别相等的四边形是平行四边形对角线:⑤对角线互相平分的四边形是平行四边形;角:①有一个角是直角的平行四边形是矩形②有三个角是直角的四边形是矩形对角线:③对角线相等的平行四边形是矩形边:①有一组邻边相等的平行四边形是菱形#②四边都相等的四边形是菱形对角线:③对角线互相垂直的平行四边形是菱形①对角线相等且互相垂直平分的四边形是正方形②有一组邻边相等且有一个角是直角的平行四边形是菱形③有一组邻边相等的矩形是菱形④对角线互相垂直的矩形是菱形…⑤有一个角是直角的菱形是菱形⑥对角线相等的菱形是菱形面积S=ah(a为一边长,h为这条边上的高)S=ab(a为一边长,b为另一边长)①~②③S=ah(a为一边长,h为这条边上的高);②①(a为边长);②(b为对角线长)。

(完整版)四边形知识点总结

(完整版)四边形知识点总结

四边形
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四
边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于
这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
平行四边形矩形
菱形正


※5.梯形中常见的辅助线:
※。

特殊的四边形(归纳)

特殊的四边形(归纳)

特殊的平行四边形知识点一:矩形的定义要点诠释:有一个角是直角的平行四边形叫做矩形。

(嘿嘿嘿)知识点二:矩形的性质要点诠释:矩形具有平行四边形所有的性质。

此外,它还具有如下特殊性质:1.矩形的四个角都是直角;2.矩形的对角线相等;推论:直角三角形斜边上的中线等于斜边的一半。

3.矩形是轴对称图形也是中心对称图形。

知识点三:矩形的判定方法要点诠释:1. 用矩形的定义:一个角是直角的平行四边形是矩形;2.有三个角是直角的四边形是矩形;3.对角线相等的平行四边形是矩形;4.对角线互相平分且相等的四边形是矩形。

知识点四:菱形的定义要点诠释:有一组邻边相等的平行四边形叫做菱形.知识点五:菱形的性质要点诠释:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:1.菱形的四条边相等。

2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。

3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。

知识点六:菱形的判定办法要点诠释:1.用菱形的定义:有一组邻边相等的平行四边形是菱形;2.四条边都相等的四边形是菱形;3.对角线垂直的平行四边形是菱形;4.对角线互相垂直平分的四边形是菱形。

知识点七:正方形的定义要点诠释:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

知识点八:正方形的性质要点诠释:1.正方形的四个角都是直角,四条边都相等;2.正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角;3.正方形既是轴对称图形也是中心对称图形。

知识点九:正方形的判定方法要点诠释:1.正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2.有一组邻边相等的矩形是正方形;3.有一个角是直角的菱形是正方形.归纳整理,形成认知体系1.复习概念,理清关系2.集合表示,突出关系3.性质判定,列表归纳平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·两组对边分别平行;·两组对边分别相等;·一组对边平行且相等;·两组对角分别相等;·两条对角线互相平分.·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。

