Matlab 参数估计与假设检验课件

合集下载

优选matlab教程参数估计及假设检验

优选matlab教程参数估计及假设检验

例2.中国改革开放30年来的经济发展使人民的生活得 到了很大的提高,不少家长都觉得这一代孩子的身高 比上一代有了明显变化。下面数据是近期在一个经济 比较发达的城市中学收集的17岁的男生身高(单位: cm),若数据来自正态分布,计算学生身高的均值和 标准差的点估计和置信水平为0.95的区间估计。
170.1,179,171.5,173.1,174.1,177.2,170.3,176.2,175.4, 163.3,179.0,176.5,178.4,165.1,179.4,176.3,179.0,173.9,173.7 173.2,172.3,169.3,172.8,176.4,163.7,177.0,165.9,166.6,167.4 174.0,174.3,184.5,171.9,181.4,164.6,176.4,172.4,180.3,160.5 166.2,173.5,171.7,167.9,168.7,175.6,179.6,171.6,168.1,172.2
matlab教程参数估计及假设检验
实验目的 直观了解统计描述的基本内容。
实验内容
1、参数估计 2、假设检验 3、实例 4、作业
一、参数估计
参数估计问题的一般提法
设有一个统计总体,总体分布函数为F(x, ), 其 中是未知参数,现从该总体抽样,得样本
X1, X2 ,, Xn
要依据该样本对参数 作出估计,或估计 的某个已知函数 g( ).
xl
f
( x;1,2 ,,k
)dx
( X 连续型)
或 l E( X l ) xl p( x;1,2 ,,k ) ( X 离散型)
xRX
l=1,..., k 阶矩
一般说,它们是 1,2 ,,k 的函数。

matlab的参数估计与假设检验

matlab的参数估计与假设检验

参数估计与假设检验1.常见分布的参数估计从某工厂生产的滚珠中随机抽取10个,测得滚珠的直径(单位mm)如下:15.14.8115.1115.2615.0815.1715.1214.9515.0514.87滚珠直径服从正太分布,但是N(, 2)不知道。

(90%的置信区间)x=[15.1414.8115.1115.2615.0815.1715.1214.9515.0514.87];[muhat,sigmahat,muci,sigmaci]=normfit(x,0.1)muhat =15.0560sigmahat =0.1397muci =14.975015.1370sigmaci =0.10190.2298二、总体标准差知道时的单个正态总体均值的U检验。

1.某切割机正常工作时,切割的金属棒的长度服从正态分布N(100,4)。

从该切割机的一批金属棒中随机抽取十五根,测得他们的长度如下:02100103.假设总体方差不变,试检验该切割机工作是否正常,及总体均值是否等于100mm?取显著水平=0.05.假设如下:H0:=0=100,H1:0利用MATLAB里面的ztest函数:x=[97 102 105 112 99 103 102 94 100 95 105 98 102 100 103];[h,p,muci,zval]=ztest(x,100,2,0.05)h =1 %h=1代表拒绝原假设p =0.0282%muci =100.12102.1455zval =2.1947那么是否H0:0,H1:0x=[97 102 105 112 99 103 102 94 100 95 105 98 102 100 103];[h,p,muci,zval]=ztest(x,100,2,0.05,’right’)h =1p =0.0141muci =100.2839Infzval =2.1947拒绝H0,接受H1。

即认为总体均值大于100.三、总体标准差未知时的单个正态总体的t检验(ttest)。

第18章Matlab 参数估计与假设检验

第18章Matlab 参数估计与假设检验

2017/9/16
第三节 正态总体参数的检验
2017/9/16
一、总体标准差已知时的单个正态总体均值的U检验
2 总体:X ~ N (, 0 )
ztest函数 调用格式:
h = ztest(x,m,sigma) h = ztest(...,alpha)
样本:X1 , X 2 ,, X n
参数估计与假设检验
2017/9/16
主要内容
常见分布的参数估计 正态总体参数的检验
2017/9/16
第二节 常见分布的参数估计
2017/9/16
一、分布参数估计的MATLAB函数
函数名 betafit binofit dfittool evfit expfit fitdist gamfit gevfit gmdistribution gpfit 说 明 函数名 lognfit mle mlecov nbinfit normfit poissfit raylfit unifit wblfit 说 明
2 若滚珠直径服从正态分布 N (, ) ,其中 , 未知,求
, 的最大似然估计和置信水平为 90%的置信区间。
>> x = [15.14,14.81,15.11,15.26,15.08,15.17,15.12,14.95,15.05,14.87]; >> [muhat,sigmahat,muci,sigmaci] = normfit(x,0.1) >> [mu_sigma,mu_sigma_ci] = mle(x,'distribution','norm','alpha',0.1)
分布的参数估计

