时序逻辑电路高效应用
时序逻辑电路cp脉冲信参与输出
![时序逻辑电路cp脉冲信参与输出](https://img.taocdn.com/s3/m/f5c2ef59cd7931b765ce0508763231126fdb7755.png)
时序逻辑电路cp脉冲信参与输出时序逻辑电路是一种特殊类型的数字电路,其输出状态不仅取决于当前输入信号,还取决于输入信号的先前状态。
时序逻辑电路能够用于实现计数器、寄存器、状态机等电路,广泛应用于数字逻辑系统中。
在时序逻辑电路中,时钟信号是非常重要的一个输入信号。
时钟信号通常以周期性的脉冲信号形式存在,它会定时触发电路中的各个逻辑门或触发器。
当时钟信号上升沿或下降沿到来时,电路中的计算、存储或状态转换等操作会被触发。
因此,时钟信号的频率和相位是时序逻辑电路设计中需要考虑的重要因素之一。
时序逻辑电路中的脉冲信号也是一种重要的参与输出的信号。
脉冲信号使时序逻辑电路能够在特定的时钟脉冲到来时,对输入信号进行处理并生成输出信号。
举例来说,假设我们设计了一个简单的4位二进制计数器。
计数器需要从0开始依次计数到15,然后再回到0重新计数。
在这个计数器电路中,时钟信号驱动计数器进行计数操作,而脉冲信号则用于检测计数值是否达到15,如果达到15,则产生一个输出脉冲信号来表示计数器已经溢出。
具体实现时,我们可以使用触发器来存储当前计数值。
在每个时钟脉冲到来时,计数器会根据当前计数值进行加1操作,并将加1后的结果存储回触发器中。
当计数值为15时,则产生一个脉冲信号来表示溢出。
在这个例子中,脉冲信号直接参与计数器的输出,用于表示计数器是否溢出。
这种设计方式非常常见,在许多应用中都能见到。
脉冲信号作为一种简洁、高效的输出形式,通常用于表示某些特定事件的发生或状态的改变。
除了计数器,时序逻辑电路中的脉冲信号还可以用于实现状态机。
状态机是一种能够根据输入信号的不同而切换不同状态的电路。
在状态机中,脉冲信号通常用于触发状态的转换。
当输入信号满足某些条件时,状态机会生成一个脉冲信号,该脉冲信号用于切换到下一个状态或执行某个特定的操作。
总的来说,时序逻辑电路中的脉冲信号是一种重要的参与输出的信号。
脉冲信号能够在特定的时钟脉冲到来时,实现一些特定的操作,如计数、状态转换等。
时序逻辑电路应用举例
![时序逻辑电路应用举例](https://img.taocdn.com/s3/m/1b58ae73f46527d3240ce0be.png)
时序逻辑电路应用举例1 时序逻辑电路应用举例1
设计串行比较器。串行比较器对两个位数 设计串行比较器。 相同的二进制数A 进行比较,如果A>B, 相同的二进制数A,B进行比较,如果A>B, 则输出Z1Z0=10,A<B则输出 则输出Z1Z0=01, 则输出Z1Z0=10,A<B则输出Z1Z0=01, A=B则输出 A=B则输出Z1Z0=00。 则输出Z1Z0=00。
《数字逻辑电路》 数字逻辑电路》
时序逻辑电路应用举例1 时序逻辑电路应用举例1
分析:根据题意, 分析:根据题意,电路的输入为两个位数相同的数 输出为Z1Z0,状态A>B用S1,A<B用S2, 据A,B;输出为Z1Z0,状态A>B用S1,A<B用S2, A=B用S0表示 画出状态转换图如下: A=B用S0表示。画出状态转换图如下: 表示。
AB=11 × × × ×
《数字逻辑电路》 数字逻辑电路》
时序逻辑电路应用举例4 时序逻辑电路应用举例4
设计售4分的邮票机。 设计售4分的邮票机。自动售邮票机能 出售一张4分邮票,并向顾客退回余款, 出售一张4分邮票,并向顾客退回余款,它 的投币口每次只能接受一个1 的投币口每次只能接受一个1分、2分、5分 的硬币。 的硬币。
00/00 11/10 S5 10/00 01,10/01 00,01, 10/00 S0 01,11/00 10/00 10,11/01 S4 00/00 01/00 S3 00/00 10,11/00 01/00 S2 00/00 X1X2/F1F2 00/00 11/00 S1
01,11/01
《数字逻辑电路》 数字逻辑电路》
时序逻辑电路应用举例3 时序逻辑电路应用举例3
数字电子技术基础-第六章_时序逻辑电路(完整版)
![数字电子技术基础-第六章_时序逻辑电路(完整版)](https://img.taocdn.com/s3/m/e1526f7376c66137ef061918.png)
T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)
CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0
CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3
FPGA在时序逻辑电路设计中的应用
![FPGA在时序逻辑电路设计中的应用](https://img.taocdn.com/s3/m/d8ae6c3087c24028915fc333.png)
数字逻辑电路。它是一种标准化 、通用的数 字电路器
件 , 集 门 电 路 、触 发 器 、 多路 选 择 开 关 、三 态 门等 器
件和 电路连线于一身。P D L 在制造工艺上,采用T L T、
C 0 、E L M S C 、静 态 R M 技 术 , 器 件 类 型 有 P 0 、 A等 R M P A A 、G L P D P D P A 多种 。作 为 一 L 、P L A 、E L 、C L 、F G 等 种 理 想 的设 计 工 具 ,P O 有 通 用 标 准 器 件 和 半 定 制 L具 电路 的 许 多优 点 ,给 数 字 系 统 设 计 者 带 来 很 多方 便 。 特 别 在 时序 逻 辑 电路 中 获 得 了成 功 应 用 , 面 以交 通 下 信 号灯 控 制 系统 设 计 为例 介 绍 具体 的应用 过 程 。
