数字逻辑第6章
电子课件电子技术基础第六版第六章门电路及组合逻辑电路可编辑全文

逻辑函数除可以用逻辑函数表达式(逻辑表达式)表示以 外,还可以用相应的真值表以及逻辑电路图来表示。真值表 与前述基本逻辑关系的真值表类似,就是将各个变量取真值 (0 和 1)的各种可能组合列写出来,得到对应逻辑函数的真 值(0 或 1)。逻辑电路图(逻辑图)是指由基本逻辑门或复 合逻辑门等逻辑符号及它们之间的连线构成的图形。
TTL 集成“与非”门的外形和引脚排列 a)外形 bOS 集成门电路以绝缘栅场效应管为基本元件组成, MOS 场效应管有 PMOS 和NMOS 两类。CMOS 集成门电路 是由 PMOS 和 NMOS 组 成的互补对称型逻辑门电路。它具 有集成度更高、功耗更低、抗干扰能力更强、扇出系数更大 等优点。
三、其他类型集成门电路
1. 集电极开路与非门(OC 门) 在这种类型的电路内部,输出三极管的集电极是开路的, 故称集电极开路与非门,也称集电极开路门,简称 OC 门。
OC 门 a)逻辑符号 b)外接上拉电阻
74LS01 是一种常用的 OC 门,其外形和引脚排列如图所 示。
74LS01 的外形和引脚排列 a)外形 b)引脚排列
2. 主要参数 TTL 集成“与非”门的主要参数反映了电路的工作速度、抗 干扰能力和驱动能力等。
TTL 集成“与非”门的主要参数
TTL 集成“与非”门具有广泛的用途,利用它可以组成很多 不同逻辑功能的电路,其外形和引脚排列如图所示。如 TTL“ 异或”门就是在 TTL“与非”门的基础上适当地改动和组合而成 的;此外,后面讨论的编码器、译码器、触发器、计数器等 逻辑电路也都可以由它来组成。
数字逻辑全解

VCC –0.1伏 地+0.1伏
0.7VCC 0.3VCC
15.10.2020
21
6.1 设计空间(续)
---工艺参数
采用多个门并行实现 在输出端增加缓冲区
15.10.2020
20
6.1 设计空间(续)
---工艺参数
噪声容限:一种对噪声大小的度量,表示多大的噪声会使 最坏输出电压被破坏成为不可识别的输入值。
VOHmin 输出为高态时的最小输出电压。 VOLmax 输出为低态时的最大输出电压。 VIHmin 能保证被识别为高态时的最小输入电压。 VILmax 能保证被识别为低态时的最大输入电压。
15.10.2020
2
第6章 背景知识专题(续)
思考与报告6.2
2012年诺贝尔物理学奖
2012年诺贝尔物理学奖的获奖者为法国科学家沙吉·哈罗彻(Serge Haroche)与美国科 学家大卫·温兰德(David J. Winland),获奖理由是“突破性的试验方法使得测量和操 纵单个量子系统成为可能”。他们的突破性的方法,使得这一领域的研究朝着基于量子 物理学而建造量子计算机迈出了第一步。就如传统计算机在上世纪的影响那样,或许量 子计算机将在本世纪以同样根本性的方式改变我们的日常生活。
请查资料了解相关知识。
15.10.2020
3
第6章 背景知识专题(续)
习题
1、自学软件Multisim。 2、用一个NMOS管和一个PMOS管构成一个反相器, 测试它的传输特性,写出测试报告。 3、完成课后习题:6.4,6.5,6.6,6.7,6.10
15.10.2020
4
6.1 设计空间
集成电路 集成度
15.10.2020
数字逻辑 第六章习题答案

根据真值表画出激励函数和输出函数卡诺图(略),化简后可 得:
(5) 画出逻辑电路图 根据激励函数和输出函数表达式,可画出实现给定功能的逻 辑电路如图11所示。该电路存在无效状态10,但不会产生挂 起现象,即具有自启动功能。
7 试用与非门构成的基本R-S触发器设计一个 脉冲异步模4加1计数器。 解(1) 设电路输入脉冲为x,状态变量为 y1y0,其状态表如表9所示。
