纵断面设计 竖曲线
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3000m以上,比正常值减1~3%。 F,高寒冰冻:公路:i≯8%, 城市道路:i≯6%
一般公路,路基未设加宽超高前的路肩边缘的高程。
设计标高
设分隔带公路,一般为分隔带外边缘。 设计标高
城市道路:行车道中线 中央分隔带中线
设计标高
2、最小纵坡
为使道路上行车快速、安全和通畅,希望道路纵坡设计的小一些为 好。但是在挖方、低填方路段以及其它横向排水不畅路段,为保证 排水需要,均应设置不小于0.3%的最小纵坡,一般使用0.5%。当 必须设置平坡(0%)或小于0.3%的纵坡时,其边沟应做纵向排水
t
V 1.2
则
Rmin
Lminຫໍສະໝຸດ Baidu
V
1.2
▪3.满足视距的要求:
凸形竖曲线:坡顶视线受阻
凹形竖曲线:下穿立交
4. 凸形竖曲线主要控制因素:行车视距。
凹形竖曲线的主要控制因素:缓和冲击力。
凸形竖曲线最小半径和最小长度 :
竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
(三)凹形竖曲线最小半径和最小长度
第三章 纵断面设计
3.3 纵断面设计
本章主要内容: 一、纵断面设计的一般要求(1) 二、纵坡及坡长设计(1) 三、爬坡车道(1) 四、合成坡度(1) 五、竖曲线(1) 六、纵断面设计方法及表达(1) 七、视觉分析及平纵组合(1)
设计任务:1.纵断面设计,2.拉坡设计, 设计成果:1.纵断面设计图 ,2.竖曲线表
i
22
2
A
(3)竖曲线上任一点竖距h:
x2
x2
h PQ yP yQ 2R i1x i1x 2R
式中:x——竖曲线上任意点与竖曲线始点或终点的水平距离,
y——竖曲线上任意点到切线的纵距,即竖曲线上任意点 与坡线的高差。
L-x i
2
h’
h
(4) 竖曲线外距E: ▪ 上半支曲线x = T1时:
设3、计。坡长限制
大于i1为陡坡,汽车减速行驶,初速为V1,终速不低于V2,大于i2 的纵坡要限制其长度。 (1)最小坡长的限制
小坡长限制主要是指从汽车行驶平顺陛、路容美观、相邻竖曲线 设置、纵面视距等考虑.通常以计算行车速度9~15s的行程作为规 定值。《标准》规定值见表
(2)最大坡长限制 当汽车在坡道上行驶,车速下降到最低容许速度时所行驶的距离
凸型竖曲线 ω<0
2.竖曲线的作用:
(1)其缓冲作用:以平缓曲线取代折线可消除汽车在 变坡点的突变。
(2)保证公路纵向的行车视距: 凸形:纵坡变化大时,盲区较大。 凹形:下穿式立体交叉的下线。
3. 竖曲线的线形 《规范》规定采用二次抛物线作为竖曲线的线形。
抛物线的纵轴保持直立,且与两相邻纵坡线相切。
4000
K13+550 173.513
3000
试计算K12+700~K13+300段50m间隔的整桩号的设计高程 值。
设置凹竖曲线的主要目的是缓和行车时的离心力,
确定凹竖曲线半径时,应以离心加速度为控制指
标。
R V2 V2 13a 3.6
或
Lmin
V 2
3.6
凹形竖曲线的最小半径、长度,除满足缓和离心
力要求外,还应考虑两种视距的要求:一是保证
夜间行车安全,前灯照明应有足够的距离;二是
保证跨线桥下行车有足够的视距。
①按竖曲线终点分界计算:
横距x2= Lcz – QD = 5100.00 – 4940.00=160m
竖距
y2
x22 2R
1602 6.40 2 2000
切线高程 HT = H1 + i1( Lcz - BPD)
= 427.68 + 0.05×(5100.00 - 5030.00)
2、设计标高 ①新建公路的路基设计标高高速公路和一级公路采用中
央分隔带的外侧边缘标高;二、三、四级公路采用路基边缘 标高,在设置超高、加宽地段为设超高、加宽前该处边缘标 高。
②改建公路的路基设计标高一般按新建公路的规定办理, 也可视具体情况而采用中央分隔带中线或行车道中线标高。
最大纵坡的总结: A,城市道路为公路按设计车速的最大纵坡-1%。 B,大、中桥≯4% C,非机动车≯ 2.5%,>2.5%时有坡长限制。 D,隧道≯3% E, 海拔:公路:2000m以上,i≯8%。