行调试,最 后完成整个系统 的硬件设计 。这种 自下而
Hale Waihona Puke 而大大缩短系统设计周期,降低费用 。
收 稿 日期 : 20 — 9 1 090—7
() 3 降低 了硬 件 电路 设计 难 度
作者简介 :许艳,硕士 ,讲 师 。汪木兰 ,硕士,教授 。朱
昊 ,硕 士 , 讲 师 。饶 华 球 ,硕 士 ,教 授 。 牛 文 系 江 苏 省 教 育 科 学 “ 一 五 ”规 划 重 点 资 助 课 题 本 十 (— / 0 8 o / 0 ) 宿 迁 学 院 科研 重 点基 资 助项 目 B a 20 / 108 :
描述语言V r l g H L e io D 作为输入 ,给 出了核心部分的主要程序代码 。最后进行 了时序波形的仿真,并对 相关波形 中出现的毛
刺 现 象 进 行 了 相 应分 析 。
时序逻辑电路的特点
![时序逻辑电路的特点](https://img.taocdn.com/s3/m/ddbf93f868dc5022aaea998fcc22bcd126ff42dc.png)
时序逻辑电路的特点1.时序性:时序逻辑电路在工作中依赖于时间序列,根据输入信号的变化以及内部的时钟信号来确定输出信号的变化。
这种时序性使得时序逻辑电路能够实现存储和处理连续流的数据。
2.存储能力:时序逻辑电路能够存储一定量的输入数据,并根据时钟信号进行同步更新。
这使得时序逻辑电路可以实现各种存储功能,如寄存器、计数器和存储器等。
3.时钟信号的重要性:时序逻辑电路的工作主要依赖于时钟信号,时钟信号的变化决定了电路中各个存储单元的读写操作和状态转换。
时钟信号的频率和占空比等特性将直接影响时序逻辑电路的稳定性和性能。
4.状态的存储和转换:时序逻辑电路中的存储单元通常由触发器组成,可以存储不同的状态值。
这些状态值根据输入信号和时钟信号的变化而相互转换,从而实现电路的功能。
5.反馈和自激振荡:时序逻辑电路中的一些电路结构能够实现反馈机制,即输出信号可以作为输入信号的一部分,经过多次循环反馈来实现一些特定的功能,如自激振荡和时钟信号生成等。
6.高度集成:随着半导体制造技术的发展,时序逻辑电路可以以微米或纳米级别的尺寸实现高度集成,以满足不同应用场景对电路规模和工作速度的要求。
7.异步和同步:时序逻辑电路可以分为异步和同步两种类型。
异步电路是根据输入信号的变化来更新输出信号,不依赖时钟信号;而同步电路则需要时钟信号的触发来进行同步更新,具有更高的稳定性和可靠性。
8.时序分析的复杂性:由于时序逻辑电路中各个存储单元的状态转换以及时钟信号的传播延迟等因素,时序分析变得更加复杂。
在设计和测试时序逻辑电路时,需要考虑信号的时序关系、时钟边沿的触发时机等问题,以确保电路的正确性和性能。
9.应用广泛:时序逻辑电路是数字电路中的核心部分,广泛应用于计算机、通信、控制系统、嵌入式系统等各个领域。
同时,时序逻辑电路也是现代大规模集成电路的基础,影响着数字电路技术的发展。
总结来说,时序逻辑电路具有时序性、存储能力、时钟信号的重要性、状态的存储和转换、反馈和自激振荡、高度集成、异步和同步、时序分析的复杂性以及广泛的应用等特点。
MSI时序逻辑电路及其应用电路设计
![MSI时序逻辑电路及其应用电路设计](https://img.taocdn.com/s3/m/d1457b6f66ec102de2bd960590c69ec3d5bbdb22.png)
1
1
1
0 保持
QD是最高位,QA是最低位。
CO是加计数进位输出端;
BO是减计数借位输出端。
2005-6-4
9
74LS192 引脚图
74LS192时序图
2005-6-4
10
30s计时器的设计
Q7 Q6 Q5 Q4
Q3 Q2 Q1 Q0
76 2 3
76 2 3
13 BO
Q3 Q2 Q1 Q0 4 CPD
7 CTP
D3 D2 D1 D0
2 6 543
+5V
84
10Hz 3
7
+5V 5.1k
555 6 2
4.7k
5
1
0.1F
10F
8
30s计时器的设计
74LS192 是双时钟加/减十进制 同步计数器,其功能表为:
UP DOWN LOAD CLR 操 作
X
X
X
1 清零
X
X
1
1
0
0 置数
1
0 加计数
1
0 减计数
➢ 可由555定时器或石英晶体振荡器构成
30s计时器的设计
➢ 由各种有递减计数功能的IC芯片构成 ➢ 由CPLD构成
译码显示器的设计 控制电路的设计(难点)
➢ 根据设计要求,用试凑法设计
2005-6-4
7
2005-6-4
秒脉冲发生器的设计
1 Hz
1
15
10 +5V
CO
CTT
CC40161
9 LD
2005-6-4
16
篮球竞赛 24s 定时器设计
参考框图
振分 荡频 器器
时序逻辑电路
![时序逻辑电路](https://img.taocdn.com/s3/m/3099eb134a35eefdc8d376eeaeaad1f34693112f.png)
时序逻辑电路时序逻辑电路是一种在电子数字电路领域中应用广泛的重要概念,它主要用于解决电路中的时序问题,如时钟同步问题、时序逻辑分析等。
本文将详细介绍时序逻辑电路的基础概念、工作原理以及应用。
一、时序逻辑电路的基础概念1、时序逻辑和组合逻辑的区别组合逻辑电路是一类基于组合逻辑门的电路,其输出仅取决于输入信号的当前状态,不受先前的输入状态所影响。
而时序逻辑电路的输出则受到先前输入信号状态的影响。
2、时序逻辑电路的组成时序逻辑电路通常由时钟、触发器、寄存器等组成。
时钟信号被用于同步电路中的各个部分,触发器将输入信号存储在内部状态中,并在时钟信号的作用下用来更新输出状态。
寄存器则是一种特殊类型的触发器,它能够存储多个位的数据。
3、时序逻辑电路的分类根据时序逻辑电路的时序模型,可将其分为同步和异步电路。