(2)该电路的状态图、状态表
(3)该电路是一个“x1—x2—x3”序列检测器。
4 分析图7所示脉冲异步时序电路,作出时间 图并说明该电路逻辑功能。
解:(1) 该电路是一个 Moore型脉冲异步时序逻辑 电路,其输出即电路状态。激 励函数表达式为
(2)电路次态真值表
(3)时间图
(4)该电路是一个模4计数器。
(4) 确定激励函数和输出函数 确定激励函数和输出函数时注意: ● 对于多余状态y2y1=10和不允许输入x2x1=11,可作为无关条 件处理; ● 当输入x2x1=00时,电路状态保持不变; ● 由于触发器时钟信号作为激励函数处理,所以,可假定次态 与现态相同时,触发器时钟信号为0,T端为d。 据此,可列出激励函数和输出函数真值表如表8所示。
(2) 根据状态表和RS触发器的功能表,可列出激 励函数真值表如表10所示。
Байду номын сангаас
(3)化简后,可得激 励函数最简表达式为:
(4)根据激励函数表达式,可画出逻辑电路 图如图12所示。
5 用D触发器作为存储元件,设计一个脉冲异 步时序电路。该电路在输入端x的脉冲作用 下,实现3位二进制减1计数的功能,当电 路状态为“000”时,在输入脉冲作用下输 出端Z产生一个借位脉冲,平时Z输出0。
数字逻辑技术试卷及解析

数字逻辑技术试卷-第6章一、填空题1.根据制作工艺的不同,集成555定时电路可分为 TTL 型 和 CMOS 型 两大类。
2.施密特触发器的固有性能指标是 V T+ 、 V T - 和 ΔV T 。
3.CMOS 精密单稳态触发器中,定时元件和可在 较大 范围内选择,定时时间t w 的范围为:取值 2kΩ~30kΩ ,取值 10pF ~10μF 。
4.555定时电路由 分压器 、 比较器 、 RS 触发器 、 放电开关管 以及 输出缓冲级 几部分组成。
5.由555构成的单稳态触发器对输入触发脉冲的要求是: t re <t w 。
6.TTL 型555定时电路中的C 1和C 2是 开环的电压比较器 ,C 1同相端的参考电压是 2V CC /3 ;C 2反相端的参考电压是 V CC /3 。
定时电路构成的多谐振荡器,其振荡周期为 T=0.7(R 1+2R 2)C ,输出脉冲宽8.555定时器可以构成施密特触发器,施密特触发器具有 回差 特性,主要用于脉冲波形的 变换 和 脉冲整形 。
555定时器还可以用作多谐振荡器和 单 稳态触发器。
9.555定时电路的最基本应用电路有: 单稳态触发器 、 施密特触发器 和多谐振荡器。
10.555定时电路构成的应用电路中,当电压控制端管脚5不用时,通常对地接 一个0.01μF 的电容 ,其作用是防止 干扰 。
二、判断题1.用555定时电路构成的多谐振荡器的占空比不能调节。
( 错 )2.对555定时器的管脚5外加控制电压后也不能改变其基准电压值。
( 错 )3.用555定时器构成的施密特触发器,其回差电压不可调节。
( 错 )4.单稳态触发器的暂稳态维持时间的长短只取决于电路本身的参数。
( 对 )5.单稳态触发器只有一个稳态,一个暂稳态。
( 对 ) 6. 555电路的输出只能出现两个状态稳定的逻辑电平之一。
( 对 ) 7.施密特触发器的作用就是利用其回差特性稳定电路。
大学_数字逻辑第四版(欧阳星明著)课后习题答案下载