《标准》规定竖曲线的最小长度应满足3s行程要 求。
(三)凹形竖曲线最小半径和最小长度
凹形竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
作业:
某二级公路一路段有三个变坡点,详细资料如下:
变坡点桩号 设计高程 竖曲线半径
K12+450 172.513
5000
+950 190.013
坡差
TA
Y L
TB
A
M
P
O
(1)二次抛物线的基本公式
Q
h
E
ω
l
t
y x2 2R
x
x
A
B
竖曲线计算图示
i 2
B
X
(2)竖曲线要素计算
L R
T1 T2 L/2 R
2
h l2 2R
E T2 2R
为竖曲任意点至竖曲线起点的距离
一、竖曲线要素的计算公式 1.竖曲线的基本方程式:设变坡点相邻两纵坡坡 度分别为i1和i2。抛物线竖曲线有两种可能的形式:
一、纵断面设计的一般要求
1、满足设计标准 2、尽量避免使用极限值 3、纵断面和地形协调 4、填挖平衡 5、满足最小填土高度和排水要求 6、桥头和交叉口处应该平缓 7、考虑通道和农田的要求
二、纵坡及坡长设计
1、最大纵坡
3%、4%的最大纵坡适合于高速公路和一级公路,当高速公路受地 形条件或其他特殊情况限制时,经技术经济论证最大纵坡可增加 1% 。8% 9%的最大纵坡适合于设计速度为30km/h 的三级公路以 及设计速度为20km/h 的四级公路上低速行驶。5%6% 7%的最大 纵坡适合于80km/h 60km/h 40km/h 的设计速度。
a v2 V2 , R V2
R 13R
13a
根据试验,认为离心加速度应限制在0.5~0.7m/s2比较 合适。我国《标准》规定的竖曲线最小半径值,相当于 a=0.278 m/s2。
Rm in
V2 3.6
,
或
Lm in
V 2
3.6
2.时间行程不过短 最短应满足3s行程。
Lmin
V 3.6
602 2 2000
0.90
切线高程 HT = H1 + i1( Lcz - BPD) = 427.68 + 0.05×(5000.00 - 5030.00)
= 426.18m 设计高程 HS = HT - y1 = 426.18 - 0.90=425.18m (凸竖曲线应减去改正值)
K5+100.00:位于下半支
切线高程 HT = H1 + i2( Lcz - BPD) = 427.68 - 0.04×(5100.00 - 5030.00)
= 424.88m 设计高程 HS = HT – y2 = 424.88 – 0.10 = 424.78m
二、竖曲线的最小半径
(一)竖曲线设计限制因素 1.缓和冲击 汽车在竖曲线上行驶时其离心加速度为:
▪下半支曲线x = T2时:
E1
T12 2R
E2
T22 2R
▪ 由于外距是变坡点处的竖距,则E1 = E2 = E,
故 T1 = T2 = T
T2 E
或
2R
R 2 L T
E 8 84
[例4-3]:某山岭区一般二级公路,变坡点桩号为k5+030.00, 高程H1=427.68m,i1=+5%,i2=-4%,竖曲线半径R=2000m。
第三节 竖曲线
1.定义:
纵断面上两个坡段的转折处,为了便于行车用一段 曲线来缓和,称为竖曲线。 变坡点:相邻两条坡度线的交点。
变坡角:相邻两条坡度线的坡角差,通常用坡度值 之差代替,用ω表示,即
ω=α2-α1≈tgα2- tgα1=i2-i1
i3 凹型竖曲线
ω>0 i1 α1
i2 ω α2
第一节 概 述
定义:沿道路中线竖向剖面的展开图即为路线纵断面。
纵断面设计:研究路线线位高度及坡度、坡长变化情 况的过程。
任务:研究纵断面线形的几何构成及其大小与长度。
依据:汽车的动力特性、道路等级、当地的自然地理 条件以及工程经济性等。
路线纵断面图构成:
地面线:根据中桩点的高程绘的一条折线; 设计线:路线上各点路基设计高程的连线。 变坡导线:变坡点间的连线
(2)Y轴过抛物线起点。
y
1 2R
x2
i1x
式中:R——抛物线顶点
B
处的曲率半径 ;
i1——竖曲线顶 (底)点处切线的坡度。
A
2.竖曲线诸要素计算公式
(1)竖曲线长度L或竖曲线半径R:
L = xA - xB
L R , R L
(2)竖曲线切线长T:
因为T = T1 = T2,则
B
T L R
一、竖曲线要素的计算公式
1.竖曲线的基本方程式:设变坡点相邻两纵坡坡 度分别为i1和i2。抛物线竖曲线有两种可能的形式: (1)Y轴过抛物线底(顶)部;
y 1 x2 2R
式中:R——抛物线顶点
A
B
处的曲率半径
1.竖曲线的几何要素
几个参数:
i1, i2 ,
i2
i1
前坡,i后坡, 1
竖曲线起点QD=(K5+030.00)- 90 = K4+940.00
竖曲线终点ZD=(K5+030.00)+ 90 = K5+120.00
2.计算设计高程
K5+000.00:位于上半支
横距x1= Lcz – QD = 5000.00 – 4940.00=60m
竖距
y1
x12 2R
称为最大坡长限制。①.上坡时,汽车的动力性能。②.下坡的行车 安全。大于5%有坡长限制,大于限制坡长应设<3%的缓坡。其长 度应大于最小坡长。
4、缓和坡段
大于限制坡长应设<3%的缓和坡段,其长度应大于最小坡长。
5、平均纵坡
某段路线高差与水平距离之比。i平=H/L(%) (1)作用: ①.衡量纵断面线型质量。 ②.可供放坡定线参考。 (2)规定 ①.越岭线高差200~500m时,i平≈5.5%为宜。 ②.越岭线高差>500m时,i平≈5.0%为宜。 ②.任何连续3km内,i平≤5.5%。 ④.要考虑公路等级影响。
= 431.18m 设计高程 HS = HT – y2 = 431.18 – 6.40 = 424.78m
K5+100.00:位于下半支
②按变坡点分界计算:
横距x2= ZD – Lcz = 5120.00 – 5100.00 =20m
竖距
y2
x
2 2
2R
202 0.10 2 2000
试计算竖曲线诸要素以及桩号为k5+000.00和k5+100.00处 的设计高程。
解:1.计算竖曲线要素
ω=i2- i1= - 0.04-0.05= - 0.09<0,为凸形。 曲线长 L = Rω=2000×0.09=180m
切线长 外距
T L 180 90 22
E T 2 902 2.03 2R 2 2000
一般公路,路基未设加宽超高前的路肩边缘的高程。
设计标高
设分隔带公路,一般为分隔带外边缘。 设计标高
城市道路:行车道中线 中央分隔带中线
设计标高
2、最小纵坡
为使道路上行车快速、安全和通畅,希望道路纵坡设计的小一些为 好。但是在挖方、低填方路段以及其它横向排水不畅路段,为保证 排水需要,均应设置不小于0.3%的最小纵坡,一般使用0.5%。当 必须设置平坡(0%)或小于0.3%的纵坡时,其边沟应做纵向排水
t
V 1.2
则
Rmin
Lminຫໍສະໝຸດ Baidu
V
1.2
▪3.满足视距的要求:
凸形竖曲线:坡顶视线受阻
凹形竖曲线:下穿立交
4. 凸形竖曲线主要控制因素:行车视距。
凹形竖曲线的主要控制因素:缓和冲击力。
凸形竖曲线最小半径和最小长度 :
竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
(三)凹形竖曲线最小半径和最小长度
第三章 纵断面设计
3.3 纵断面设计
本章主要内容: 一、纵断面设计的一般要求(1) 二、纵坡及坡长设计(1) 三、爬坡车道(1) 四、合成坡度(1) 五、竖曲线(1) 六、纵断面设计方法及表达(1) 七、视觉分析及平纵组合(1)
设计任务:1.纵断面设计,2.拉坡设计, 设计成果:1.纵断面设计图 ,2.竖曲线表
i
22
2
A
(3)竖曲线上任一点竖距h:
x2
x2
h PQ yP yQ 2R i1x i1x 2R
式中:x——竖曲线上任意点与竖曲线始点或终点的水平距离,
y——竖曲线上任意点到切线的纵距,即竖曲线上任意点 与坡线的高差。
L-x i
2
h’
h
(4) 竖曲线外距E: ▪ 上半支曲线x = T1时:
设3、计。坡长限制
大于i1为陡坡,汽车减速行驶,初速为V1,终速不低于V2,大于i2 的纵坡要限制其长度。 (1)最小坡长的限制