数学的图形知识点总结

数学的图形知识点总结

数学的图形知识点总结1. 点、线、面在数学中,点、线、面是基本的几何概念。

点是没有长度、宽度和高度的,是几何图形的最小单位;线是由无数个点组成的,是没有宽度的;面是由无数条线组成的,是有宽度和长度的。

2. 直线和曲线在几何学中,直线和曲线是两种基本的图形。

直线是一条不弯曲的线,可以延伸到无限远,没有起始点和终止点;曲线是一条弯曲的线,有起始点和终止点,但不必定要闭合。

3. 不同形状的图形在数学中,常见的图形包括圆形、正方形、三角形、矩形、梯形、菱形、平行四边形等。

这些图形都有各自的特点和性质,学生需要掌握它们的定义、特点以及相关的定理和公式。

4. 圆圆是一种特殊的几何图形,其性质包括半径、直径、周长和面积等。

学生需要了解这些性质,并且掌握计算圆的周长和面积的方法。

5. 三角形三角形是由三条线段组成的图形,其性质包括等边三角形、等腰三角形、直角三角形和一般三角形等。

学生需要了解这些性质,并且掌握计算三角形的周长和面积的方法。

6. 四边形四边形是由四条线段组成的图形,其性质包括正方形、矩形、菱形、平行四边形等。

学生需要了解这些性质,并且掌握计算四边形的周长和面积的方法。

7. 多边形多边形是由多条线段组成的图形,其性质包括正多边形和不规则多边形等。

学生需要了解这些性质,并且掌握计算多边形的周长和面积的方法。

8. 三维图形在数学中,除了平面图形外,还有三维立体图形,包括球体、长方体、正方体、圆柱体、圆锥体等。

学生需要了解这些图形的性质和相关计算方法。

9. 图形的坐标在坐标系中,图形的位置可以通过坐标表示。

学生需要了解平面直角坐标系、空间直角坐标系等的相关知识,掌握图形在坐标系中的表示方法和计算方法。

总的来说,图形是数学中的一个重要概念,在学习数学的过程中,学生需要掌握各种图形的性质、特点和相关的计算方法,这有助于提高他们的数学素养和解决实际问题的能力。

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结1.平行四边形、矩形、菱形、正方形的性质:平行四边形矩形菱形正方形图形①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且相互均分的四边形是矩形。

(3)菱形:有一组邻边相等的平行四边形叫做菱形.①有一组邻边相等的平行四边形是菱形;②对角线相互垂直的平行四边形是菱形;边对边平行且相等角对角相等,邻角互补性质对角相互均分线对称不过中心对称图形性对边平行且相等对边平行,四边相等对边平行,四边相等四个角都是直角对角相等四个角都是直角相互垂直均分,且每条相互垂直均分且相相互均分且相等等 , 每条对角线均分对角线均分一组对角一组对角既是轴对称图形,又是中心对称图形③四边都相等的四边形是菱形;④对角线相互垂直均分的四边形是菱形。

(4)正方形:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

①有一组邻边相等且有一个角是直角的平行四边形是正方形;②对角线相互垂直且相等的平行四边形是正方形;③有一组邻边相等的矩形是正方形;④对角线相互垂直的矩形是正方形;S1d1d2(注:d1,d222面积S ah S ab 为菱形两条对角线的S a长度。

)2.判断方法小结:(1)平行四边形:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线相互均分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形。

(2)矩形:有一个角是直角的平行四边形叫做矩形。

⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形;⑦对角线相互垂直均分且相等的四边形是正方形。

平行四边形的知识点总结

平行四边形的知识点总结

平行四边形的知识点总结
定义
平行四边形是一个拥有两组平行边的四边形。

每对相邻边都是
平行的,且所有内角都是直角。

特性
1. 边长:平行四边形的对边长度相等。

2. 内角:平行四边形的内角都是直角,即90度。

3. 对角线:平行四边形的对角线互相垂直且相等长。

命名规则
平行四边形可以根据边长和角度特性进行命名:
1. 矩形:它是一种特殊的平行四边形,拥有四个直角。

2. 正方形:它是一种特殊的矩形,拥有四条相等边和四个直角。

3. 长方形:它是一种特殊的矩形,拥有两对相等边和四个直角。

4. 菱形:它是一种拥有两条对角线互相垂直且相等边的平行四边形。

常见计算公式
1. 周长:平行四边形的周长可以通过两边长相加再乘以2来计算。

周长 = (边长1 + 边长2) * 2
2. 面积:平行四边形的面积可以通过两对相邻边的长度和夹角来计算。

面积 = 边长1 * 边长2 * sin(夹角)
图形展示
以下是平行四边形的示意图:
-------------
| |
| |
| |
-------------
平行四边形的边和角度特性可以帮助我们理解和计算该图形的性质和参数。