数字逻辑第四版(欧阳星明著)课后习题答案下载数字逻辑第四版(欧阳星明著)课后答案下载第1章基础概念11.1概述11.2基础知识21.2.1脉冲信号21.2.2半导体的导电特性41.2.3二极管开关特性81.2.4三极管开关特性101.2.5三极管3种连接方法131.3逻辑门电路141.3.1DTL门电路151.3.2TTL门电路161.3.3CML门电路181.4逻辑代数与基本逻辑运算201.4.1析取联结词与正“或”门电路201.4.2合取联结词与正“与”门电路211.4.3否定联结词与“非”门电路221.4.4复合逻辑门电路221.4.5双条件联结词与“同或”电路241.4.6不可兼或联结词与“异或”电路241.5触发器基本概念与分类251.5.1触发器与时钟271.5.2基本RS触发器271.5.3可控RS触发器291.5.4主从式JK触发器311.5.5D型触发器341.5.6T型触发器37习题38第2章数字编码与逻辑代数392.1数字系统中的编码表示392.1.1原码、补码、反码412.1.2原码、反码、补码的运算举例472.1.3基于计算性质的几种常用二-十进制编码48 2.1.4基于传输性质的几种可靠性编码512.2逻辑代数基础与逻辑函数化简572.2.1逻辑代数的基本定理和规则572.2.2逻辑函数及逻辑函数的表示方式592.2.3逻辑函数的标准形式622.2.4利用基本定理简化逻辑函数662.2.5利用卡诺图简化逻辑函数68习题74第3章数字系统基本概念763.1数字系统模型概述763.1.1组合逻辑模型773.1.2时序逻辑模型773.2组合逻辑模型结构的数字系统分析与设计81 3.2.1组合逻辑功能部件分析813.2.2组合逻辑功能部件设计853.3时序逻辑模型下的数字系统分析与设计923.3.1同步与异步933.3.2同步数字系统功能部件分析943.3.3同步数字系统功能部件设计993.3.4异步数字系统分析与设计1143.4基于中规模集成电路(MSI)的数字系统设计1263.4.1中规模集成电路设计方法1263.4.2中规模集成电路设计举例127习题138第4章可编程逻辑器件1424.1可编程逻辑器件(PLD)演变1424.1.1可编程逻辑器件(PLD)1444.1.2可编程只读存储器(PROM)1464.1.3现场可编程逻辑阵列(FPLA)1484.1.4可编程阵列逻辑(PAL)1494.1.5通用阵列逻辑(GAL)1524.2可编程器件设计1604.2.1可编程器件开发工具演变1604.2.2可编程器件设计过程与举例1604.3两种常用的HDPLD可编程逻辑器件164 4.3.1按集成度分类的可编程逻辑器件164 4.3.2CPLD可编程器件1654.3.3FPGA可编程器件169习题173第5章VHDL基础1755.1VHDL简介1755.2VHDL程序结构1765.2.1实体1765.2.2结构体1805.2.3程序包1835.2.4库1845.2.5配置1865.2.6VHDL子程序1875.3VHDL中结构体的描述方式190 5.3.1结构体的行为描述方式190 5.3.2结构体的数据流描述方式192 5.3.3结构体的结构描述方式192 5.4VHDL要素1955.4.1VHDL文字规则1955.4.2VHDL中的数据对象1965.4.3VHDL中的数据类型1975.4.4VHDL的运算操作符2015.4.5VHDL的预定义属性2035.5VHDL的顺序描述语句2055.5.1wait等待语句2055.5.2赋值语句2065.5.3转向控制语句2075.5.4空语句2125.6VHDL的并行描述语句2125.6.1并行信号赋值语句2125.6.2块语句2175.6.3进程语句2175.6.4生成语句2195.6.5元件例化语句2215.6.6时间延迟语句222习题223第6章数字系统功能模块设计2556.1数字系统功能模块2256.1.1功能模块概念2256.1.2功能模块外特性及设计过程2266.2基于组合逻辑模型下的VHDL设计226 