(精选)常用时序逻辑电路及其应用完美
常用的时序逻辑电路
常用的时序逻辑电路常用时序逻辑电路有计数器和寄存器两种。
寄存器分为数据寄存器和移位寄存器。
计数器种类较多,有同步计数器、异步计数器;有二进制计数器、十进制计数器、任意进制计数器;二进制计数器又有加法计数器、减法计数器等。
(1)寄存器数字电路中用来存放数码或指令的部件称为寄存器。
寄存器具有以下逻辑功能:可在时钟脉冲作用下将数码或指令存入寄存器(称为写入),或从寄存器中将数码或指令取出(称为读出)。
由于一个触发器只能寄存1位二进制数,要存多位数时,就得用多个触发器。
常用的有4位、8位、16位等。
寄存器存放和取出数码的方式有并行和串行两种。
并行方式就是数码各位同时从各对应位输入端输入到寄存器中,或同时出现在输出端;串行方式就是数码逐位从一个输入端输入到寄存器中,或由一个输出端输出。
寄存器根据功能的不同可分为数码寄存器和移位寄存器两种。
(a) 数码寄存器:这种寄存器只有寄存数码和清除数码的功能。
图1所示是由D触发器组成的4位数码寄存器。
该数码寄存器的工作方式为并行输入、并行输出。
图1 4位数码寄存器(b)移位寄存器:移位寄存器不仅能存放数码而且有移位功能。
根据数码在寄存器内移动的方向又可分为左移移位寄存器和右移移位寄存器两种。
在移位寄存器中,数码的存入或取出也有并行和串行两种方式。
图2所示是由J—K触发器组成的4位左移移位寄存器。
F0接成D 触发器,数码由D端串行输入;也可由d0~d3作并行输入。
从4个触发器的Q端得到并行的数码输出。
也可从Q3端逐位串行输出。
图2 4位左移移位寄存器(2)计数器因为计数器是最常用而又典型的时序逻辑电路,其分析方法即为一般时序逻辑电路的分析方法。
常用计数器有多种类型,重点掌握以下几种。
①二进制计数器:二进制计数器能按二进制的规律累计脉冲的数目,也是构成其它进制计数器的基础。
一个触发器可以表示l位二进制数,表示n位二进制数就得用n个触发器。
6时序逻辑电路3【精选】
1、N > M
原理:计数循环过程中设法跳过N-M个状态。
具体方法 (a)置零法
(b)置数法
异步置零法 同步置零法
异步预置数法 同步预置数法
例:将十进制的74160接成六进制计数器
CP RD LD EP ET 工作状态 X 0 X X X 置 0(异步)
1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0)
无
40MHZ
74LS190 十进制可逆 异步
无
20MHZ
74LS568 十进制可逆 同步 同步(低)
20MHZ
74LS163A 4位二进制 同步 同步(低)
25MHZ
74LS161A 4位二进制 同步 异步(低)
25MHZ
74LS561 4位二进制 同步 同步(低)/异步(低)30MHZ
74LS193 4位进制可逆 异步 异步(高)
双时钟:74192--集成十进制同步可逆计数器,其引脚排列图 和逻辑功能示意图与74193相同。
中规模集成计数器
几种中规模集成同步计数器
型号
模式 预置 清零
工作 频率
74LS162A 十进制 同步 同步(低)
25MHZ
74LS160A 十进制 同步 异步(低)
25MHZ
74LS168 十进制可逆 同步
25MHZ
74LS191 4位进制可逆 异步
无
20MHZ
74LS569 4位进制可逆 同步 异步(低)
20MHZ
74LS867 8位二进制 同步 同步
115MHZ
74LS569 8位二进制 异步 异步
115MHZ
三、任意进制计数器的构成方法
数字电子技术基础-第六章_时序逻辑电路(完整版)
T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)
CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0
CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3
时序逻辑电路
时序逻辑电路时序逻辑电路是一种在电子数字电路领域中应用广泛的重要概念,它主要用于解决电路中的时序问题,如时钟同步问题、时序逻辑分析等。
本文将详细介绍时序逻辑电路的基础概念、工作原理以及应用。
一、时序逻辑电路的基础概念1、时序逻辑和组合逻辑的区别组合逻辑电路是一类基于组合逻辑门的电路,其输出仅取决于输入信号的当前状态,不受先前的输入状态所影响。