第五章参数估计和假设检验PPT课件

第五章参数估计和假设检验PPT课件

抽样
X ~ N(, 2)
n,S2
则 (n 1)S 2 / 2 ~ 2 (n 1)
当 n 30, 2分布趋近于正态分布
若X ~ x2 (n 1) 则 Z 2 2 2(n 1)
两个样本方差之比的抽样分布
从两个正态总体中分别独立抽样所得到的两个样本方 差之比的抽样分布。
抽样
X1
~
N
(
1
,
2 1
极大似然估计是根据样本的似然函数对总体参数进行 估计的一种方法 。
其实质就是根据样本观测值发生的可能性达到最大这 一原则来选取未知参数的估计量θ,其理论依据就是 概率最大的事件最可能出现。
区间估计
估计未知参数所在的可能的区间。 P(ˆL<<ˆU ) 1
评价准则
一般形式
置信度 精确度
(ˆ △)<<(ˆ △) 或 ˆ △
2
2
2
n
Z
2
2
Pq

2 pˆ
Z
2
PqN
n
2
N

2 pˆ
Z
2
Pq
2
假设检验
基本思想 检验规则 检验步骤 常见的假设检验 方差分析
基本思想
•小概率原理:如果对总体的某种假设是真实的,那么不利于 或不能支持这一假设的事件A(小概率事件) 在一次试验中几乎不可能发生的;要是在一次 试验中A竟然发生了,就有理由怀疑该假设的 真实性,拒绝这一假设。
参数的区间估计
待估计参数
已知条件
置信区间 ˆ △
总体均值 (μ)
正态总体,σ2已知 正态总体,σ2未知
非正态总体,n≥30
X Z / n
2

参数估计和假设检验课件

参数估计和假设检验课件

4.0
2.5
n
(xi x )2
2 x
i 1
M
M为样本数目
(1.0 2.5)2 (4.0 2.5)2 0.625 2
16
n
1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
14
样本均值的抽样分布与总体分布的 比较
总体分布
.3 .2 .1 0
简单随机抽样、重复抽样时,样本均 值抽样分布的标准差等于 ,这
n
个指标在统计上称为标准误。 统计软件在对变量进行描述统计时一
般会输出这一结果。
18
有限总体校正系数
Finite Population Correction Factor
简单随机抽样、不重复抽样时,样本均值
抽样分布的方差略小于重复抽样的方差,
和0的属性变量,中值
权数分别为 216和779。计 算这一变量均 值的置信区间 即为比例的置 信区间。
方差 标准差 极小值 极大值 范围 四分位距
统计量 标准误 .2171 .01308
下限 .1956 上限 .2386
.1857 .0000 .170 .41247
.00 1.00 1.00 .00
置信区间= x E
最大允许误差是人为确定的,是调查者在 相应的置信度下可以容忍的误差水平。
33
如何确定必要样本量?
必要样本量受以下几个因素的影响:
1、总体标准差。总体的变异程度越大,必 要样本量也就越大。
2、最大允许误差。最大允许误差越大,需 要的样本量越小。
3、置信度1- 。要求的置信度越高,需要 的样本量越大。
简单随机抽样下估计总体比例时 样本容量的确定

参数估计假设检验PPT

参数估计假设检验PPT
02
参数假设检验的步骤包括提出假设、选择合适的统计量、确定临界值、 计算检验统计量、做出决策。
03
参数假设检验的优点是简单易行,适用于大样本数据,能够给出明确 的接受或拒绝假设的结论。
04
参数假设检验的缺点是它对总体分布的假设较为严格,有时难以满足。
非参数假设检验
非参数假设检验是一种不依赖于总体分布具体形式的检验方法,它通过对 样本数据本身的特性进行检验来推断总体特性。
优势原则与最小化最大后悔准则
优势原则
在多方案决策中,如果一个方案在其他所有方案中的优势超过某个阈值,则该 方案被视为最优。优势原则是决策理论中的一种准则,用于指导决策者选择最 优方案。
最小化最大后悔准则
该准则是为了避免做出可能带来最大损失的错误决策,而选择一个最优策略使 得最大后悔最小化。
熵准则与信息准则
随机区组设计
总结词
随机区组设计是一种将实验对象按照某些特征进行分组,并在组内进行不同处理的实验设计方法。
详细描述
在随机区组设计中,实验对象按照某些相似特征进行分组,并在组内随机分配不同的处理。这种设计 方法可以控制组间的干扰因素,减少误差,提高实验的精度。
拉丁方设计
总结词
拉丁方设计是一种用于多因素实验的实验设计方法,它将实验对象按照拉丁字母排列,以控制实验中的顺序效应 和边缘效应。
的影响。
CHAPTER 06
相关与回归分析
相关分析
确定变量间关系
通过相关分析,可以确定两个或 多个变量之间的关系,包括正相 关、负相关和无相关。
描述变量间关系强