6.2.1基本逻辑门电路设计2266.2.2比较器设计2296.2.3代码转换器设计2316.2.4多路选择器与多路分配器设计2326.2.5运算类功能部件设计2336.2.6译码器设计2376.2.7总线隔离器设计2386.3基于时序逻辑模型下的VHDL设计2406.3.1寄存器设计2406.3.2计数器设计2426.3.3并/串转换器设计2456.3.4串/并转换器设计2466.3.5七段数字显示器(LED)原理分析与设计247 6.4复杂数字系统设计举例2506.4.1高速传输通道设计2506.4.2多处理机共享数据保护锁设计257习题265第7章系统集成2667.1系统集成基础知识2667.1.1系统集成概念2667.1.2系统层次结构模式2687.1.3系统集成步骤2697.2系统集成规范2717.2.1基于总线方式的互连结构2717.2.2路由协议2767.2.3系统安全规范与防御2817.2.4时间同步2837.3数字系统的非功能设计2867.3.1数字系统中信号传输竞争与险象2867.3.2故障注入2887.3.3数字系统测试2907.3.4低能耗系统与多时钟技术292习题295数字逻辑第四版(欧阳星明著):内容提要点击此处下载数字逻辑第四版(欧阳星明著)课后答案数字逻辑第四版(欧阳星明著):目录本书从理论基础和实践出发,对数字系统的基础结构和现代设计方法与设计手段进行了深入浅出的论述,并选取作者在实际工程应用中的一些相关实例,来举例解释数字系统的设计方案。
数字逻辑课件——多谐振荡器

Vth−VDD,同样在暂态Ⅱ结束时,
US(0+) = VDD +Vth。
图6-1-3 CMOS多谐振
荡器的改进电路
8
电源VDD或逻辑门输入值电平Vth变化时,K值变化对振荡周 期T的影响减小。
0.7( R1 R2 ) C1
0.7 R2 C1
振荡周期 T TPH TPL 0.7(R1 2R2 ) C1
振荡频率 f 1
T
12
6.1.3 石英晶体振荡器
前面介绍的多谐振荡器频率稳定性较差,当电源电压波
动,温度变化,RC参数变化时,频率变化较大,在计算
机等要求频率稳定性高的设备中,用这样的振荡器做主 振荡器是不合适的。 高稳定性的脉冲信号振荡器是石英晶体振荡器。 图6-1-5为一种典型的石英晶体振荡电路。
(1) 反馈电阻使两个逻辑门均工作在线性放大区。
对于TTL逻辑门,反馈电阻R
通常取0.7 ~ 2k ,而对于
CMOS逻辑门,则R通常取10 ~
100M。
图6-1-5 石英晶体振荡器
13
石英晶体的等效阻抗 Z1 R j(2 fL
Z Z1 1
2 fC
//( jXCn ) ) R jX
X
LC
Cn
图6-1-1 CMOS反相 器组成的多谐振荡器 1
反馈信号由储能元件电容耦合,在反相器A的输出状态翻 转时产生过渡过程,引起信号的传输延迟。
在过渡过程中,电容的充、放电使反相器B的输入电位US变
化,
当电位变化达到输入阈值电压Vth时,触发器自动触发,状 态再次翻转,产生新的过渡过程。
6doc-第六章 采用中、大规模集成电路的逻辑设计

第六章 采用中、大规模集成电路的逻辑设计 教学重点:在了解典型中、大规模集成电路逻辑功能的基础上,掌握现代逻辑设计的方向。
教学难点:采用双向移位寄存器设计的计数器的“模”的概念。
6.1二进制并行加法器(四位超前进位加法器74283)介绍能提高运算速度的四位超前进位加法器74283。
对于这些集成电路,主要是掌握它的外部功能,以便设计成其它逻辑电路。
对内部逻辑电路只作一般了解。
四位超前进位加法器74283是中规模集成电路的组合逻辑部件。
74283引脚较少,输入端为被加数和加数共8个,另一个从低位来的进位端1个。
输出端5个,其中4个为和数端,1个为向高位的进位端。
这两个进位端可用来扩展容量。