而时序逻辑电路的输出则受到先前输入信号状态的影响。
2、时序逻辑电路的组成时序逻辑电路通常由时钟、触发器、寄存器等组成。
时钟信号被用于同步电路中的各个部分,触发器将输入信号存储在内部状态中,并在时钟信号的作用下用来更新输出状态。
寄存器则是一种特殊类型的触发器,它能够存储多个位的数据。
3、时序逻辑电路的分类根据时序逻辑电路的时序模型,可将其分为同步和异步电路。
同步电路按照时钟信号的周期性工作,这意味着电路通过提供时钟信号来同步所有操作,而操作仅在时钟上升沿或下降沿时才能发生。
异步电路不同,它不依赖时钟信号或时钟信号的上升和下降沿,所以在一次操作完成之前,下一次操作可能已经开始了。
二、时序逻辑电路的工作原理时序逻辑电路的主要工作原理基于触发器的行为和时钟电路的同步机制。
在时序逻辑电路中使用了一些触发器来存储电路状态,待时钟信号到达时更新输出。
时钟信号提供了同步的机制,确保电路中所有部分在时钟信号到达时同时工作。
触发器的基本工作原理是将输入信号存储到内部状态中,并在时钟信号的作用下,用来更新输出状态。
时钟信号的边沿触发触发器,即在上升沿或下降沿时触发触发器状态的更新。
这意味着在更新之前,电路的状态保持不变。
三、时序逻辑电路的应用1、时序电路在计算机系统中的应用时序逻辑电路在计算机系统中有着广泛的应用。
例如,计算机中的时钟信号可用来同步处理器、主存储器和其他外设间的工作。
此外,电路中的寄存器和触发器也被用于存储和更新信息,这些信息可以是计算机程序中的指令、运算结果或其他数据。
6.1-6.2 时序逻辑电路分析
Y
二、状态转换图: 将状态转换表以图形的方式 直观表示出来,即为状态转换图
0 1 2 3 4 5 6 7 0 1
0 0 0 0 1 1 1 0 1 0
0 0 1 1 0 0 1 0 1 0
0 1 0 1 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0
循环状态之外的状态在时钟信号的作用下, 都能进入状态转换图中的循环状态之中,具有 这种特点的时序电路叫做能自启动的时序电路。 电路为七进制计数器,能自启动。
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1
状态转换表的另一种形式
CLK Q3 Q2 Q1 Y
Q3 Q2 Q1
* * Q3 Q2 Q1* Y
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1Q1 Q2 * Q1Q2 Q1Q3Q2 Q * Q Q Q Q Q 1 2 3 2 3 3
(3)输出方程:
Y Q2Q3
6.2.2 时序逻辑电路的状态转换表、状态转换图、和时 序图 从逻辑电路的三个方程还不能一目了然看出电路 的功能。
例 试分析图示的时序逻辑电路的逻辑功能,写出它的 驱动方程、状态方程和输出方程,写出电路的状态转 换表,画出状态转换图和时序图。输入端悬空时等效 为逻辑1。
解:(1) 驱动方程: J1 (Q2Q3 ), K1 1 K 2 (Q1Q3 ) J 2 Q1 , J QQ , K 3 Q2 1 2 3
同步时序电路
异步时序电路
米利(Mealy)型时序电路
按输出信号的特点 穆尔(Moore)型时序电路 米利(Mealy)型电路:输出信号取决于存储电路 的状态和输入变量。 穆尔(Moore)型电路:输出信号仅取决于存储电路 的状态。 穆尔(Moore)型电路是米利(Mealy)型电路的一 种特例。
第六章时序逻辑电路-PPT精选.ppt
数据预置 : 设A3A2A1A0 = 1011 ,
在存数脉冲作用下,也有 Q3Q2Q1Q0 = 1011 。
四位串入 - 串出的左移寄存器
数据预置
A3
A2
A1
A0
存数 脉冲
LOAD
&
&
&
&
串行 1 SD0
1
1
0
输出
Q
3
D
Q2 D
Q1 D
Q0 D
Q
清零
Q
脉冲 RD
Q
Q
CP 移位
CLR
脉冲
下面将重点讨论 兰颜色的 那部分电路的工作原理。
四位串入 - 串出 四位串入 - 串出 的右移寄存器: 的左移寄存器:
D0 = Q1 D1 = Q2 D2 = Q3
D0 = L D1 = Q0 D2 = Q1
D3 = R
D3 = Q2
S=0 时, 也能够实现左移 , 方案可行 !