同步电路按照时钟信号的周期性工作,这意味着电路通过提供时钟信号来同步所有操作,而操作仅在时钟上升沿或下降沿时才能发生。
异步电路不同,它不依赖时钟信号或时钟信号的上升和下降沿,所以在一次操作完成之前,下一次操作可能已经开始了。
二、时序逻辑电路的工作原理时序逻辑电路的主要工作原理基于触发器的行为和时钟电路的同步机制。
在时序逻辑电路中使用了一些触发器来存储电路状态,待时钟信号到达时更新输出。
时钟信号提供了同步的机制,确保电路中所有部分在时钟信号到达时同时工作。
触发器的基本工作原理是将输入信号存储到内部状态中,并在时钟信号的作用下,用来更新输出状态。
时钟信号的边沿触发触发器,即在上升沿或下降沿时触发触发器状态的更新。
这意味着在更新之前,电路的状态保持不变。
三、时序逻辑电路的应用1、时序电路在计算机系统中的应用时序逻辑电路在计算机系统中有着广泛的应用。
例如,计算机中的时钟信号可用来同步处理器、主存储器和其他外设间的工作。
此外,电路中的寄存器和触发器也被用于存储和更新信息,这些信息可以是计算机程序中的指令、运算结果或其他数据。
有限状态机和时序逻辑电路
![有限状态机和时序逻辑电路](https://img.taocdn.com/s3/m/b5c3cad0f605cc1755270722192e453610665b10.png)
有限状态机和时序逻辑电路有限状态机和时序逻辑电路都是数字电路的重要部分,它们在数字系统中起着非常重要的作用。
这两者之间的关系是非常密切的,因为它们都是用于处理时序信号的。
虽然它们之间有很多相似之处,但是它们的实现目的、设计方法和应用场景却有很大的不同。
先来了解一下有限状态机。
有限状态机(Finite State Machine,简称FSM)是一种表示有限状态集的数学模型,它由一组状态、一组输入和一组输出构成。
有限状态机可以用来描述对象的行为,当输入变化时,状态机可以根据当前状态和输入的变化,自动地转移到一个新状态,并输出相应的结果。
FSM 的实现通常基于逻辑门电路或者触发器电路,设计中需要描述状态转移的规则和输出的逻辑关系。
因此,FSM 是一种用于控制系统的常见技术,例如自动机、解码器、数据整理器等等。
FSM 的设计和实现需要考虑状态转移的稳定性、时序性、输出控制和误差容忍度等因素。
时序逻辑电路则是一种数字电路,主要用于处理时序信号,它的输出状态是由输入信号和内部状态决定的,通常它包含了时钟信号以及各种逻辑门、触发器等方便组合的逻辑元件。
时序逻辑电路的设计和实现需要考虑时序稳定性、时钟速度、电源电压等因素。
时序逻辑电路具有小功耗、高速度、高性能等特点,因此它被广泛应用于高速通信领域、计算机内部控制电路和现代数字电子设备等领域。
在实际应用中,常常需要将有限状态机和时序逻辑电路结合起来使用,以满足控制和逻辑处理的需要。
例如,在计算机的中央处理器中,就采用了多级的逻辑电路和有限状态机实现了非常复杂的指令解释和控制功能。
总之,有限状态机和时序逻辑电路都是非常重要的数字电路部件,它们在我们的现代化社会中扮演着至关重要的角色。
无论是在通信、计算机还是其他应用领域中,它们都是支撑数字电路设计的重要基础。
时序电路的作用
![时序电路的作用](https://img.taocdn.com/s3/m/a84299f88ad63186bceb19e8b8f67c1cfad6ee94.png)
时序电路的作用1. 时序电路简介时序电路是指一类能够按照预定的时间顺序进行状态切换的电路。
它由各种触发器、计数器和时钟信号等组成,广泛应用于数字系统中,用于控制和调度各个部件的运行顺序。
时序电路在数字系统中起着至关重要的作用。
2. 时序电路的分类2.1 同步时序电路同步时序电路是指通过同步信号进行状态切换的电路。
同步时序电路中,各个触发器和计数器的状态变化是同步进行的,由时钟信号来驱动。
典型的同步时序电路包括时钟分频器和状态机等。
同步时序电路通过统一的时钟信号来保证各个部件的同步运行,能够提高系统的稳定性和可靠性。
2.2 异步时序电路异步时序电路是指通过异步信号进行状态切换的电路。
异步时序电路中,各个触发器和计数器的状态变化是独立进行的,不需要时钟信号来驱动。
典型的异步时序电路包括门闩电路和脉冲生成电路等。
异步时序电路能够根据特定的输入信号实时响应,具有较高的灵活性和响应速度。
3. 时序电路的作用时序电路在数字系统中发挥着重要的作用,具有以下几个方面的功能:3.1 控制信号的生成和延时时序电路能够根据时钟信号和输入信号生成各个部件的控制信号,并对信号进行延时处理。
通过时序电路可以实现复杂的控制逻辑,对各个部件的运行顺序和时序进行精确控制,确保数字系统的正常工作。
3.2 数据的存储和传递时序电路中的触发器和计数器等部件能够存储和传递数据。
触发器可以将输入的数据存储起来,并在时钟信号的作用下将数据传递给下一个触发器或计数器,从而实现数据的传输和处理。
时序电路可以在不同的时钟周期中完成各个数据操作,确保数据的正确性和稳定性。
3.3 状态的控制和转换时序电路中的状态机可以对系统的状态进行控制和转换。
状态机能够根据输入信号的变化和时钟信号的触发,按照预定的状态转移规则进行状态的切换。
通过状态机的设计,可以实现复杂的状态控制和决策逻辑,使系统能够按照特定的流程和顺序进行运行。
3.4 时序逻辑的实现时序电路能够实现各种时序逻辑的功能。
时序逻辑电路特点
![时序逻辑电路特点](https://img.taocdn.com/s3/m/57e374bc03d276a20029bd64783e0912a3167c5c.png)
时序逻辑电路特点什么是时序逻辑电路?时序逻辑电路是数字电路中的一种重要类型,它是通过将逻辑门与时钟信号结合起来,实现对输入信号状态的记忆和控制。
时序逻辑电路能够对输入信号进行存储、延迟和触发,通过时钟信号的作用,在特定的时间进行功能运算和状态转换。