功能:对被加数和加数作二进制数的加法运算,运算结果为二进制数,亦可看成代码。
例6.1 用四位二进制加法器74283设计一个四位加法/减法器。
●逻辑符号内的引脚符号与外部电路的输入到引脚的信号要加以区别。
设计思路:两数做加法时,信号直接加到引脚;做减法时先把减数连同符号位按位求反,同时从低位来的进位端置1,即变成补码信号后再加到引脚,把减法转化为加法。
设计方法:在加数的每个引脚端前接一个异或门输出端,异或门的两个输入端一个接加数或减数的输入信号,另一个接加、减法控制信号,低位来的进位端连接这控制端。
当控制端信号为1时,输入信号通过异或门后变反,故作减法运算;当控制端信号为0时,输入信号通过异或门后不变,故作加法运算。
所设计的逻辑电路图见P196图6.3。
例6.2 用四位二进制加法器74283设计一个将8421BCD 码转换成余3码的代码转换电路。
设计思路和方法:余3码是从8421BCD 码加3后实现的,故在被加数端接入8421BCD 码信号后,可直接在加数信号输入端接0011信号即可。
这时和数输出端就输出余3码。
●注意:从低位来的进位端应置0,不能悬空(因悬空的效果是高电平1)。
所设计的逻辑电路图见P196图6.4。
《数字逻辑设计》第6章 险象及消除

if WYZ=001, F=X' from X to F:存在3条路径
组ห้องสมุดไป่ตู้电路中的险象
功能冒险
多个输入信号 同时改变,因 速度不同产生 错误信号脉冲
F (100) = F (111) = 1
BC A 00 01 11 10
0 11 1 1 0
初值 C 较快: 100 B 较快: 100
过渡值 101 110
终值 111 111
F值 111 101
静态1冒险
BC: 00 11
真值表
ABC F 0000 0010 0100 0111 1001 1011 1100 1111
Unit 6 组合逻辑电路设计
使用有限扇入门设计组合电路 组合电路中的险象
Gate Delays Static hazard
险象判断及消除
静态1冒险 静态0冒险
输出波形
动态冒险 输入信号发生一次改变引起多个 错误信号脉冲
功能冒险 多个输入信号的变化不同步而产 生的错误信号脉冲
Example
组合电路中的险象
F = AB+AC
理论上
if B = C =1 F = A + A=1
A
B
e
d
A
g
+F
dg
e
C
F
tp
实际上
静态1冒险
Example
化简后是否存在相切的卡诺圈
F = AD+AC+ABC
CD AB 00
00 0 01 0 11 1 10 0
01 11 10 111 111 100 000
BCD=101时,存在险象
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、写方程
时钟方程: CP0= CP2 = CP CP2 = Q0
2、求状态方程 状态方程: (将各个FF的驱动方 程 代入其特性方程) Q0n+1= Qn2Qn0
驱动方程:
D 0 = Q n2 Q n0 D 1 = Q n1 D 2 = Q n1 Q n0
(CP下降沿有效)
Q1n+1= Qn1
(Q0上升沿有效)
Q2
FF2 D Q D RD FF1 Q
Q1
FF0 D Q RD
Q0
(1)复位: RD 0 Q3Q2Q1Q0 0000 ;
DIR
FF3 D Q RD
RD
(2)移位: Q3n 1 D3 CP DIR CP
n 1 Q2 D2 CP Q3n CP n Q1n 1 D1 CP Q2 CP
2. 状态表 反映输出Z、次 态Q*与输入X、 现态Q之间关系 的表格。
3. 状态图 反映时序电路 状态转换规律, 及相应输入、 输出取值关系 的图形。
箭尾: 现态