以上是对平行四边形的知识点总结。

注意:本文档的内容仅供参考,不代表法律观点,具体情况还需结合实际法律条款进行判断。

平行四边形、矩形、菱形的性质和判定比较

平行四边形、矩形、菱形的性质和判定比较

一、填表:平行四边形、矩形、菱形、正方形的性质比较
二、平行四边形、矩形、菱形、正方形的周长和面积公式
三、判定
平行四边形的五种判定法:
判定(1):两组对边分别平行的四边形是平行四边形
判定(2):两组对边分别相等的四边形是平行四边形
判定(3):一组对边平行且相等的四边形是平行四边形
判定(4):两条对角线互相平分的四边形是平行四边形
判定(5):两组对角分别相等的四边形是平行四边形
矩形的三种判定法:
判定(1)一个角是直角的平行四边形是矩形
判定(2)三个角是直角的四边形是矩形
判定(3)对角线相等的平行四边形是矩形
菱形的三种判定法:
判定(1)一组邻边相等的平行四边形是菱形
判定(2)四条边相等的四边形是菱形
判定(3)对角线互相垂直的平行四边形是菱形
或对角线互相垂直且平分的四边形是菱形
正方形的三种判定法:
判定(1)对角线互相平分、垂直且相等的四边形是正方形;
判定(2)的矩形是正方形;
判定(3)的菱形是正方形。

四、三个定理
三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半在直角三角形中,30度角所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边的一半。