小坡长限制主要是指从汽车行驶平顺陛、路容美观、相邻竖曲线 设置、纵面视距等考虑.通常以计算行车速度9~15s的行程作为规 定值。《标准》规定值见表
(2)最大坡长限制 当汽车在坡道上行驶,车速下降到最低容许速度时所行驶的距离
凸型竖曲线 ω<0
2.竖曲线的作用:
(1)其缓冲作用:以平缓曲线取代折线可消除汽车在 变坡点的突变。
(2)保证公路纵向的行车视距: 凸形:纵坡变化大时,盲区较大。 凹形:下穿式立体交叉的下线。
3. 竖曲线的线形 《规范》规定采用二次抛物线作为竖曲线的线形。
抛物线的纵轴保持直立,且与两相邻纵坡线相切。
4000
K13+550 173.513
3000
试计算K12+700~K13+300段50m间隔的整桩号的设计高程 值。
设置凹竖曲线的主要目的是缓和行车时的离心力,
确定凹竖曲线半径时,应以离心加速度为控制指
标。
R V2 V2 13a 3.6
或
Lmin
V 2
3.6
凹形竖曲线的最小半径、长度,除满足缓和离心
力要求外,还应考虑两种视距的要求:一是保证
夜间行车安全,前灯照明应有足够的距离;二是
保证跨线桥下行车有足够的视距。
①按竖曲线终点分界计算:
横距x2= Lcz – QD = 5100.00 – 4940.00=160m
竖距
y2
x22 2R
1602 6.40 2 2000
切线高程 HT = H1 + i1( Lcz - BPD)
= 427.68 + 0.05×(5100.00 - 5030.00)
2、设计标高 ①新建公路的路基设计标高高速公路和一级公路采用中
央分隔带的外侧边缘标高;二、三、四级公路采用路基边缘 标高,在设置超高、加宽地段为设超高、加宽前该处边缘标 高。
②改建公路的路基设计标高一般按新建公路的规定办理, 也可视具体情况而采用中央分隔带中线或行车道中线标高。
最大纵坡的总结: A,城市道路为公路按设计车速的最大纵坡-1%。 B,大、中桥≯4% C,非机动车≯ 2.5%,>2.5%时有坡长限制。 D,隧道≯3% E, 海拔:公路:2000m以上,i≯8%。
《标准》规定竖曲线的最小长度应满足3s行程要 求。
(三)凹形竖曲线最小半径和最小长度
凹形竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
作业:
某二级公路一路段有三个变坡点,详细资料如下:
变坡点桩号 设计高程 竖曲线半径
K12+450 172.513
5000
+950 190.013
坡差
TA
Y L
TB
A
M
P
O
(1)二次抛物线的基本公式
Q
h
E
ω
l
t
y x2 2R
x
x
A
B
竖曲线计算图示
i 2
B
X
(2)竖曲线要素计算
L R
T1 T2 L/2 R
2
h l2 2R
E T2 2R
为竖曲任意点至竖曲线起点的距离
一、竖曲线要素的计算公式 1.竖曲线的基本方程式:设变坡点相邻两纵坡坡 度分别为i1和i2。抛物线竖曲线有两种可能的形式:
一、纵断面设计的一般要求
1、满足设计标准 2、尽量避免使用极限值 3、纵断面和地形协调 4、填挖平衡 5、满足最小填土高度和排水要求 6、桥头和交叉口处应该平缓 7、考虑通道和农田的要求
二、纵坡及坡长设计
1、最大纵坡
3%、4%的最大纵坡适合于高速公路和一级公路,当高速公路受地 形条件或其他特殊情况限制时,经技术经济论证最大纵坡可增加 1% 。8% 9%的最大纵坡适合于设计速度为30km/h 的三级公路以 及设计速度为20km/h 的四级公路上低速行驶。5%6% 7%的最大 纵坡适合于80km/h 60km/h 40km/h 的设计速度。
a v2 V2 , R V2
R 13R
13a
根据试验,认为离心加速度应限制在0.5~0.7m/s2比较 合适。我国《标准》规定的竖曲线最小半径值,相当于 a=0.278 m/s2。
Rm in
V2 3.6
,
或
Lm in
V 2
3.6
2.时间行程不过短 最短应满足3s行程。
Lmin
V 3.6
602 2 2000
0.90
切线高程 HT = H1 + i1( Lcz - BPD) = 427.68 + 0.05×(5000.00 - 5030.00)
= 426.18m 设计高程 HS = HT - y1 = 426.18 - 0.90=425.18m (凸竖曲线应减去改正值)