D0 = SL + SQ1 = 1·L + 0·Q1 = L
D1 = SQ0 + SQ2 = 1·Q0 + 0·Q2 = Q0 D2 = SQ1 + SQ3 = 1·Q1 + 0·Q3 = Q1 D3 = SQ2 + SR = 1·Q2 + 0·R = Q2
FF
FF
FF
FF 输出
输 并入-串出 入 多个输入端,一个输出端
输
出
FF
FF
FF
FF
输 并入-并出 入 多个输入端,多个输出端
1. 四位串入 - 串出的左移寄存器
数据预置
A3
A2
A1
&
常用时序逻辑电路及其应用
功耗优化
通过优化电路结构和降低工作电压, 减小电路功耗,延长电池寿命。
THANKS FOR WATCHING
感谢您的观看
集成电路
FPGA和CPLD
现场可编程门阵列和复杂可编程逻辑 器件,可以通过编程实现时序逻辑电 路,具有灵活性高、可重复编程等优 点。
通过集成电路工艺实现时序逻辑电路, 具有高速、低功耗等优点,但成本较 高。
时序逻辑电路的性能优化
面积优化
在满足功能和性能要求的前提下, 尽量减小电路规模,降低成本。
速度优化
寄存器
总结词
寄存器是一种能够存储二进制数据的电路,它可以保存数据并按照时钟信号的节 拍进行数据的读写操作。
详细描述
寄存器由多个触发器组成,每个触发器存储一位二进制数。在时钟信号的上升沿 或下降沿时,寄存器会将输入的数据保存到触发器中,并在下一个时钟信号的上 升沿或下降沿时将数据输出。寄存器常用于数据的串行传输和并行传输。
02 常用时序逻辑电路
触发器
总结词
触发器是一种具有记忆功能的电路,它能够存储二进制数据,并在特定条件下改变状态。
详细描述
触发器有两个稳定状态,分别表示二进制数的0和1。当触发器的输入信号满足一定条 件时,触发器会从一个状态跳变到另一个状态,并保持该状态直到外部信号改变其状态。
常见的触发器有RS触发器、D触发器和JK触发器等。
常用时序逻辑电路及其应用
目录
• 时序逻辑电路概述 • 常用时序逻辑电路 • 时序逻辑电路的应用 • 时序逻辑电路的设计与实现
01 时序逻辑电路概述
时序逻辑电路的定义
总结词
时序逻辑电路是一种能够存储二进制状态,并按照一定的逻辑关系进行输入和输出的电路。
数字集成电路(时序逻辑电路)
目录
• 引言 • 时序逻辑电路的基本概念 • 数字集成电路的组成 • 时序逻辑电路的分析方法
目录
• 引言 • 时序逻辑电路的基本概念 • 数字集成电路的组成 • 时序逻辑电路的分析方法
目录
• 时序逻辑电路的设计方法 • 时序逻辑电路的应用 • 时序逻辑电路的发展趋势和挑战
逻辑门
01
逻辑门是数字集成电路的基本组成单元,用于实现逻辑运算(如AND、 OR、NOT等)。
02
常见的逻辑门有TTL(Transistor-Transistor Logic)和CMOS (Complementary Metal-Oxide Semiconductor)等类型。
03
逻辑门通常由晶体管组成,通过不同的组合和连接方式实现各种逻辑 功能。
目录
• 时序逻辑电路的设计方法 • 时序逻辑电路的应用 • 时序逻辑电路的发展趋势和挑战
01
引言
01
引言
主题简介
数字集成电路
数字集成电路是利用半导体技术将逻 辑门、触发器等数字逻辑单元集成在 一块衬底上,实现数字信号处理功能 的集成电路。
时序逻辑电路
时序逻辑电路是一种具有记忆功能的 电路,其输出不仅取决于当前的输入 ,还与电路的先前状态有关。常见的 时序逻辑电路有寄存器、计数器等。
时序图
通过图形方式表示时序逻辑电路的输入和输出随时间变化的规律,能够直观地展 示电路的工作过程。
逻辑方程和时序图
逻辑方程
