六年级数学分数奥数题(附答案)

合集下载

(完整版)小学六年级奥数题附答案

(完整版)小学六年级奥数题附答案

小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A 仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

六年级数学分数奥数题(附答案)-2

六年级数学分数奥数题(附答案)-2

六年级数学分数奥数题(附答案)-2-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN六年级分数应用题竞赛题1.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10(本),小明未借之前有:(10+2)÷(1-1/2 )=24(本),小刚原有书:(24+1)÷(1-1/2 )=50(本).答:小明原有书50本.故答案为:50.2、甲数比乙数多1/3,乙数比甲数少几分之几?乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/43、把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?这根绳子长20÷(1/5-1/6)=600cm4、有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?5、小辉乘飞机参加世界少年奥林匹克数学金杯赛。

机窗外市一片如画的蔚蓝大海。

他看到云海占整个画面的1/2,并遮住一个海岛的1/4,露出的海岛占整个画面的1/4.求被遮住的海岛占应看见的整个海面的几分之几设海岛为x,整个画面为y,遮住海面为z,根据题意,3/4*x=1/4*yy=3x则海面为3/4*xz=1/2*3x-1/4*x=5/4*x又海面为2x …………y-x=3x-x=2x所以比例为5/86、甲从A地到B地需要5小时,乙从B地到A地,速度是甲的5/8.现在甲、乙两人分别从A,B两地同时出发,相向而行。

在途中相遇后继续前进。

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。

思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。

2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。

思路:5×6=30(米)。

3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。

思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。

4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。

思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。

5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。

思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。

6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。

思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。

7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。

思路:设公路长x 米,1/2x-2/5x=60,解得x=300。

8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。

思路:设全书有x 页,1/5x+25=3/10x,解得x=125。

分数应用题奥数六年级

分数应用题奥数六年级

分数应用题奥数六年级一、基础分数应用题。

1. 一桶油,第一次用去(1)/(5),第二次比第一次多用去20千克,还剩下16千克,这桶油有多少千克?- 解析:设这桶油有x千克。

第一次用去(1)/(5)x千克,第二次用去(1)/(5)x + 20千克,可列出方程x-(1)/(5)x-((1)/(5)x + 20)=16。

化简得x-(2)/(5)x-20 = 16,(3)/(5)x=16 + 20,(3)/(5)x=36,解得x = 60千克。

2. 有一袋米,第一周吃了(2)/(5),第二周吃了12千克,还剩6千克。

这袋米原有多少千克?- 解析:设这袋米原有x千克。

第一周吃了(2)/(5)x千克,则x-(2)/(5)x-12 = 6。

化简得(3)/(5)x=18,解得x = 30千克。

3. 某工厂计划生产一批零件,第一天生产了总数的(1)/(5),第二天生产了450个,这时已经生产的个数与剩下个数的比是3:7。

这批零件一共有多少个?- 解析:已经生产的个数与剩下个数的比是3:7,那么已生产的占总数的(3)/(3 + 7)=(3)/(10)。

设这批零件一共有x个,则(1)/(5)x+450=(3)/(10)x。

移项得(3)/(10)x-(1)/(5)x = 450,(1)/(10)x=450,解得x = 4500个。

二、单位“1”转换的分数应用题。

4. 甲、乙、丙三人合做一批零件,甲做的是乙、丙所做总数的(1)/(2),乙做的是甲、丙总数的(1)/(3),丙做了600个。

这批零件有多少个?- 解析:甲做的是乙、丙所做总数的(1)/(2),那么甲做的占总数的(1)/(1 +2)=(1)/(3);乙做的是甲、丙总数的(1)/(3),那么乙做的占总数的(1)/(1+3)=(1)/(4)。