时序逻辑电路的基本单元时序逻辑电路的基本单元是触发器(Flip-Flop)。
触发器是一种具有两个稳定状态(0和1)的存储设备,可以将输入信号的状态在时钟信号的控制下保持不变,直到下一次时钟信号的到来。
常见的触发器有RS触发器、D触发器、JK触发器和T触发器等。
时序逻辑电路的特点1.存储能力:时序逻辑电路能够存储上一时钟周期内的输入信号状态,在下一时钟周期进行处理。
通过触发器的稳定状态保持,可以实现各种功能的状态记忆和控制。
2.时序性:时序逻辑电路在不同的时间阶段对输入信号进行处理和响应,它可以根据时钟信号的控制,在特定的时间点进行状态转换、数据传输和计算操作。
3.同步性:时序逻辑电路的操作是由外部时钟信号驱动的,同步性很强。
所有触发器的时钟输入端连接在一起,通过时钟信号的上升或下降沿,触发器的状态同时发生变化,实现电路中各部分的同步动作。
4.可插拔性:时序逻辑电路的设计灵活,可以根据具体要求进行组合和连接。
各种触发器可以根据需要的功能进行选择和应用,同时也可以通过级联和并联的方式构建复杂的时序逻辑电路。
5.实现复杂功能:时序逻辑电路可以通过组合和连接基本的触发器,实现各种复杂的功能和算法。
例如,时序逻辑电路可以用于实现计数器、移位寄存器、状态机、序列检测器等。
6.时延存在:由于时序逻辑电路中的触发器在时钟的作用下才会发生状态改变,所以在信号传输和处理过程中会引入一定的时延。
时序逻辑电路的时延是由信号传播延迟、触发器响应时间等因素决定的。
时序逻辑电路的应用时序逻辑电路广泛应用于各种数字系统和电子设备中,其特点使得它适合处理与时间相关的问题。
以下是一些常见的应用场景:1.计数器:时序逻辑电路可用于实现各种计数器,如二进制计数器、BCD计数器等。
数电实验(七) 时序逻辑电路的应用 设计一个交通灯控制电路
![数电实验(七) 时序逻辑电路的应用 设计一个交通灯控制电路](https://img.taocdn.com/s3/m/badf1021bd64783e09122b80.png)
苏州科技学院实验报告
课程名称:数字电子技术
实验项目名称:时序逻辑电路的应用学生姓名:
专业班级:
学号:
实验日期:
实验七设计一个交通灯控制电路
一设计目的
(1)熟悉集成电路的引脚安排
(2)掌握各芯片的逻辑功能及使用方法
(3)了解面包板结构及其接线方法
(4)了解数字交通灯控制电路的组成及工作原理
(5)学会用仿真软件对设计的原理图进行仿真
(6)熟悉数字交通灯控制电路的设计与制作
二设计思路
(1)设计秒脉冲发生器
(2)设计交通灯定时电路
(3)设计交通灯控制电路
(4)设计交通灯译码电路
(5)设计交通灯显示时间电路
三设计电路图真值表
交通灯控制电路逻辑真值表
四实验心得体会
这次实验,我不仅初步学会了仿真软件的使用方法,同时也更加的了解了数字交通灯控制电路的组成及工作原理,并且知道了如何设计与制作数字交通灯控制电路。
当然在实验中也遇到了一些问题,比如连线没连好,导致控制电路无法运行。
经过努力,设计的交通灯控制电路正确的运行。
此次实验进一步锻炼了我的动手能力,同时也加强了我思考问题的能力。
Multisim在时序逻辑电路实验教学中的应用
![Multisim在时序逻辑电路实验教学中的应用](https://img.taocdn.com/s3/m/8020416b0b1c59eef8c7b413.png)
OO 1O O0 1 l O 1O O
O 10 1
0 1O 1 O1 1O O l 11
1OOO
100 1
形成原始状态图l i 状态化简, 得出I I 状态编码,得出 和原始状态表 I。最小 l 状态表 『’二进制状态表 l
( ) 始状 态 图 1原 原始 状态 图是 对 逻 辑 问题 最 原 始 的 描 述 , 它们
110O 0O O 1
OO 0 1 00 01 0OO l
能够 直观 、 晰地反 映 同步 时 序逻 辑 电路 的 逻辑 特 清
性 。在数 字钟 里 , 时 位 的计 数 序 列 是 1 2 … 1 , 对 , , 1
个关键 点的波 形 变化 ,加 深 了理 解 , 同时也 提 高 了实验 的效 果 。
关键 词 :Muim;数字 逻辑 ;时序逻 辑 电路 ;实验 教学 ls ti
Ap l a i n o u tsm n t e e p rm e t lt a h ng f r p i to fM lii i h x e i n a e c i o c
0 引 言
《 数字逻辑》 课程是 电气 、 电子 、 自动化、 通信与
( ) 器件 库提供 数 千 种 电路 元 器件 供 实 验选 1元 用, 同时 也可 以新建 或扩 充 已有 的元 器 件库业本科生必修 的一
门 专 业 基 础 课 程 , 进一 步 学 习 《 算 机 组 成 原 是 计
1 1…1 2,, 2是 1 2进制 的 , 且无 0数 。假 设 计 数 器 的 各个状 态 分 别用 s ,l… ,。表 示 , 进 位 信 号 为 O s, s 取
2 1 年 第9 01 期
常用的时序逻辑电路
![常用的时序逻辑电路](https://img.taocdn.com/s3/m/504c6a26c4da50e2524de518964bcf84b9d52d03.png)
常用的时序逻辑电路时序逻辑电路是数字电路中一类重要的电路,它根据输入信号的顺序和时序关系,产生对应的输出信号。
时序逻辑电路主要应用于计时、控制、存储等领域。
本文将介绍几种常用的时序逻辑电路。
一、触发器触发器是一种常见的时序逻辑电路,它具有两个稳态,即SET和RESET。
触发器接受输入信号,并根据输入信号的变化产生对应的输出。
触发器有很多种类型,常见的有SR触发器、D触发器、JK 触发器等。
触发器在存储、计数、控制等方面有广泛的应用。
二、时序计数器时序计数器是一种能按照一定顺序计数的电路,它根据时钟信号和控制信号进行计数。