描述时序逻辑电路输入和输出关系的数学表达式,通常由触发器的状态方程和输 出方程组成。
时序图
通过图形方式表示时序逻辑电路的输入和输出随时间变化的规律,能够直观地展 示电路的工作过程。
常用的时序逻辑电路
常用的时序逻辑电路时序逻辑电路是数字电路中一类重要的电路,它根据输入信号的顺序和时序关系,产生对应的输出信号。
时序逻辑电路主要应用于计时、控制、存储等领域。
本文将介绍几种常用的时序逻辑电路。
一、触发器触发器是一种常见的时序逻辑电路,它具有两个稳态,即SET和RESET。
触发器接受输入信号,并根据输入信号的变化产生对应的输出。
触发器有很多种类型,常见的有SR触发器、D触发器、JK 触发器等。
触发器在存储、计数、控制等方面有广泛的应用。
二、时序计数器时序计数器是一种能按照一定顺序计数的电路,它根据时钟信号和控制信号进行计数。
时序计数器的输出通常是一个二进制数,用于驱动其他电路的工作。
时序计数器有很多种类型,包括二进制计数器、BCD计数器、进位计数器等。
时序计数器在计时、频率分频、序列生成等方面有广泛的应用。
三、时序比较器时序比较器是一种能够比较两个信号的大小关系的电路。
它接受两个输入信号,并根据输入信号的大小关系产生对应的输出信号。
时序比较器通常用于判断两个信号的相等性、大小关系等。
常见的时序比较器有两位比较器、四位比较器等。
四、时序多路选择器时序多路选择器是一种能够根据控制信号选择不同输入信号的电路。
它接受多个输入信号和一个控制信号,并根据控制信号的不同选择对应的输入信号作为输出。
时序多路选择器常用于多路数据选择、时序控制等方面。
五、时序移位寄存器时序移位寄存器是一种能够将数据按照一定规律进行移位的电路。
它接受输入信号和时钟信号,并根据时钟信号的变化将输入信号进行移位。
时序移位寄存器常用于数据存储、数据传输等方面。
常见的时序移位寄存器有移位寄存器、移位计数器等。
六、状态机状态机是一种能够根据输入信号和当前状态产生下一个状态的电路。
它由状态寄存器和状态转移逻辑电路组成,能够实现复杂的状态转移和控制。
状态机常用于序列识别、控制逻辑等方面。
以上是几种常用的时序逻辑电路,它们在数字电路设计中起着重要的作用。
电路中的时序电路及其应用
电路中的时序电路及其应用时序电路,是指能够根据输入信号的特点和时刻的先后顺序进行控制和操作的电路。
在现代电子技术中,时序电路的应用广泛,涉及到计算机、通信、数据处理等领域。
本文将从时序电路的基本概念、组成要素以及应用案例三个方面逐一进行论述。
一、时序电路的基本概念时序电路是根据电路输入信号的特性和产生的时序发展过程,在电路中加入相应的逻辑门、触发器、计数器、时钟等组成的。
它能根据输入信号的特点和时刻的先后顺序,对输出信号进行控制和操作,具有存储和记忆功能。
时序电路的设计和实现需要考虑以下几个方面:1. 时钟信号:时序电路中的时钟信号起到了同步作用,指示电路中的操作时刻。
通过时钟信号的控制,时序电路能够按照特定的顺序执行相应的逻辑操作。
2. 输入端:时序电路的输入可以是外部信号,也可以是来自其他电路的输出信号。
输入信号的特性和时刻的先后顺序,是时序电路的设计和操作的基础。
3. 时序逻辑电路:时序逻辑电路是时序电路的核心组成部分。
通过逻辑门、触发器、计数器等器件的组合和连接,实现时序电路的功能。
逻辑电路中的逻辑门决定了输出信号的逻辑关系,而触发器和计数器则能够实现信号的存储和时序的处理。
4. 输出端:时序电路的输出可以是某种状态信号,也可以是控制信号。
输出信号的形式和时刻,取决于时序电路的设计目标和需要实现的功能。