所以丙做的占总数的1-(1)/(3)-(1)/(4)=(5)/(12)。

设这批零件有x个,则(5)/(12)x = 600,解得x=1440个。

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案(1)1/1*3+1/2*4+1/3*5+1/4*6+1/5*7......1/98*100+1/99*101=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……+1/98-1/100+1/99-1/101)÷2=(1+1/2-1/100-1/101)÷2=15049/10100÷2=15049/20200(2)6分之1+12分之1+24分之1+48分之1+96分之1+192分之1=1/6×(1+1/2+1/4+1/8+1/16+1/32)=1/6×(1-1/32)=1/6-1/192=31/192(3)1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+4/(1×2×3×4×5)+5/(1×2×3×4×5×6)+6/(1×2×3×4×5×6×7)= 1-1/(1×2)+1/(1×2)-1/(1×2×3)+1/(1×2×3)-1/(1×2×3×4)+1/(1×2×3×4)-1/(1×2×3×4×5)+1/(1×2×3×4×5)-1/(1×2×3×4×5×6)+1/(1×2×3×4×5×6)-1/(1×2×3×4×5×6×7)=1-1/(1×2×3×4×5×6×7)=1-1/5040=5039/5040(4)6360/39)/(1600/39)=6360/1600=3.975一、工程问题甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时开启甲乙两水管,5小时后,再开启排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

六年级奥数题10道及答案巨难

六年级奥数题10道及答案巨难

六年级奥数题10道及答案巨难1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。

5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

六年级数学分数奥数题(附答案)

六年级数学分数奥数题(附答案)

分数乘除应用题奥数1.把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。

水有多深?2.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?3.甲数比乙数多1/3,乙数比甲数少几分之几?4.有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?5.有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?6.把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?7.小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。

四年后小萍的年龄是多少岁?8.有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个。

如果每个苹果值1元9角8分,那么这篮苹果共值多少元?12.把100个人分成四队,一队人数是二队人数的4/3倍,一队人数是三队人数的5/4倍,那么四队有多少人?13.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,每张门票降价多少元?14.甲、乙、丙三人共同加工一批零件。

甲比乙多加工零件20个,丙加工的零件是乙加工零件的4/5,甲加工的零件是乙丙两人加工零件总数的5/6.甲、乙、丙各加工零件多少个?18.某校六年级共有152人,选出男生的1/11和5名女生去参加科技小组,则剩下的男女生人数刚好相等,六年级男女生各有多少人?19.林林倒满一杯纯牛奶,第一次喝了1/3,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林林又喝了1/3,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的多少?(用分数表示)20.有一根1米长的木条,第一次去掉它的1/5;第二次去掉余下木条的1/6;第三次又去掉第二次余下木条的1/7;这样一直下去,最后一次去掉上次余下木条的10。