时序计数器的输出通常是一个二进制数,用于驱动其他电路的工作。
时序计数器有很多种类型,包括二进制计数器、BCD计数器、进位计数器等。
时序计数器在计时、频率分频、序列生成等方面有广泛的应用。
三、时序比较器时序比较器是一种能够比较两个信号的大小关系的电路。
它接受两个输入信号,并根据输入信号的大小关系产生对应的输出信号。
时序比较器通常用于判断两个信号的相等性、大小关系等。
常见的时序比较器有两位比较器、四位比较器等。
四、时序多路选择器时序多路选择器是一种能够根据控制信号选择不同输入信号的电路。
它接受多个输入信号和一个控制信号,并根据控制信号的不同选择对应的输入信号作为输出。
时序多路选择器常用于多路数据选择、时序控制等方面。
五、时序移位寄存器时序移位寄存器是一种能够将数据按照一定规律进行移位的电路。
它接受输入信号和时钟信号,并根据时钟信号的变化将输入信号进行移位。
时序移位寄存器常用于数据存储、数据传输等方面。
常见的时序移位寄存器有移位寄存器、移位计数器等。
六、状态机状态机是一种能够根据输入信号和当前状态产生下一个状态的电路。
它由状态寄存器和状态转移逻辑电路组成,能够实现复杂的状态转移和控制。
状态机常用于序列识别、控制逻辑等方面。
以上是几种常用的时序逻辑电路,它们在数字电路设计中起着重要的作用。
电路中的时序电路及其应用
![电路中的时序电路及其应用](https://img.taocdn.com/s3/m/6c776f570a4e767f5acfa1c7aa00b52acfc79c2d.png)
电路中的时序电路及其应用时序电路,是指能够根据输入信号的特点和时刻的先后顺序进行控制和操作的电路。
在现代电子技术中,时序电路的应用广泛,涉及到计算机、通信、数据处理等领域。
本文将从时序电路的基本概念、组成要素以及应用案例三个方面逐一进行论述。
一、时序电路的基本概念时序电路是根据电路输入信号的特性和产生的时序发展过程,在电路中加入相应的逻辑门、触发器、计数器、时钟等组成的。
它能根据输入信号的特点和时刻的先后顺序,对输出信号进行控制和操作,具有存储和记忆功能。
时序电路的设计和实现需要考虑以下几个方面:1. 时钟信号:时序电路中的时钟信号起到了同步作用,指示电路中的操作时刻。
通过时钟信号的控制,时序电路能够按照特定的顺序执行相应的逻辑操作。
2. 输入端:时序电路的输入可以是外部信号,也可以是来自其他电路的输出信号。
输入信号的特性和时刻的先后顺序,是时序电路的设计和操作的基础。
3. 时序逻辑电路:时序逻辑电路是时序电路的核心组成部分。
通过逻辑门、触发器、计数器等器件的组合和连接,实现时序电路的功能。
逻辑电路中的逻辑门决定了输出信号的逻辑关系,而触发器和计数器则能够实现信号的存储和时序的处理。
4. 输出端:时序电路的输出可以是某种状态信号,也可以是控制信号。
输出信号的形式和时刻,取决于时序电路的设计目标和需要实现的功能。
二、时序电路的组成要素时序电路的组成要素包括时钟信号、触发器、计数器和时序逻辑电路。
1. 时钟信号:时钟信号是时序电路中的核心信号,支持时序电路按照特定的时间顺序进行操作。
时钟信号的稳定性和频率精度对于时序电路的正常运行至关重要。
通常,时钟信号由晶体振荡器或稳定的外部时钟源提供。
2. 触发器:触发器是时序电路中重要的存储元件,用于存储、记忆和控制输入和输出信号之间的关系。
常见的触发器包括D触发器、JK 触发器和T触发器等。
触发器的输入端包括时钟信号、预设信号、清零信号和输入信号等,根据输入信号的变化和触发器内部的逻辑电路原理,输出信号状态会发生相应的变化。
时序逻辑电路应用举例
![时序逻辑电路应用举例](https://img.taocdn.com/s3/m/d0c74908ba1aa8114431d912.png)
时序逻辑电路应用举例1 抢答器在智力竞赛中,参赛者通过抢先按动按钮,取得答题权。
图1是由4个D触发器和2个“与非”门、1个“非”门等组成的4人抢答电路。
抢答前,主持人按下复位按钮SB,4个D触发器全部清0,4个发光二极管均不亮,“与非”门G1输出为0,三极管截止,扬声器不发声。
同时,G2输出为1,时钟信号CP经G3送入触发器的时钟控制端。
此时,抢答按钮SB1~SB4未被按下,均为低电平,4个D 触发器输入的全是0,保持0状态不变。
时钟信号CP可用555定时器组成多谐振荡器的输出。
当抢答按钮SB1~SB4中有一个被按下时,相应的D触发器输出为1,相应的发光二极管亮,同时,G1输出为1,使扬声器响,表示抢答成功,另外G1输出经G2反相后,关闭G3,封锁时钟信号CP,此时,各触发器的时钟控制端均为1,如果再有按钮被按下,就不起作用了,触发器的状态也不会改变。
抢答完毕,复位清零,准备下次抢答。
图1四人抢答器2。
八路彩灯控制器八路彩灯控制器由编码器、驱动器和显示器(彩灯)组成,编码器根据彩灯显示的花型按节拍送出八位状态编码信号,通过驱动器使彩灯点亮、熄灭。
图2给出的八路彩灯控制器电路图中,编码器用两片双向移位寄存器74LS194实现,接成自启动脉冲分配器(扭环形计数器),其中D1为左移方式,D2为右移方式。
驱动器电路如图3,当寄存器输出Q为高电平时,三极管T导通,继电器K通电,其动合触点闭合,彩灯亮;当Q为低电平时,三极管截止,继电器复位,彩灯灭。
图2 八路彩灯控制器电路工作时,先用负脉冲清零,使寄存器输出全部为0,然后在节拍脉冲(可由555定时器构成的多谐振荡器输出)的控制下,寄存器的各个输出Q按下表所示的状态变化,每8个节拍重复一次。
这里假定8路彩灯的花型是:由中间向两边对称地逐次点亮,全亮后,再由中间向两边逐次熄灭。
图3 驱动器电路寄存器输出状态3 数字钟在许多场合大量使用的数字电子钟,具有显示时、分、秒,以及自动计时和校正对时的功能。
电子电路中的时序电路有哪些重要应用