相关系数(如皮尔逊相关系数、 斯皮尔曼秩相关系数等)可以用 来描述变量间关系的强度和方向。
控制其他变量的影

Matlab 参数估计与假设检验

Matlab 参数估计与假设检验

h = ttest(x) h = ttest(x,m) h = ttest(x,y) h = ttest(...,alpha) h = ttest(...,alpha,tail) h = ttest(...,alpha,tail,dim)
参数估计与假设检验
教材
主要内容
常见分布的参数估计 正态总体参数的检验 分布的拟合与检验 核密度估计
第一节 常见分布的参数估计
一、分布参数估计的MATLAB函数
函数名 betafit
说明
分布的参数估计
函数名 lognfit
说明 对数正态分布的参数估计
binofit dfittool evfit expfit fitdist gamfit gevfit gmdistribution gpfit
【例 5.2-1】某切割机正常工作时,切割的金属棒的长度服从正
态分布 N(100, 4) . 从该切割机切割的一批金属棒中随机抽取 15 根,测得它们的长度(单位:mm)如下:
97 102 105 112 99 103 102 94 100 95 105 98 102 100 103. 假设总体方差不变,试检验该切割机工作是否正常,即总体均
二、总体标准差未知时的单个正态总体均值的t检验
总体:X ~ N (, 2 )
ttest函数 调用格式:
样本:X1, X 2 , , X n
假设:
H0 : 0, H0 : 0, H0 : 0,
H1 : 0 . H1 : 0 H1 : 0
二项分布的参数估计 分布拟合工具 极值分布的参数估计 指数分布的参数估计 分布的拟合
分布的参数估计
广义极值分布的参数估计 高斯混合模型的参数估计 广义 Pareto 分布的参数估计

[课件]第6章 参数估计与假设检验PPT

[课件]第6章 参数估计与假设检验PPT
( X z 2
, X z )
n
2
n



n
为样本均值的抽样误差

2
Z
条件下对总体均值进行区间估计所允许的最大误差。
n
为抽样极限误差 ,表明在给定置信度的
ˆ 置 信 区 间 点 估 计 极 限 误 差 ( )

正态总体,方差未知(小样本)

X - T = ~t(n 1 ) S n
第6章 参数 估计与假设 检验
统 计 学 的 基 本 内 容
描述 指搜集、整理、分析、研究并提供统计资料 统计 的理论和方法,用来说明总体的情况和特征。
数据描述性分析、时间数列分析和指数分析
推断 利用样本统计量对总体某些性质或数量特征 统计 进行推断的方法。
参数估计和假设检验
描述统计是推断统计的前提, 推断统计是描述统计的发展。
2 X ~ N ( , n )
X
X
标准化
X - z ~N ( 0 , 1 ) n
非正态总体或总体分布未知 根据中心极限定理,当样本容量足够大时( n ) 30 不管总体分布如何,样本均值的抽样分布总可以 看作是正态分布。
X ~ N ( , n )
2
标准化
X - z ~N ( 0 , 1 ) n
建立总体假设抽样得到样本观察值选择检验统计量确定h根据具体决策要求确定确定分布上的临界点值及检验规则计算检验统计量的数值比较并作出检验判断检验规则双侧检验左侧检验右侧检验时接受原假设时拒绝原假设时接受原假设时拒绝原假设时接受原假设时拒绝原假设双侧检验拒绝域拒绝域拒绝域拒绝域接受域接受域左侧检验拒绝域拒绝域接受域接受域右侧检验拒绝域拒绝域接受域接受域检验规则双侧检验左侧检验右侧检验时接受原假设时拒绝原假设时接受原假设时拒绝原假设时接受原假设时拒绝原假设由置信区间方法到假设检验的运算过程