标注:输入/输出
箭头: 次态
4. 时序图
时序图又叫工作波形图,它用波形的形式形 象地表达了输入信号、输出信号、电路的状态等 的取值在时间上的对应关系。
0 1 0
1 1 0 0 1
0 1 1 0
1 0 0
0 1
首先将4位数据并行置入移位寄存器的4个触发器中,经 经过 4位代码将从串行输出端依次输出,实现数据的并行 个CLK信号以后,串行输入的4位代码全部移入寄 过4个 CP,4 存器中,同时在 -串行转换。 4个触发器输出端得到并行输出代码。
Q3
这四种方法从不同侧面突出了时序电路逻 辑功能的特点,它们在本质上是相同的,可以
互相转换。
6.2 时序逻辑电路的分析方法
时序电路的分析步骤:
电路图
1
时钟方程、 驱动方程和 输出方程
2 将驱动方 程代入特 性方程 4
状态方程
3 计算
判断电路逻 辑功能,检查 自启动
5
时序图
状态图、 状态表
几个概念
有效状态:在时序电路中,凡是被利用了的状态。
1 0 1 1 1 0 1 0 1 1
0
0
⑤说明电路功能
A=0时是二位二进制加法计数器;
A=1时是二位二进制减法计数器。
例3、试画出图示电路的状态图和时序图
1、写方程 时钟方程: CP0= CP2 = CP CP1 = Q0 驱动方程: D 0 = Q n2 Q n0 D 1 = Q n1 D 2 = Q n1 Q n0
二、时序逻辑电路的分类: 按 动 作 特 点 可 分 为
同步时序逻辑电路
所有触发器状态的变化都是在 同一时钟信号操作下同时发生。
异步时序逻辑电路
触发器状态的变化不是同时发生。
按 输 出 特 点 可 分 为
米利型时序逻辑电路
输出不仅取决于存储电路的状态,而且还 决定于电路当前的输入。
穆尔型时序逻辑电路
清0按键 1秒
S1=0,S0=1
CLK 右移控制
本节小结:
寄存器是用来存放二进制数据或代
码的电路,是一种基本时序电路。任何
现代数字系统都必须把需要处理的数据
和代码先寄存起来,以便随时取用。
移位寄存器
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器
一、寄存器 在数字电路中,用来存放二进制数据或代码 的电路称为寄存器。 寄存器是由具有存储功能的触发器组合起来构成的。 一个触发器可以存储1位二进制代码,存放n位二进制 代码的寄存器,需用n个触发器来构成。
数据寄存器
1. 电路结构(N=4)
D3D2D1D0:并行数据输入 Q3Q2Q1Q0:并行数据输出
CP RD
Q3 FF3
QQ1
FF1 Q D RD
Q0
FF0 Q D RD
2、工作原理
( 1 )清除(复位): 当R D 0时, Q3Q2Q1Q0 0000 ;
D3
D2
D1
D0
(2)置数:当CP CP 时, Q3Q2Q1Q0=D3 D2 D1 D0
3、工作方式(数据输入输出方式)--
并入并出
4、基本寄存器的特点
数据或代码只能并入并出 存储单元可用基本、同步、主从和边沿触 发器。
5、集成基本触发器 4边沿D触发器74LS175 双4位锁存器74116 4*4寄存器阵列74LS170
二、移位寄存器
单向移位寄存器
* * * * Q0 Di、Q1 Q0、Q2 Q1 、Q3 Q2
③计算、列状态转换表
Q1* (Q2 Q3 ) Q1 * Q1 Q3 Q2 Q2 Q1 Q2 Q * Q Q Q Q Q 1 2 3 2 3 3
Q1* (Q2 Q3 ) Q1 * Q1 Q3 Q2 Q2 Q1 Q2 Q * Q Q Q Q Q 1 2 3 2 3 3
输出仅决定于存储电路的状态,与电路 当前的输入无关。
三、时序逻辑电路的功能描述方法 逻辑方程组 状态表 卡诺图 状态图 时序图 逻辑图
1. 逻辑方程组