![电子电路中的时序电路有哪些重要应用](https://img.taocdn.com/s3/m/7b5aeb36a517866fb84ae45c3b3567ec102ddcea.png)
电子电路中的时序电路有哪些重要应用时序电路是电子电路中的一种重要组成部分,广泛应用于数字电子系统中,用于控制和处理信号的时序关系。
时序电路的作用在于根据输入信号的时序关系来控制输出信号的生成和变化。
它能够实现时序逻辑功能,在计算机、通信、控制系统等领域有着重要的应用。
本文将介绍时序电路的一些重要应用。
1. 计数器计数器是时序电路中最常见的应用之一。
它可以用于计数、频率分频、周期测量等方面。
在计算机中,计数器被广泛用于实现程序计数、周期计时等功能。
在通信系统中,计数器可以实现数据包的计数和时间间隔的测量。
计数器可以根据输入信号的时序关系进行递增或递减,从而实现不同的计数功能。
2. 时钟电路时钟电路是现代数字电子系统中不可或缺的组成部分。
它提供稳定的时序信号,用于同步各个部件的操作。
时钟电路可以根据需要产生不同频率的时钟信号,用于控制处理器的运行速度、存储器的读写、I/O设备的操作等。
时钟电路的稳定性和准确性对于系统的正常运行至关重要。
3. 时序生成器时序生成器是一种能够按照指定的时序关系生成输出信号的电路。
它可以根据输入信号的时序特征生成特定的时序模式。
在数字信号处理领域,时序生成器被广泛应用于信号重构、滤波等方面。
在通信系统中,时序生成器可以实现调制解调、编解码等功能。
时序生成器的设计需要考虑输入信号的特点和系统需求,以实现准确、可靠的时序生成。
4. 时序检测器时序检测器用于检测输入信号的时序关系,并输出相应的控制信号。
它可以实现对输入信号的有效监测和判断。
在计算机系统中,时序检测器可以用于指令的解码和执行控制。
在通信系统中,时序检测器可以用于数据包的识别和处理。
时序检测器的设计需要考虑输入信号的特征和系统需求,以实现准确、可靠的时序检测。
5. 时序同步器时序同步器用于将异步输入信号转化为同步输出信号。
它可以解决输入信号时序不同步的问题,确保信号在系统内各个模块间的同步传输。
时序同步器的设计需要考虑输入信号的时序特性和同步方式,以实现可靠的同步传输。
时序逻辑和组合逻辑的详解
![时序逻辑和组合逻辑的详解](https://img.taocdn.com/s3/m/ad6b9d9e29ea81c758f5f61fb7360b4c2f3f2a6b.png)
时序逻辑和组合逻辑的详解时序逻辑和组合逻辑是数字电路设计的两种基本逻辑设计方法,它们在数字系统中起着至关重要的作用。
时序逻辑是一种依赖于时钟信号的逻辑设计方法,通过定义在时钟信号上升沿或下降沿发生的动作,来确保逻辑电路的正确性和稳定性。
而组合逻辑则是一种不依赖时钟信号的逻辑设计方法,其输出只取决于当前的输入状态,不受到时钟信号的控制。
本文将分别对时序逻辑和组合逻辑进行详细的阐释,并比较它们在数字电路设计中的应用和特点。
时序逻辑首先来看时序逻辑,它是一种将输入、输出和状态信息随时间推移而改变的逻辑系统。
时序逻辑的设计需要考虑到时钟信号的作用,时钟信号的传输速率影响了时序逻辑电路的稳定性和响应速度。
时钟信号的频率越高,电路的工作速度越快,但同时也会增加功耗和故障率。
因此,在设计时序逻辑电路时,需要充分考虑时钟频率的选择,以及如何合理地控制时钟信号的传输和同步。
时序逻辑电路通常由触发器、寄存器、计数器等组件构成,这些组件在特定的时钟信号下按照预定的顺序工作,将输入信号转换成输出信号。
时序逻辑电路的设计需要满足一定的时序约束,确保信号在特定时间内的传输和处理。
时序约束包括激发时序、保持时序和时序延迟等,这些约束在设计时序逻辑电路时至关重要,一旦违反可能导致电路不能正常工作或产生故障。
时序逻辑的一个重要应用是时序控制电路,它在数字系统中起着至关重要的作用。
时序控制电路通过时序逻辑实现对数据传输、状态转换和时序控制的精确控制,保证系统的正确性和稳定性。
时序控制电路常用于时序逻辑电路的设计中,例如状态机、序列检测器、数据通路等,它们在计算机、通信、工控等领域都有广泛的应用。
时序逻辑还常用于时序信号的生成和同步,如时钟信号、复位信号、使能信号等。
时序信号的生成需要考虑电路的稳定性和同步性,确保各个部件在时钟信号的控制下协调工作。
时序信号的同步则是保证各个时序逻辑电路之间的数据传输和处理是同步的,避免数据冲突和错误。
时序逻辑电路的原理和应用
![时序逻辑电路的原理和应用](https://img.taocdn.com/s3/m/f0bd75504531b90d6c85ec3a87c24028915f85b8.png)
时序逻辑电路的原理和应用1. 什么是时序逻辑电路?时序逻辑电路是一种在数字电路中使用的电子电路,用于处理和存储时序数据。
与组合逻辑电路相比,时序逻辑电路具有存储功能,能够通过内部存储器存储前一时刻的输入状态,然后根据当前输入状态和存储状态,产生输出和更新存储状态。
时序逻辑电路一般由触发器和组合逻辑电路组成。
时序逻辑电路的核心是触发器,触发器是一种用于存储和反馈数据的元件。
触发器有多种类型,包括RS触发器、D触发器、T触发器等。
这些触发器通过连接和组合可以构成各种复杂的时序逻辑电路。
2. 时序逻辑电路的工作原理时序逻辑电路的工作原理可以通过以下步骤来说明:1.输入数据:时序逻辑电路接收外部输入的时序数据。
2.内部存储:时序逻辑电路中的触发器会存储前一时刻的输入状态。
3.组合逻辑:根据当前输入状态和存储状态,通过组合逻辑电路产生输出信号。
4.更新存储:输出信号会被反馈到触发器中,更新存储的状态。
5.输出数据:时序逻辑电路产生输出数据,并将其发送到下一个电路。
时序逻辑电路的重点在于存储和反馈数据的触发器,触发器的状态改变会引起整个电路的状态改变和输出信号的变化。
3. 时序逻辑电路的应用时序逻辑电路广泛应用于数字系统中,其应用包括但不限于以下几个方面:3.1 时钟电路时钟电路是时序逻辑电路中最常见的应用之一。