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。

六年级奥数题100道及答案

六年级奥数题100道及答案

六年级奥数题100道及答案题目1计算 2+3 的结果。

答案:5题目2计算 6-2 的结果。

答案:4题目3计算 4*5 的结果。

答案:20题目4计算 10/2 的结果。

答案:5题目5计算 8+2*4 的结果。

答案:16题目6计算 (6+2)*3 的结果。

答案:24题目7计算 12/3-2 的结果。

答案:2题目8计算 4*5+6 的结果。

答案:26题目9计算 18/3/2 的结果。

答案:3题目10计算 10-3+5 的结果。

答案:12计算 2^3 的结果。

答案:8题目12计算 5^2 的结果。

答案:25题目13计算 4^0 的结果。

答案:1题目14计算 16^(1/2) 的结果。

答案:4题目15将 3/8 化成小数。

答案:0.375题目16将 0.75 化成分数。

答案:3/4题目17计算 1/4+2/3 的结果。

答案:11/12题目18计算 2/3-1/6 的结果。

答案:1/2题目19计算 1/3*2/5 的结果。

答案:2/15题目20计算 3/4÷1/2 的结果。

答案:3/2题目21计算 \(\sqrt{9} - \sqrt{4}\) 的结果。

答案:1计算 \(\sqrt{16} + \sqrt{25}\) 的结果。

答案:9题目23计算 \(\sqrt{144}\) 的结果。

答案:12题目24计算 \(\sqrt{81} \times \sqrt{49}\) 的结果。

答案:63题目25已知一个正方形的面积为64平方厘米,求其边长。

答案:8厘米题目26已知一个长方形的长为10厘米,宽为5厘米,求其面积。

答案:50平方厘米题目27已知一个长方体的底面积为20平方厘米,高为5厘米,求其体积。

答案:100立方厘米题目28已知一个圆的半径为6厘米,求其周长。

答案:12π厘米题目29已知三角形的底边长为8厘米,高为4厘米,求其面积。

答案:16平方厘米题目30已知一个正方体的边长为5厘米,求其表面积。

小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】

小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。

第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。

问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。

如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

3.妈妈每四天去一次杂货店,每五天去一次百货商店。

妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。

2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。

如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。

2.从五年级的六个班级中选出一个学习、体育、健康先进集体。

有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。

他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。

所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。

有50道测试题。

评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。

8道小学六年级奥数题(及答案)

8道小学六年级奥数题(及答案)

8道小学六年级奥数题(及答案)1、用一批纸装订一种练习本。

如果已装订120本,剩下的纸是这批纸的40%;如果装订了185本,则还剩下1350张纸。

这批纸一共有多少张?答案与解析:方法一:120本对应(1-40%=)60%的总量,那么总量为120÷60%=200本。

当装订了185本时,还剩下200-185:15本未装订,对应为1350张,所以每本需纸张:1350÷15=90张,那么200本需200×90=18000张。

即这批纸共有18000张。

方法二:装订120本,剩下40%的纸,即用了60%的纸。

那么装订185本,需用185×(60%÷120)=92.5%的纸,即剩下1-92.5%=7.5%的纸,为1350张。

所以这批纸共有1350÷7.5%=18000张。

2、A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?答案与解析:最远可以深入沙漠360千米设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B 共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。

如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。

3、六年级同学参加学校的数学竞赛。

试题共50道。

评分标准是:答对一道给3分,不答给1分,答错倒扣1分。

分数方程(六年级奥数题及答案)

分数方程(六年级奥数题及答案)

分数方程
若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。

再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?
解答:设原来小球数最少的盒子里装有a只小球,现在增加了b 只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.
现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?
因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;
又因为42=14×3,故可将42:13+14+15,一共有3个加数;
又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子。

六年级奥数分数应用题经典例题加练习带答案

六年级奥数分数应用题经典例题加练习带答案

一.知识回顾1.工厂原有职工128人,男工人数占总数,后来又调入男职工若干人,调入后男工人数占总人数,这时工厂共有职工人.【解析】在调入前后,女职工人数保持不变.在调入前,女职工人数为人,调入后女职工占总人数,所以现在工厂共有职工人.2.有甲、乙两桶油,甲桶油质量是乙桶倍,从甲桶中倒出5千克油给乙桶后,甲桶油质量是乙桶倍,乙桶中原有油千克.【解析】原来甲桶油质量是两桶油总质量,甲桶中倒出5千克后剩下油质量是两桶油总质量,由于总质量不变,所以两桶油总质量为千克,乙桶中原有油千克.【例 2】(1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在价格和原价格比较升高、降低还是不变?【解析】(1)设二月份产量是1,所以元月份产量为:,三月份产量为:,因为>0.9,所以三月份比元月份减产了(2)设商品原价是1,涨价后为,降价15%为:,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。