K5+100.00:位于下半支
切线高程 HT = H1 + i2( Lcz - BPD) = 427.68 - 0.04×(5100.00 - 5030.00)
= 424.88m 设计高程 HS = HT – y2 = 424.88 – 0.10 = 424.78m
二、竖曲线的最小半径
(一)竖曲线设计限制因素 1.缓和冲击 汽车在竖曲线上行驶时其离心加速度为:
▪下半支曲线x = T2时:
E1
T12 2R
E2
T22 2R
▪ 由于外距是变坡点处的竖距,则E1 = E2 = E,
故 T1 = T2 = T
T2 E
或
2R
R 2 L T
E 8 84
[例4-3]:某山岭区一般二级公路,变坡点桩号为k5+030.00, 高程H1=427.68m,i1=+5%,i2=-4%,竖曲线半径R=2000m。
第三节 竖曲线
1.定义:
纵断面上两个坡段的转折处,为了便于行车用一段 曲线来缓和,称为竖曲线。 变坡点:相邻两条坡度线的交点。
变坡角:相邻两条坡度线的坡角差,通常用坡度值 之差代替,用ω表示,即
ω=α2-α1≈tgα2- tgα1=i2-i1
i3 凹型竖曲线
ω>0 i1 α1
i2 ω α2
第一节 概 述
定义:沿道路中线竖向剖面的展开图即为路线纵断面。
纵断面设计:研究路线线位高度及坡度、坡长变化情 况的过程。
任务:研究纵断面线形的几何构成及其大小与长度。
依据:汽车的动力特性、道路等级、当地的自然地理 条件以及工程经济性等。
路线纵断面图构成:
地面线:根据中桩点的高程绘的一条折线; 设计线:路线上各点路基设计高程的连线。 变坡导线:变坡点间的连线
(2)Y轴过抛物线起点。
y
1 2R
x2
i1x
式中:R——抛物线顶点
B
处的曲率半径 ;
i1——竖曲线顶 (底)点处切线的坡度。
A
2.竖曲线诸要素计算公式
(1)竖曲线长度L或竖曲线半径R:
L = xA - xB
L R , R L
(2)竖曲线切线长T:
因为T = T1 = T2,则
B
T L R
一、竖曲线要素的计算公式
1.竖曲线的基本方程式:设变坡点相邻两纵坡坡 度分别为i1和i2。抛物线竖曲线有两种可能的形式: (1)Y轴过抛物线底(顶)部;
y 1 x2 2R
式中:R——抛物线顶点
A
B
处的曲率半径
1.竖曲线的几何要素
几个参数:
i1, i2 ,
i2
i1
前坡,i后坡, 1
竖曲线起点QD=(K5+030.00)- 90 = K4+940.00
竖曲线终点ZD=(K5+030.00)+ 90 = K5+120.00
2.计算设计高程
K5+000.00:位于上半支
横距x1= Lcz – QD = 5000.00 – 4940.00=60m
竖距
y1
x12 2R
称为最大坡长限制。①.上坡时,汽车的动力性能。②.下坡的行车 安全。大于5%有坡长限制,大于限制坡长应设<3%的缓坡。其长 度应大于最小坡长。
4、缓和坡段
大于限制坡长应设<3%的缓和坡段,其长度应大于最小坡长。
5、平均纵坡
某段路线高差与水平距离之比。i平=H/L(%) (1)作用: ①.衡量纵断面线型质量。 ②.可供放坡定线参考。 (2)规定 ①.越岭线高差200~500m时,i平≈5.5%为宜。 ②.越岭线高差>500m时,i平≈5.0%为宜。 ②.任何连续3km内,i平≤5.5%。 ④.要考虑公路等级影响。
= 431.18m 设计高程 HS = HT – y2 = 431.18 – 6.40 = 424.78m
K5+100.00:位于下半支
②按变坡点分界计算:
横距x2= ZD – Lcz = 5120.00 – 5100.00 =20m
竖距
y2
x
2 2
2R
202 0.10 2 2000
试计算竖曲线诸要素以及桩号为k5+000.00和k5+100.00处 的设计高程。
解:1.计算竖曲线要素
ω=i2- i1= - 0.04-0.05= - 0.09<0,为凸形。 曲线长 L = Rω=2000×0.09=180m
切线长 外距
T L 180 90 22
E T 2 902 2.03 2R 2 2000