时钟信号作为整个系统的时序引导,其频率和占空比的稳定性直接影响着整个系统的工作性能。
时钟电路通常由振荡器和分频电路组成,用来产生稳定的时钟信号。
3.2 计数器计数器也是时序逻辑电路的典型应用。
计数器可以将输入的时序脉冲信号进行计数,并将计数结果输出。
计数器的种类有很多,包括二进制计数器、BCD计数器、上下计数器等。
3.3 移位寄存器移位寄存器是一种特殊的时序逻辑电路,可以将输入序列按照指定的方式进行平移和反转。
移位寄存器广泛应用于数据通信、显示驱动、图像处理等领域。
3.4 时序控制电路时序控制电路用于控制整个数字系统的操作顺序和时序关系。
时序逻辑电路的设计与应用
![时序逻辑电路的设计与应用](https://img.taocdn.com/s3/m/08f3787be418964bcf84b9d528ea81c758f52e16.png)
时序逻辑电路的设计与应用技术报告:时序逻辑电路的设计与应用报告摘要:时序逻辑电路是一种重要的数字电路,其在微处理器、电子计算机等计算机系统中开展着重要的作用。
本文首先讨论时序逻辑电路的基本概念、分类和结构特点,以及其和其他数字电路的主要区别。
然后,就时序逻辑电路的设计方法和应用场景作出详细介绍,并介绍了时序逻辑电路的工作原理、设计要点和设计步骤,以及其在实际应用中可能遇到的问题及其解决方法。
最后,本文介绍了时序逻辑电路在存储器控制、外设控制等系统中的应用,以及与其他数字电路的比较。
关键词:时序逻辑电路,设计,应用1 简介时序逻辑电路又称时序逻辑器件,是由若干个状态元件(称为时序元件)组成的一种数字电路。
它可以在一定时间内完成某些特定任务,并达到有效节能、强大功能和高效率的效果。
时序逻辑电路可以用于实现复杂的控制功能,使得复杂的计算机系统可以正常运行。
其在微处理器、电子计算机等计算机系统中开展着重要的作用。
2 基本概念时序逻辑电路是指由两种或两种以上独立的时序元件组成的一种数字电路,它可以在一定时间内完成一定任务,并达到有效节能、强大功能和高效率的效果。
时序逻辑电路由控制部分和时序部分组成,其中控制部分是由多个控制逻辑元件组成的,可以用来控制时序元件的工作状态,而时序部分是由多个时序元件组成的,它们可以在指定的时间内完成一定的任务。
3 分类根据用途的不同,时序逻辑电路可以分为两类:(1)累加器(Accumulator):用于累加计算机系统中的数据,以实现控制和计算功能。
(2)计时器(Timer):用于在指定的时间内完成特定任务,并可以控制外部设备的工作状态。
4 结构特点时序逻辑电路是由一些具有特定时序功能的时序元件组成的,它们可以按照一定的时序规律控制电路的工作状态。
时序逻辑电路的主要结构特点如下:(1)可实现复杂的控制功能:时序逻辑电路可以实现很多复杂的控制功能,如多次重复计算、状态跟踪和状态检测等,从而使得复杂的计算机系统可以正常运行。
时序逻辑电路在实际中的应用
![时序逻辑电路在实际中的应用](https://img.taocdn.com/s3/m/b20e092edd36a32d737581c4.png)
时序逻辑电路在实际中的应用时序逻辑电路是一种重要的数字逻辑电路,其特点是电路任何一个时刻的输出状态不仅取决于当时的输入信号,而且与电路的原状态有关,具有记忆功能。
构成组合逻辑电路的基本单元是逻辑门,而构成时序逻辑电路的基本单元是触发器。
时序逻辑电路在实际中的应用很广泛,数字钟、交通灯、计算机、电梯的控制盘、门铃和防盗报警系统中都能见到。
主要介绍典型的时序逻辑部件:集成计数器的识别与应用,集成寄存器的识别与应用;时序逻辑电路的分析和设计。
计数器在计算机及各种数字仪表中应用广泛,具有记忆输入脉冲个数的功能,还可以实现分频、定时等。
计数器种类繁多,按技术体制可分为二进制计数器和N进制计数器;按增减趋势可分为加计数器和减计数器;按技术脉冲引入方式可分为同步计数器和异步计数器。
同步计数器的特点是构成计数器的所有触发器共用同一个时钟脉冲,触发器的状态同时更新,计数速度快;而异步计数的特点是构成计数器的触发器不共用同一个时钟脉冲,所有触发器更新状态的时刻不一致,计数速度相对较慢。
在实际应用中,计数器是以集成电路形式存在的,主要有集成二进制计数器、集成十进制计数器两大类,其他进制计数器可由它们通过外电路设计来实现。
在每一大类计数器中,又以同步与异步、加计数与可逆计数来细分。
寄存器具有接收数码、存放或传递数码的功能,由触发器和逻辑门组成。
其中,触发器用来存放二进制数,逻辑门用来控制二进制数的接收、传送和输出。
由于一个触发器只能存放1位二进制数,因此,存放n位二进制数的n位寄存器,需要n个触发器来组成。
寄存器有数码寄存器和移位寄存器2种。
输入输出方式有并入-并出、并入-串出、串入-并出、串入-串出4种。
当寄存器的每一位数码由一个时钟脉冲控制同时接收或输出时,称为并入或并出。
而每个时钟脉冲只控制寄存器按顺序逐位移入或移出数码时,称为串入或串出。
移位寄存器除了具有存储数码的功能以外,还具有移位功能。
所谓移位功能,是指寄存器里存储的数码能在时钟脉冲作用下依次左移或右移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
右移控制 0 1 0 1
操作 把寄存器清0
右移 左移 不允许
时序逻辑电路高效应用
2. 移位寄存器的应用
例1 利用移位寄存器进行代码在两个寄存器间的串行相互 传送。 (A) (B)——如图10.7; (A) (B),且要求A的内容不变——图10.8。
例2 移位寄存器在数据通信中的应用:
移位寄存器A
“串入-并出”以及“串入-串出”的寄存器。
时序逻辑电路高效应用
10.1.2 移位寄存器
▪ 具有使代码或数据移位功能的寄存器称为移位寄存器。它
是计算机和数字电子装置中常用的逻辑部件。
1. 移位寄存器的构成