【巩固】把个人分成四队,一队人数是二队人数倍,一队人数是三队人数倍,那么四队有多少个人?【解析】方法一:设一队人数是“”,那么二队人数是:,三队人数是:,,因此,一、二、三队之和是:一队人数,因为人数是整数,一队人数一定是整数倍,而三个队人数之和是(某一整数),因为这是以内数,这个整数只能是.所以三个队共有人,其中一、二、三队各有,,人.而四队有:(人).方法二:设二队有份,则一队有份;设三队有份,则一队有份.为统一一队所以设一队有份,则二队有份,三队有份,所以三个队之和为份,而四个队份数之和必须是因数,因此四个队份数之和是100份,恰是一份一人,所以四队有人(人).【例 3】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数,美术班人数相当于另外两个班人数,体育班有人,音乐班和美术班各有多少人?【解析】条件可以化为:音乐班人数是所有班人数,美术班学生人数是所有班人数,所以体育班人数是所有班人数,所以所有班人数为人,其中音乐班有人,美术班有人.【巩固】甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数,甲加工零件数是乙、丙加工零件总数,则甲、丙加工零件数分别为个、个.【解析】把乙加工零件数看作1,则丙加工零件数为,甲加工零件数为,由于甲比乙多加工20个,所以乙加工了个,甲、丙加工零件数分别为个、个.【例 4】王先生、李先生、赵先生、杨先生四个人比年龄,王先生年龄是另外三人年龄和,李先生年龄是另外三人年龄和,赵先生年龄是其他三人年龄和,杨先生26岁,你知道王先生多少岁吗?【解析】方法一:要求王先生年龄,必须先要求出其他三人年龄各是多少.而题目中出现了三个“另外三人”所包含对象并不同,即三个单位“”是不同,这就是所说单位“”不统一,因此,解答此题关键便是抓不变量,统一单位“”.题中四个人年龄总和是不变,如果以四个人年龄总和为单位“”,则单位“”就统一了.那么王先生年龄就是四人年龄和,李先生年龄就是四人年龄和,赵先生年龄就是四人年龄和(这些过程就是所谓转化单位“”).则杨先生年龄就是四人年龄和.由此便可求出四人年龄和:(岁),王先生年龄为:(岁).方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同,但是现在四人年龄和分别是3份、4份、5份,它们最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生年龄就变为20份,李先生年龄就变为15份,赵先生年龄就变为12份,则杨先生年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【巩固】 甲、乙、丙、丁四个筑路队共筑1200米长一段公路,甲队筑路是其他三个队12,乙队筑路是其他三个队13 ,丙队筑路是其他三个队14 ,丁队筑了多少米?【解析】 甲队筑路是其他三个队,所以甲队筑路占总公路长; 乙队筑路是其他三个队,所以乙队筑路占总公路长; 丙队筑路是其他三个队,所以丙队筑路占总公路长,所以丁筑路为:(米)【例 5】 小刚给王奶奶运蜂窝煤,第一次运了全部,第二次运了块,这时已运来恰好是没运来.问还有多少块蜂窝煤没有运来?【解析】 方法一:运完第一次后,还剩下没运,再运来块后,已运来恰好是没运来,也就是说没运来占全部,所以,第二次运来块占全部:,全部蜂窝煤有:(块),没运来有:(块).方法二:根据题意可以设全部为份,因为已运来恰好是没运来,所以可以设全部为份,为了统一全部蜂窝煤,所以设全部蜂窝煤共有份,则已运来应是份,没运来份,第一次运来份,所以第二次运来是份恰好是块,因此没运来蜂窝煤有(块).【巩固】 五(一)班原计划抽人参加大扫除,临时又有个同学主动参加,实际参加扫除人数是其余人数.原计划抽多少个同学参加大扫除?【解析】 又有个同学参加扫除后,实际参加扫除人数与其余人数比是,实际参加人数比原计划多.即全班共有(人).原计划抽(人)参加大扫除.【巩固】某校学生参加大扫除人数是未参加大扫除人数,后来又有20名同学参加大扫除,实际参加人数是未参加人数,这个学校有多少人?【解析】(人).【例 6】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉玻璃球比小刚少;如果小刚给小莉24个,则小刚玻璃球比小莉少,小莉和小刚原来共有玻璃球多少个?【解析】小莉给小刚24个时,小莉是小刚(=1一),即两人球数和;小刚给小莉24个时,小莉是两人球数和(=),因此24+24是两人球数和-=.从而,和是(24+24) ÷=132(个).【巩固】某班一次集会,请假人数是出席人数,中途又有一人请假离开,这样一来,请假人数是出席人数,那么,这个班共有多少人?【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数,现在请假人数占总人数,这个班共有:l÷(-)=50(人).【例 7】小明是从昨天开始看这本书,昨天读完以后,小明已经读完页数是还没读页数,他今天比昨天多读了页,这时已经读完页数是还没读页数,问题是,这本书共有多少页?”【解析】首先,可以直接运算得出,第一天小明读了全书,而前二天小明一共读了全书,所以第二天比第一天多读页对应全书。