二、时序电路的组成要素时序电路的组成要素包括时钟信号、触发器、计数器和时序逻辑电路。
1. 时钟信号:时钟信号是时序电路中的核心信号,支持时序电路按照特定的时间顺序进行操作。
时钟信号的稳定性和频率精度对于时序电路的正常运行至关重要。
通常,时钟信号由晶体振荡器或稳定的外部时钟源提供。
2. 触发器:触发器是时序电路中重要的存储元件,用于存储、记忆和控制输入和输出信号之间的关系。
常见的触发器包括D触发器、JK 触发器和T触发器等。
触发器的输入端包括时钟信号、预设信号、清零信号和输入信号等,根据输入信号的变化和触发器内部的逻辑电路原理,输出信号状态会发生相应的变化。
常用的时序逻辑电路.ppt
二、同步十进制计数器
返回
一、同步二进制计数器
1、同步二进制加法计数器
原理:由二进制加法运算规则可知,在一个多位 二进制数的末尾加1时,若其中第i位以下各位 皆为1时,则第i位及以下各位均改变状态。 例: 1000 0111 + 1 —————————— 1000 1000 最低4位数都改变了状态,而高4位未改变。
目前常见的异步二进制加法计数器产品有: 4位:74LS293、74LS393、74HC393 7位:CC4024 12位:CC4040 14位:CC4060
二、异步十进制计数器
构成思想:如何使4位二进制计数器在计数过程中跳过 从1010到1111六个状态。
优点:结构简单
缺点:工作频率低;电路 状态译码时存在竞 争—冒险现象。
74ls75真值表输入输出cp1中规模寄存器74ls751中规模寄存器74ls752中规模寄存器74ls1752中规模寄存器74ls175四个维持阻塞d触发器构成74ls175真值表输入输出3中规模寄存器cc40763中规模寄存器cc4076异步置0输出三态控制保持cc4076ld装入数据ld保持en输出允许en74ls7574ls175cc4076均为并行输入并行输出假设4是低位寄存器1是高位寄存器由d触发器的特性方程可知
第四章 时序逻辑电路(2)
在实际使用过程中,我们用计数器辅以数据选择器可以 方便地构成各种序列发生器。构成的方法如下:
第一步 构成一个模P计数器,P为序列长度; 第二步 选择适当的数据选择器,把欲产生的序列按规定 的顺序加在数据选择器的数据输入端,并将其地址输入端与
计数器的输出端适当地连接在一起。
【例4.7】试用计数器74LS161和数据选择器设计一个011000 11序列发生器。 解:由于序列长度P=8,故将74LS161构成模8计数器, 并选用数据选择器74LS151产生所需序列,从而得电路如图
四.组成序列信号发生器
序列信号是在时钟脉冲作用下产生的一串周期性Fra bibliotek二 进制信号。
图4.39是用74LS161及门电路构成的序列信号发生器。 其中74LS161与G1构成了一个模5计数器,且Z= 。
Q0 Q 2
在CP作用下,计数器的状态变化如表4.13所示。由于 Z= Q0 Q2 ,故不同状态下的输出如该表的右列所示。因此,这 是一个01010序列信号发生器,序列长度P=5。
D0 DI
Di Qi 1
(i=1,2,…n)
设移位寄存器的初始状态为0000,串行输入数码 DI=1101,从高位到低位依次输入。在4个移位脉冲作用 后,输入的4位串行数码1101全部存入了寄存器中。电 路的状态表如表4.15所示,时序图如图4.44所示。
移位寄存器中的数码可由Q3、Q2、Q1和Q0并行输出,也 可从Q3 串行输出。串行输出时,要继续输入4个移位脉冲, 才能将寄存器中存放的4位数码1101依次输出。
【例4.4】用74LS160组成48进制计数器。 解:因为N=48,而74LS160为模10计数器,所以要 用两片74LS160构成此计数器。 先将两芯片采用同步级联方式连接成100进制计数器。