第六章 参数估计和假设检验第5页PPT课件

第六章  参数估计和假设检验第5页PPT课件

0x1
x
e
dx
0x
x
d(e
)
(xex)00exdx
(ex )0
由矩估计方,E法 (X)得 X,即ˆ
1 n
n
Xi
i1
例4:设X1, … , Xn为取自N(,2)总体的样本,求 参数 , 2 的矩估计。
解 因 E (X 为 ),D (X ) 2.
而 D (X)E(X2)[E(X)2 ],
所E 以 (X2)[E(X)2 ]D (X)22
解总体E(均 X)值 1/,样本均 X 值为
由矩估 ,E (X 计 )X 方 ,即 1 ˆ 法 X 得 ˆX 1.
x
例3
设总体 X的概率密度f (为 x)
1
e
2
X 1 ,X 2 , ,X n 为X 总 的体 ,样 求本 参 的数 矩 . 估
解总体的一阶原点矩为
x
E(X)
x
f(x)dx
x
1
2
e
dx
lnL() 由 L () p ( x 1 ;) p ( x 2 ;) p ( x n ;)
n
1
L( )
得ln L() ln p(xi;),
i1
d
ln
L( )
n
d
ln
p(xi ; )
d
i1 d
例1.设X1,…, Xn为取自参数为的泊松分布总体的样本, 求的极
大似然估计和矩估计.
解因总X服 体从参 的 数泊 为松 ,分 分布 布律为 P{Xk}ke
分析:矩估计方法就是用样本矩来估计总体矩.
解总体E 均 (X) 值 mp,样本均 X 值为
由矩估 ,E (X 计 )X 方 ,即 m p 法 X 得 p ˆX. m

MATLAB参数估计与假设检验

MATLAB参数估计与假设检验

MATLAB参数估计与假设检验课型:新授课教具:多媒体教学设备,matlab教学软件一、目标与要求掌握matlab统计工具箱中的基本统计命令及其应用。

二、教学重点与难点本堂课教学的重点在于引导学生在编写matlab程序时能够熟练运用基本统计量的相关命令实现相应的功能。

三、教学方法本课程主要通过讲授法、演示法、练习法等相结合的方法来引导学生掌控本堂课的学习内容。

四、教学内容上机内容回顾一、基本的统计量命令二、常见概率分布函数新授课统计推断:通过对样本的处理和分析,得出与总参数相关的结论。

统计推断包括参数估计和假设检验两部分内容。

示例:吸烟对血压有影响吗?对吸烟和不吸烟两组人群进行24小时动态监测,吸烟组66人,不吸烟组62人,分别测量24小时收缩压(24hSBP)和舒张压(24hDBP),白天(6Am-10Pm)收缩压(dSBP)和舒张压(dDBP ),夜间(10Pm-6Am)收缩压(nSBP)和舒张压(nDBP)。

然后分别计算每类的样本均值和标准差问题:1)任何一个考察的时段,吸烟和不吸烟群体的血压的真值分别是多少?(参数估计)2)吸烟和不吸烟群体的血压的真值是否有区别?(假设检验)概念:第一部分:一:点估计1 矩估计法2 似然函数法二、评价估计优劣的标准1 无偏性2 有效性3一致性三、区间估计参数估计的MATLAB实现:例题:50名17岁城市男性学生身高(单位:cm):170.1 179.0 171.5 173.1 174.1 177.2 170.3 176.2 163.7 175.4 163.3 179.0 176.5 178.4 165.1 179.4 176.3 179.0 173.9 173.7 173.2 172.3 169.3 172.8 176.4 163.7 177.0 165.9 166.6 167.4 174.0 174.3 184.5 171.9 181.4 164.6 176.4 172.4 180.3 160.5 166.2 173.5 171.7 167.9 168.7 175.6 179.6 171.6 168.1 172.2 运行结果标准差区间估计(4.4863,6.6926)标准差点估计5.3707均值区间估计(171.1777, 174.2303)均值点估计172.7040第二部分假设检验总体均值的假设检验•总体方差的假设检验•两总体的假设检验•0-1分布总体均值的假设检验•总体分布正态性检验•假设检验的MATLAB实现假设检验MATLAB的实现MATLAB命令使用说明输入参数x是样本(n维数组),mu是H0中的µ0,sigma是总体标准差σ,alpha是显著性水平α(缺省时设定为0.05),tail是对双侧检验和两个单侧检验的标识,用备选假设H1确定:H1为µ≠µ0时令tail=0(可缺省);H1为µ>µ0时令tail=1;H1为µ<µ0时令tail=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