六年级奥数题及答案:分数(中等难度)_题型归纳

六年级奥数题及答案:分数(中等难度)_题型归纳

六年级奥数题及答案:分数(中等难度)_题型归纳
分数:(中等难度)
某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?
分数答案:
除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).
为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3(30+31++59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.
如果得60分至79分的有60人,共占分数3(60+61+ + 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.。

六年级上册 第一单元 分数乘法 奥数题(附答案)

六年级上册  第一单元 分数乘法 奥数题(附答案)

第一单元 分数乘法板块一 巧算分数乘法分数的裂项公式:①()11111+-=+n n n n ,如3121321-=⨯。

②())11(11k n n k k n n +-=+,如)(512131521-=⨯。

③()k n n k n n k +-=+11,如8131835-=⨯ ④m n m n m n 11+=⨯+,如4131437+=⨯ ⑤()⎥⎦⎤⎢⎣⎡++-+=++)2)(1(1)1(121)211n n n n n n n (,如)321211213211⨯-⨯=⨯⨯( 【例题】例1.计算:(1)201820171431321211⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(2)201820161861641421⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(3)322931183853523⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(4)90197217561542133011+-+-(5)30282611086186416421⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯+⨯⨯+⨯⨯例2.巧算。

(1) 2012×(1+21+31+……+20111)-[1+(1+21)+(1+21+31)+……+(1+21+31+……+20111)](2)200132200121432432132321221+⋅⋅⋅+++⋅⋅⋅++⨯⋅⋅⋅⨯+++++⨯+++⨯+(3))()()(()(100011001120141)2015120161-⨯-⨯⋅⋅⋅⨯-⨯-⨯-(4))()()()(20161312120171312112016131211201713121+⋅⋅⋅++⨯+⋅⋅⋅+++-+⋅⋅⋅+++⨯+⋅⋅⋅++(5)(6)(7)655161544151433141⨯+⨯+⨯2007120082007200620082007+-⨯⨯+)911()711()511()3111011811611411211-⨯-⨯-⨯-⨯+⨯+⨯+⨯+⨯+()()()()()((8))201321()201321())201121()201121()921()921()721()721()52-1521-⨯+⨯-⨯+⨯⋅⋅⋅⨯-⨯+⨯-⨯+⨯⨯+()((9)【练习】1.计算:(1)1+361+5121+7201+9301+11421+13561+15721+17901(2)31+151+351+631+991(3)42384411041064624⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯132132132111111212121156156156⨯(4)31+43+52+75+87+209+2110+2411+3519(5)2.巧算。

(完整版)小学六年级奥数题附答案

(完整版)小学六年级奥数题附答案

小学六年级奥数题1。

某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%.再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5。

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!"小亮说:“你要是能给我你的1/6,我就比你多2个了。

"小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。

有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。

一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2。

8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

六年级数学上册奥数题-分数乘法(附答案)

六年级数学上册奥数题-分数乘法(附答案)

六年级上册--第一单元-分数乘法-奥数题(附答案)第一单元 分数乘法板块一 巧算分数乘法分数的裂项公式:①()11111+-=+n n n n ,如3121321-=⨯。