▪ 串入-串出的右移寄存器:
INPUT
D SET Q Q CLR
CLOCK
D SET Q Q
CLR
从基本功能上来分类,分为“没有移位功能的代码 寄存器”和 “具有移位功能的移位寄存器”。
时序逻辑电路高效应用
10.1.1 代码寄存器
主要用来接收、寄存和传送数据或代码 一个由D触发器构成的4位代码寄存器如下图所示:
OUT4
OUT3
OUT2
OUT1
D SET Q Q
CLR
D SET Q Q
CLR
时序逻辑电路高效应用
异步清零方式
下图所示的代码寄存器,其清0操作是通过触发器的复位 端CLR来实现的,称为异步(Asynchronous)清0方式。
在这种方式下,清零方式独立于时钟CLOCK。它与上图 所示的清0方式不同,那里是靠时钟脉冲本身将D端的“0” 打入触发器的。
IN4 D SET Q IN3 D SET Q IN2 D SET Q IN1 D SET Q
第10章 时序逻辑电路的应用
时序逻辑电路高效应用
本章主要内容
(1) 寄存器 (2) 串行加法器 (3) 计数器
时序逻辑电路高效应用
10.1寄存器
寄存器是数字系统和计算机中用来存放数据或代 码的一种基本逻辑部件,它由多位触发器连接而 成。
从具体用途来分,它有多种类型,如运算器中的 数据寄存器、存储器中的地址寄存器、控制器中 的指令寄存器、I/O接口电路中的命令寄存器、状 态寄存器等等。
移位寄存器B
并行数字系统A
并行数字系统B
时序逻辑电路高效应用
例3 利用移位寄存器实现码序列检测器
Z1
Z
X 串行输入
1
1
0
1
CLOCK
时序逻辑电路高效应用
时间选通
3. 累加寄存器
▪ 二进制数a和b分别存放在寄存器RA和RB之中,通常表示为
(RA)=a, (RB)=b. 实现a和b相加,并把和数存放在RA之中, 可表示为:RA(RA) +(RB).
串行加法器需要n个CP脉冲才能完成,而并行加法器只需 一个CP脉冲即可完成。
时序逻辑电路高效应用
10.3 计数器
1. 二进制异步计数器: 工作特性:各级触发器的翻转不是同时的,每位触发器的
翻转要依赖于前一位触发器从1到0的翻转。
时序逻辑电路高效应用
二进制异步计数器
工作波形:逐级波形的二分频
计数脉冲 ~Q1 ~Q2 ~Q3
D SET Q Q
CLR
时序逻辑电路高效应用
D SET Q OUTPUT
Q
CLR
D SET Q Q
CLR
SET D Q CLR Q
SET D Q CLR Q
D SET Q CLR Q
并入-串出的右移寄存器
移位控制 并行输入控制
A
+
+
B
C
时序逻辑电路高效应用
串行输出
CLOCK
+
D
串入-并出的移位寄存器
前面讨论的加法器称为并行加法器。相加的二进制数有多 少位就相应需要多少位全加器电路,各位的加法操作是并 行进行的。
在实际使用中,对于速度要求不高的场合,还可采用串行 加法器。
时序逻辑电路高效应用
串行加法器
时序逻辑电路高效应用
典型的时序电路框图
比较: 串行加法器结构比并行加法器简单,所用设备较省。 串行加法器速度比并行加法器慢,实现n位二进制数相加,
D SET Q Q
CLR
D SET Q Q
CLR
IN4
IN3
IN2
IN1
CLOCK
由图可见,4位输入数据同时进入寄存器,寄存器的四个输出端是同时有效的, 这样的寄存器称为“并行输入并行输出”(Parallel-Input Parallel-Output)寄存器。 代码寄存器常常需要接收控制和清零功能,如下图所示:
Q
CLR
Q
CLR
Q
CLR
Q
CLR
CLOCK
时序逻辑电路高效应用
CLEAR
由JK触发器组成的4位代码寄存器
OUT4
OUT1
SET
JQ KQ
CLR SET
JQ KQ
CLR
CLOCK
LOAD CLEAR
IN4
IN1
时序逻辑电路高效应用
以上几种代码寄存器全为“并入-并出”寄存器。 在介绍了移位寄存器后,还会看到“并入-串出”、
时序逻辑电路高效应用
二进制异步计数器的状态转换表
计数脉冲序号 Q3 Q2 Q1
0
0
00
1
0
01
2
0
10
3
0
11
4
1
00
5
1
01
6
1
10
7பைடு நூலகம்
1
11
Q3(n+1) Q2(n+1) Q1(n+1)
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
0
0
0
时序逻辑电路高效应用
2. 二进制同步计数器
特点:计数脉冲同时作用到各位触发器的CP端,当计数 脉冲到来后,该翻转的触发器都同时翻转。同步计数器也 称并行计数器。
▪ 寄存器RA称为累加寄存器,简称累加器。 ▪ 它是计算机算术逻辑部件的基本组成部件。 ▪ 注意,它既是存放操作数的寄存器,又是存放操作结果的寄
存器。
时序逻辑电路高效应用
累加寄存器
RAi
CLOCK Ci
RRBi B i
Si
FA
bi ai
Q
时序逻辑电路高效应用
SET
DQ Q
CLR
C i-1
10.2 串行加法器
时序逻辑电路高效应用
同步清零方式
D
SET
Q
OUT4
CLR
Q
D
SET
Q
OUT3
CLR
Q
SET
D
Q
OUT2
CLR
Q
SET
D
Q
OUT1
CLR
Q
CLOCK LOAD
CLEAR
IN4
IN3
IN2
IN1
当LOAD=1(CLEAR=0)时,时钟脉冲到来,数据进入寄 存器。
当CLEAR=1时,时钟脉冲到来,将整个寄存器清0;当 CLEAR=0时,寄存器可以进行正常的数据输入操作。
并行输出
移位脉冲 移位控制
n位移位寄存器
串行输入
时序逻辑电路高效应用
▪ 双向移位寄存器
D SET Q Q
CLR
D SET Q Q
CLR
D SET Q Q
CLR
D SET Q Q
CLR
+
右移输入 右移控制 左移控制
+
+
时序逻辑电路高效应用
CLOCK
+
左移输入
双向移位寄存器的控制与操作:
左移控制 0 0 1 1