初三总复习 矩形、菱形、正方形的性质与判定

初三总复习 矩形、菱形、正方形的性质与判定

矩形、菱形、正方形一、本部分知识重点:矩形、菱形、正方形的定义,性质和判定是重点。

这三种图形都是特殊的平行四边形,它们都具备平行四边形的性质。

二、知识要点:(一)矩形:定义:有一个角是直角的平行四边形是矩形。

性质:1、具有平行四边形的性质;2、矩形的四个角都是直角;3、矩形的对角线相等。

4、矩形是轴对称图形,它有两条对称轴。

如图.判定:1、用定义判定。

2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形。

(二)菱形:定义:有一组邻边相等的平行四边形是菱形。

性质:1、具有平行四边形的性质;2、菱形的四条边相等;3、菱形的对角线互相垂直,并且每一条对角线平分一组对角。

4、菱形是轴对称图形,它有两条对称轴。

如图.判定:1、用定义判定;2、四边都相等的四边形是菱形。

3、对角线互相垂直的平行四边形是菱形。

(三)正方形:定义;有一组邻边相等并且有一个角是直角的平行四边形是正方形。

性质:正方形是特殊的菱形,又是特殊的矩形,所以它具备菱形和矩形的所有的性质。

正方形是轴对称图形,它有四条对称轴。

如图.判定:1、用定义判定;2、有一个角是直角的菱形是正方形;3、有一组邻边相等的矩形是正方形。

另外由矩形性质得到直角三角形的性质:直角三角形斜边上的中线等于斜边的一半。

三、例题:例1,判断正误:(要判断一个命题是假命题,只需举一个反例即可)1、有三个角相等的四边形是矩形。

()分析:不正确。

反例:四边形ABCD中,∠A=∠B=∠C=850,∠D=1050,显然此四边形不是矩形。

2、对角线相等的四边形是矩形。

分析:不正确。

因为对角线不平分,未必是平行四边形。

反例:如图,四边形ABCD中,对角线AC=BD,但它不是矩形。

3、四个角都相等的四边形是矩形。

分析:正确。

因为四边形内角和等于3600,又知这四个内角都相等,所以每个内角为900,根据“有三个角是直角的四边形是矩形”即可得证。

4、对角线互相垂直的四边形是菱形。

平行四边形矩形菱形正方形的判定

平行四边形矩形菱形正方形的判定

第 1 页平行四边形、矩形、菱形、正方形的判定一、判定定理二、平行四边形的判定例1:(定义)如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形.线段AD 与BC 的长度有什么关系?例2:(一组对边平行且相等)已知:如图,AD ∥BC ,ED ∥BF ,且AF =CE .求证:四边形ABCD 是平行四边形. 练习:如图, □ABCD 中,G 是CD 上一点,BG 交平行四边形 矩形菱形 正方形 边 两组对边平行四边都相等有1组邻边相等的矩形两组对边分别相等 一组对边平行且相等角 两组对角分别相等 有1个直角的平行四边形每条对角线都平分一组对角 有1个直角的菱形三个直角的四边形对角线互相平分 对角线相等的平行四边形对角线互相垂直的平行四边形ABCDF EG第 2 页AD 延长线于E,AF=CG, 100=∠DGE . (1)试说明DF=BG; (2)试求AFD ∠的度数.例3:(两组对边分别相等)已知如图所示,在四边形ABCD 中,AB CD BC AD E F ==,,、是对角线AC 上两点,且AE CF =.求证:BE DF =.练习:(1)、在平行四边形ABCD 中,E 、F 为对角线BD 上的三等分点。

求证:四边形AFCE 是平行四边形。

(2)已知,如图所示,在□ABCD 中,BN DM =,BE DF =.求证:四边形MENF 是平行四边形.例4:(对角线互相平分)如图所示,□ABCD 中,AC BD 、相交于点O E F,、在对角线BD 上,且BE DF =.试说明四边形AECF 的形状.三、平行四边形判定综合1、如图,在□ABCD 中,E F G H 、、、各点分别在AB BC CD DA 、、、上,且AE BF CG DH ===,请说明:EG 与FH 互相平分.2、以ABC △的三边AB BC CA 、、在BC 的同侧作等边ABD BCE CAF △、△、△,请说明:四边形ADEF 为平行四边形.如图所示.3. 如图所示,四边形ABCD 中,AD BC CAD BCA E =∠=∠,,、中点,试说明OE OF AF CE =,∥.4、(定义与性质综合)如图,BD 平分∠ABC,DE//BC,EF//AC,试判断BE 与CF 是否相等?并简要说明.A EF BCDAE BC FDO N A MFCBEDA BEF C HG B C FACD EBA EC F B O5. 如图,已知□ABCD中,E F、分别是对角线AC延长线上的点,且 ,四边形BFDE是平行四边形吗?说说你的理由.DE BF6、如图,在□ABCD中,E是AD的中点,CE交BA的延长线于点F.(1)你能证明CD=AF吗?(2)若BC=2CD,则∠F=∠BCF.四、矩形的判定如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A 到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.【提示】证明△EAH≌△EAB,△FAH≌△FAD.第3 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形、矩形、菱形、正方形知识点总结1.平行四边形、矩形、菱形、正方形的性质:
图形
2. 判定方法小结:
(1) 平行四边形:
①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形。

(2)矩形:有一个角是直角的平行四边形叫做矩形。

①有一个角是直角的平行四边形是矩形;
②对角线相等的平行四边形是矩形;
③有三个角是直角的四边形是矩形;
④对角线相等且互相平分的四边形是矩形。

(3) 菱形:有一组邻边相等的平行四边形叫做菱形.
①有一组邻边相等的平行四边形是菱形;
②对角线互相垂直的平行四边形是菱形;
③四边都相等的四边形是菱形;
④对角线互相垂直平分的四边形是菱形。

(4) 正方形:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

①有一组邻边相等且有一个角是直角的平行四边形是正方形;
②对角线互相垂直且相等的平行四边形是正方形;
③有一组邻边相等的矩形是正方形;
④对角线互相垂直的矩形是正方形;
⑤有一个角是直角的菱形是正方形;
⑥对角线相等的菱形是正方形;
⑦对角线互相垂直平分且相等的四边形是正方形。

相关文档
最新文档