②())11(11k n n k k n n +-=+,如)(512131521-=⨯。

③()k n n k n n k +-=+11,如8131835-=⨯ ④m n m n m n 11+=⨯+,如4131437+=⨯ ⑤()⎥⎦⎤⎢⎣⎡++-+=++)2)(1(1)1(121)211n n n n n n n (,如)321211213211⨯-⨯=⨯⨯( 【例题】例1.计算:(1)201820171431321211⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(2)201820161861641421⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(3)32291188552⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(4)90197217561542133011+-+-(5)30282611086186416421⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯+⨯⨯+⨯⨯例2.巧算。

(1) 2012×(1+21+31+……+20111)-[1+(1+21)+(1+21+31)+……+(1+21+31+……+20111)](2)200132200121432432132321221+⋅⋅⋅+++⋅⋅⋅++⨯⋅⋅⋅⨯+++++⨯+++⨯+(3))()()(()(100011100111201411)201511201611-⨯-⨯⋅⋅⋅⨯-⨯-⨯-(4))()()()(20161312120171312112016131211201713121+⋅⋅⋅++⨯+⋅⋅⋅+++-+⋅⋅⋅+++⨯+⋅⋅⋅++(5)(6)655161544151433141⨯+⨯+⨯2007120082007200620082007+-⨯⨯+(7)(8))201321()201321())201121()201121()921()921()721()721()52-1521-⨯+⨯-⨯+⨯⋅⋅⋅⨯-⨯+⨯-⨯+⨯⨯+()((9)【练习】1.计算:(1)1+361+5121+7201+9301+11421+13561+15721+17901(2)31+151+351+631+991132132132111111212121156156156⨯(3)4238411010662⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯(4)31+43+52+75+87+209+2110+2411+3519(5)2.巧算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。

水有多深?设水深xcm则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm深小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:(2+3)÷(1-1/2 )=10(本),小明未借之前有:(10+2)÷(1-1/2 )=24(本),小刚原有书:(24+1)÷(1-1/2 )=50(本).答:小明原有书50本.故答案为:50.甲数比乙数多1/3,乙数比甲数少几分之几?乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/4有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?解:设总数有35X个那么梨有35X*3/5-17=21X-17个苹果有35X*4/7-31=20X-31个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109个苹果有20×6-31=89个有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?设分子为X,分母为X+4,则;(X+9)/(X+13)=7/9;解之,得X=5 答:该分子为5/9把一根绳分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?这根绳子长20÷(1/5-1/6)=600cm小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。

四年后小萍的年龄是多少岁?解:设小萍今年X岁,则妈妈今年3X岁3X-2=X-2+243X=X+242X=24X=12最终答案:12+4=16(岁)有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个。

如果每个苹果值1元9角8分,那么这篮苹果共值多少元?丙又取其余的一半,结果还剩一个,说明丙取前是1+1=2个乙取余下的一半多一个,则乙取前是(2+1)*2=6个甲取其中的一半少一个,则甲取前时(6-1)*2 = 10个因此,原来有10个下面是解题过程:设这袋苹果原来X个,则甲取走苹果的个数为X/2-1乙取走苹果的个数为(X-X/2+1)/2+1丙取走苹果的个数(也是剩余的个数)为:总数-甲取走-乙取走,即【X-X/2+1-(X-X/2+1)/2-1】/2=1 解方程得X=10小辉乘飞机参加世界少年奥林匹克数学金杯赛。