特性方程:描述触发器逻辑功能的逻辑表达式。 驱动方程:(激励方程)触发器输入信号的逻辑 表达式。 时钟方程:控制时钟CLK的逻辑表达式。 状态方程:(次态方程)次态输出的逻辑表达式。 驱动方程代入特性方程得状态方程。 输出方程:输出变量的逻辑表达式。
计 算
状态图
有效循环
4、时序图
状态图
时序图
CP
Q0 Q1 Q2
0 0 0
1
1
0 1 0
1 0 0
0
0
0
0
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器
——用于存放数据的器件
寄存器的特点和分类 1、结构特点(主要由触发器组成,结构 简单) 2、功能特点(暂存数据,功能单一) 3、分类:基本(数据)寄存器
有效循环:有效状态构成的循环。 无效状态:在时序电路中,凡是没有被利用的状态。 无效循环:无效状态若形成循环,则称为无效循环。 自启动:在CLK作用下,无效状态能自动地进入到 有效循环中,则称电路能自启动,否则称不能自启 动。
例1
解: ①写方程组 驱 动 方 程
J1 (Q2 Q3 ) J 2 Q1 J Q Q 1 2 3
电路在某一给定时刻的输出
由触发器保存 取决于该时刻电路的输入
还取决于前一时刻电路的状态
时序电路: 组合电路 + 触发器
电路的状态与时间顺序有关
输 入
X1 Xp
Y1
…
组合电路
…
Ym
输 出
Q1 Qt
W1
…
存储电路
… Wr
时序电路在任何时刻的稳定输出,不仅与
该时刻的输入信号有关,而且还与电路原来的
状态有关。 构成时序逻辑电路的基本单元是触发器。
输出
电路状态
A
0 0 0 0 1 1 1 1
Q2 Q1
0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1
Q Q
0 1 1 0 1 1 0 0
* 2
* 1
Y
0 0 0 1 1 0 0 0
转换方向 00 0/1 1/1 01 1/0 1/0 10
1/0
11
1 0 1 0 1 0 1 0
④作时序图
画状态转换图
Q3Q2Q1 /Y
000
/1 /1 111
/0
001
/0
010
/0
011 /0
110
/0
101
/0
100
④作时序图
1 0 0 1
1
0 1
1
0 0 1 0 1 0
0 0
0 0 0 0
0 1
0 1
⑤说明电路功能
这是一个同步七进制加法计数器,能自启动。
例2
解: ①写方程式 驱 D Q 1 1 动 方 D2 A Q1 Q2 程
次 态
* Q2
输出
Q1*
1 0 1 0 1 0 1 0
Y
0 0 0 1 1 0 0 0
0 1 1 0 1 0 0 1
Q1* D1 Q1 * Q2 D2 A Q1 Q2
Q2 Y AQ1Q2 AQ1
转换条件
画状态转换图
A/Y
Q2 Q1
输入 现
态
次 态
用双向移位寄存器74LS194组成节日彩灯控制电路
1k LED 发光 二极管
RD Q0 Q1 Q2 Q3 S1 74LS194
+5V
Q=0时
LED亮
RD Q0 Q1 D1 Q2 D2 D3 Q3 S1
DIR D0 D1
D2
D3
S0 DIL CLK +5V
74LS194
DIR D0
S0 DIL CLK +5V
CP RD
CP
DIR
Q3 Q2
1 0 1 1 0 1 1 1 0 1 1 1 0
Q0n 1 D0 CP Q1n CP
Q1
Q0
3.工作方式——(1)串入并出——串并转换(需要N个CP周期) (2)串入串出——延迟线(N级FF延迟N个CP周期)
单向移位寄存器具有以下主要特点:
( 1 )单向移位寄存器中的数码,在 CLK 脉冲操
Q2n+1= Qn1Qn0 (CP下降沿有效)
状态方程:
3、计算
Q0n+1= Qn2 Qn0