mle mlecov nbinfit normfit poissfit raylfit unifit wblfit
最大似然估计(MLE) 最大似然估计的渐进协方差矩阵 负二项分布的参数估计 正态(高斯)分布的参数估计 泊松分布的参数估计 瑞利(Rayleigh)分布的参数估计 均匀分布的参数估计 威布尔(Weibull)分布的参数估计
学习交流PPT
8
第二节 正态总体参数的检验
学习交流PPT
9
一、总体标准差已知时的单个正态总体均值的U检验
总 体 : X~N(,0 2)
样 本 : X1,X2, ,Xn
假设:
H0 : 0, H0 : 0, H0 : 0,
H1 : 0 . H1 : 0 H1 : 0
➢ ztest函数 调用格式: h = ztest(x,m,sigma) h = ztest(...,alpha) h = ztest(...,alpha,tail) h = ztest(...,alpha,tail,dim) [h,p] = ztest(...) [h,p,ci] = ztest(...) [h,p,ci,zval] = ztest(...)
学习交流PPT
11
二、总体标准差未知时的单个正态总体均值的t检验
总 体 : X~N(,2)
➢ ttest函数 调用格式:
样 本 : X1,X2, ,Xn
假设:
H0 : 0, H0 : 0, H0 : 0,
H1 : 0 . H1 : 0 H1 : 0
h = ttest(x) h = ttest(x,m) h = ttest(x,y) h = ttest(...,alpha) h = ttest(...,alpha,tail) h = ttest(...,alpha,tail,dim)
学习交流PPT
10
【例 5.2-1】某切割机正常工作时,切割的金属棒的长度服从正 态分布 N(100, 4) . 从该切割机切割的一批金属棒中随机抽取 15 根,测得它们的长度(单位:mm)如下:
97 102 105 112 99 103 102 94 100 95 105 98 102 100 103. 假设总体方差不变,试检验该切割机工作是否正常,即总体均
>> [phat,pci] = mle(x,'distribution','normal')
>> [phat,pci] = mle(x,'pdf',@normpdf,'start',[0,1])
>> [phat,pci] = mle(x,'cdf',@normcdf,'start',[0,1])
学习交流PPT
说明 对数正态分布的参数估计
binofit dfittool evfit expfit fitdist gamfit gevfit gmdistribution gpfit
二项分布的参数估计 分布拟合工具 极值分布的参数估计 指数分布的参数估计 分布的拟合
分布的参数估计
广义极值分布的参数估计 高斯混合模型的参数估计 广义 Pareto 分布的参数估计
值是否等于 100mm?取显著性水平 0.05.
>> x = [97 102 105 112 99 103 102 94 100 95 105 98 102 100 103]; % 调用ztest函数作总体均值的双侧检验, % 返回变量h,检验的p值,均值的置信区间muci,检验统计量的观测值zval >> [h,p,muci,zval] = ztest(x,100,2,0.05) % 调用ztest函数作总体均值的单侧检验 >> [h,p,muci,zval] = ztest(x,100,2,0.05,'right')
>> [muhat,sigmahat,muci,sigmaci] = normfit(x,0.1)
学习交流PPT
6
【例5.1-2】调用normrnd函数生成100个服从均值为10,标准差 为4的正态分布的随机数,然后调用mle函数求均值和标准差的 最大似然估计。
>> x = normrnd(10,4,100,1); >> [phat,pci] = mle(x)
参数估计与假设检验
学习交流PPT
1
教材
学习交流PPT
2
主要内容
➢ 常见分布的参数估计 ➢ 正态总体参数的检验 ➢ 分布的拟合与检验 ➢ 核密度估计
学习交流PPT
3
第一节 常见分布的参数估计

学习交流PPT
4
一、分布参数估计的MATLAB函数
函数名 betafit
说明
分布的参数估计
函数名 lognfit
% 定义样本观测值向量
>> x = [15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05
14.87];
% 调用normfit函数求正态总体参数的最大似然估计和置信区间 % 返回总体均值的最大似然估计muhat和90%置信区间muci, % 还返回总体标准差的最大似然估计sigmahat和90%置信区间sigmaci
7
补充: mle函数的调用格式:
phat = mle(data) [phat,pci] = mle(data) [...] = mle(data,'distribution',dist) [...] = mle(data,...,name1,val1,name2,val2,...) [...] = mle(data,'pdf',pdf,'cdf',cdf,'start',start,...) [...] = mle(data,'logpdf',logpdf,'logsf',logsf,'start',start,...) [...] = mle(data,'nloglf',nloglf,'start',start,...)
学习交流PPT
5
【例 5.1-1】从某厂生产的滚珠中随机抽取 10 个,测得 滚珠的直径(单位:mm)如下:
15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87 . 若滚珠直径服从正态分布 N(, 2) ,其中 , 未知,求 , 的最大似然估计和置信水平为 90%的置信区间。
相关文档
最新文档