机窗外市一片如画的蔚蓝大海。

他看到云海占整个画面的1/2,并遮住一个海岛的1/4,露出的海岛占整个画面的1/4.求被遮住的海岛占应看见的整个海面的几分之几?设海岛为x,整个画面为y,遮住海面为z,根据题意,3/4*x=1/4*yy=3x则海面为3/4*xz=1/2*3x-1/4*x=5/4*x又海面为2x …………y-x=3x-x=2x所以比例为5/8除了不用XY,只用算数,不行的话,只有X也行回答海岛占整个画面=1/4÷3/4=1/3海面占整个画面=1-1/3=2/3遮住的海面占整个画面=(1/2-1/4*1/3)=1/2-1/12=5/12遮住的海面占应看见的整个海面=5/12÷2/3=5/8即:被遮住的海面占应看见的整个海面的八分之五一只猴子摘了一堆桃子:第一天吃了这堆桃子的七分之一;第二天吃了余下桃子的六分之一;第三天吃了余下桃子的五分之一;第四天吃了余下桃子的四分之一;第五天吃了余下桃子的三分之一;第六天吃了余下桃子的二分之一;这时还剩下12个桃子,那么第一天和第二天猴子所吃桃子的总数是多少个?设桃子总数为x1/7x乘以6/7x乘以5/6x乘以4/x5乘以3/4x乘以2/3x乘以1/2x=121/7x=12 x=84第一天 84X1/7=12第二天72X1/6=1212+12=24甲从A地到B地需要5小时,乙从B地到A地,速度是甲的5/8.现在甲、乙两人分别从A,B 两地同时出发,相向而行。

在途中相遇后继续前进。

甲到B地后立即返后,乙到A地后也立即返回,他们在途中又一次相遇。

如果两次相遇点相距72千米,则A,B两地相距多少千米?解:设AB两地的距离是单位1,则甲的速度是1/5,乙的速度是(1/5)*(5/8)=1/8甲乙的速度比是甲:乙=(1/5):(1/8)=8/5即第一次相遇时甲行了全程的8/(8+5)=8/13乙行了全程的5/13第二次相遇时两人共行3个全程,那么甲行了3*8/13=24/13,离行完2个全程差2-24/13=2/13所以AB两地相距72/(8/13-2/13)=156答:A、B两地相距156千米。

见图把100个人分成四队,一队人数是二队人数的4/3倍,一队人数是三队人数的5/4倍,那么四队有多少人?设第一队为1,第二队为3/4,第三队为4/5,则三队和为1+3/4+4/5=51/20,可知,第一队人数应为20的倍数。

第一队为20时,20+15+16+49=100;第一队为40时,40+30+32>100 舍去。

所以,20+15+16+49=100为唯一解,即:第四队有49人。

ps:也可将第一队设为k人,三队之和=51k / 20 ;显见,k应为20的倍数。

只有k=20时有解。

足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,每张门票降价多少元?观众增加一倍,即原来只有一个人来看,现在是两个人来看。

收入增加1/5,即现在两个人的总票价比原来一个人时单人票价多1/5,为15*(1+1/5)=18元平均每人18/2=9元比原来降低了15-9=6元降低了6/15=40%答:解:15-15×[(1+1 /5 )÷(1+1 /2 )=15-15×[6 /5 ÷3 /2 ]=15-15×[6/ 5 ×2 /3 ]=15-15×4/ 5=15-12=3(元)答:一张门票降价是3元.故填:3.点评:此题关键是找准单位“1”,找准单位“1”对应的量,求单位“1”,用除法,告诉单位“1”,求单位“1”的几分之几,用乘法.降价前假设有10名观众,收入为L=15×10=150(元)现在有15人,降x元,(15-x)×15=150×(1+1/5)225-15x=18015x=45x=3,降价3元。

甲、乙、丙三人共同加工一批零件。

甲比乙多加工零件20个,丙加工的零件是乙加工零件的4/5,甲加工的零件是乙丙两人加工零件总数的5/6.甲、乙、丙各加工零件多少个?设:甲加工x个,乙加工x-20,丙加工4/5(x-20)5/6[x-20+4/5(x-20)]=x5/6[x-20+4x/5-16]=x5/6[9x/5-36]=x3x/2-30=xx/2=30x=60乙加工=60-20=40丙加工=40×4/5=32某工厂的27位师傅共带徒弟40名,每位师傅可以带一名徒弟、两名徒弟或三名徒弟。

如果带一名徒弟的师傅人数是其他师傅人数的两倍,那么带两名徒弟的师傅有几位?设带一名徒弟的师傅有2x人,那么 2x+(2x)/2=27 解得 x=9,2x=18 再设带两名徒弟的师傅有y人,那么,带三名徒弟的师傅就是 27-18-y=9-y 人,可得方程18*1+y*2+(9-y)*3=40 解得 y=5张、王、李三人共有54元,张用了自己钱数的3/5,王用了自己钱数的3/4,李用了自己钱数的2/3,各买了一枝相同的钢笔,那么张鹤李两人剩下的钱共有多少元?因为“各买了一支相同的钢笔”,所以花掉的钱是一样多的,那么可以设钢笔价格为x元,列出方程为x/(3/5)+x/(3/4)+x/(2/3)=54,解出x=12,然后用各自剩下的钱与用掉的钱的比例分别算出张、王、李剩余的钱为:12*((1-3/5)/(3/5))=8、12*((1-3/4)/(3/4))=4、12*((1-2/3)/(2/3))=6张的3/5与王的3/4与李的2/3一样多,可知原来三人带钱的比是张:王=3/4:3/5=5:4,王:李=2/3:3/4=8:9张:王:李=10:8:9原来张王李分别有钱:20、16、18元他们各剩下:8、4、6元。

在编号为1、2、3的三个相同的杯子里,分别盛着半杯液体。

1号杯子中溶有100克糖,2号杯子中是水,3号杯子中溶有100克盐。

先将1号杯中液体的一半及3号杯中液体的1/4倒入2号杯,然后搅匀,再从2号杯中倒出所盛液体的2/7到1号杯,接着倒出所剩液体的1/7到3号杯。

问:这时每个杯中含盐量与含糖量之比是多少?这个你要把体积和重量分开来算就好了,下面我按照你倒的次数后杯子里的余量第一次倒,1st杯子:50g糖,1/4液体;2nd杯子:50g糖,25g盐,7/8液体;3rd杯子:75g盐,3/8液体。

第二次倒,1st杯子:50+50x2/7糖,25x2/7盐,1/2液体;2nd杯子:50x:5/7糖,25x5/7盐,5/8液体。

第三次倒,2nd杯子:50x4/7糖,25x4/7盐,3/4液体;3rd杯子:50x1/7糖,75+25x1/7盐,1/2液体.所以含盐量:1st杯子(50/7)盐/(1/2)液=100/7;2nd杯子(100/7)盐/(3/4)液=400/21;3rd杯子(75+25/7)盐/(1/2)液=1075/7;所以比例为 15:18:129含糖量:1st杯(50x9/7)糖/(1/2)液=900/7;2nd杯子(50x4/7)糖/(1/2)液=400/7;3rd 杯子(50/7)糖/(1/2)液=100/7; 所以比例为9:4:10某校六年级共有152人,选出男生的1/11和5名女生去参加科技小组,则剩下的男女生人数刚好相等,六年级男女生各有多少人?男生有x人,女生有152-x(10/11)x=152-x-5x=77男生77人,女生75人林林倒满一杯纯牛奶,第一次喝了1/3,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林林又喝了1/3,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的多少?(用分数表示)第一次1/3搅匀之后又是1/3,那么这次是2/3*1/3=2/9,剩下1-1/3-2/9=4/9再均匀之后1/3,那么这次是4/9*1/3=4/24,剩下4/9-4/27=8/27再均匀之后1/3,那么这次是8/27*1/3=8/81,剩下8/27-8/81=16/81那么一共喝了1-16/81=65/81有一根1米长的木条,第一次去掉它的1/5;第二次去掉余下木条的1/6;第三次又去掉第二次余下木条的1/7;这样一直下去,最后一次去掉上次余下木条的1/10。

相关文档
最新文档