时序逻辑电路应用举例
时序逻辑电路应用举例1 抢答器在智力竞赛中,参赛者通过抢先按动按钮,取得答题权。
图1是由4个D触发器和2个“与非”门、1个“非”门等组成的4人抢答电路。
抢答前,主持人按下复位按钮SB,4个D触发器全部清0,4个发光二极管均不亮,“与非”门G1输出为0,三极管截止,扬声器不发声。
同时,G2输出为1,时钟信号CP经G3送入触发器的时钟控制端。
此时,抢答按钮SB1~SB4未被按下,均为低电平,4个D 触发器输入的全是0,保持0状态不变。
时钟信号CP可用555定时器组成多谐振荡器的输出。
当抢答按钮SB1~SB4中有一个被按下时,相应的D触发器输出为1,相应的发光二极管亮,同时,G1输出为1,使扬声器响,表示抢答成功,另外G1输出经G2反相后,关闭G3,封锁时钟信号CP,此时,各触发器的时钟控制端均为1,如果再有按钮被按下,就不起作用了,触发器的状态也不会改变。
抢答完毕,复位清零,准备下次抢答。
图1四人抢答器2。
八路彩灯控制器八路彩灯控制器由编码器、驱动器和显示器(彩灯)组成,编码器根据彩灯显示的花型按节拍送出八位状态编码信号,通过驱动器使彩灯点亮、熄灭。
图2给出的八路彩灯控制器电路图中,编码器用两片双向移位寄存器74LS194实现,接成自启动脉冲分配器(扭环形计数器),其中D1为左移方式,D2为右移方式。
驱动器电路如图3,当寄存器输出Q为高电平时,三极管T导通,继电器K通电,其动合触点闭合,彩灯亮;当Q为低电平时,三极管截止,继电器复位,彩灯灭。
图2 八路彩灯控制器电路工作时,先用负脉冲清零,使寄存器输出全部为0,然后在节拍脉冲(可由555定时器构成的多谐振荡器输出)的控制下,寄存器的各个输出Q按下表所示的状态变化,每8个节拍重复一次。
这里假定8路彩灯的花型是:由中间向两边对称地逐次点亮,全亮后,再由中间向两边逐次熄灭。
图3 驱动器电路寄存器输出状态3 数字钟在许多场合大量使用的数字电子钟,具有显示时、分、秒,以及自动计时和校正对时的功能。
电子电路中的时序电路有哪些重要应用
电子电路中的时序电路有哪些重要应用时序电路是电子电路中的一种重要组成部分,广泛应用于数字电子系统中,用于控制和处理信号的时序关系。
时序电路的作用在于根据输入信号的时序关系来控制输出信号的生成和变化。
它能够实现时序逻辑功能,在计算机、通信、控制系统等领域有着重要的应用。
本文将介绍时序电路的一些重要应用。
1. 计数器计数器是时序电路中最常见的应用之一。
它可以用于计数、频率分频、周期测量等方面。
在计算机中,计数器被广泛用于实现程序计数、周期计时等功能。
在通信系统中,计数器可以实现数据包的计数和时间间隔的测量。
计数器可以根据输入信号的时序关系进行递增或递减,从而实现不同的计数功能。
2. 时钟电路时钟电路是现代数字电子系统中不可或缺的组成部分。
它提供稳定的时序信号,用于同步各个部件的操作。
时钟电路可以根据需要产生不同频率的时钟信号,用于控制处理器的运行速度、存储器的读写、I/O设备的操作等。
时钟电路的稳定性和准确性对于系统的正常运行至关重要。
3. 时序生成器时序生成器是一种能够按照指定的时序关系生成输出信号的电路。
它可以根据输入信号的时序特征生成特定的时序模式。
在数字信号处理领域,时序生成器被广泛应用于信号重构、滤波等方面。
在通信系统中,时序生成器可以实现调制解调、编解码等功能。
时序生成器的设计需要考虑输入信号的特点和系统需求,以实现准确、可靠的时序生成。
4. 时序检测器时序检测器用于检测输入信号的时序关系,并输出相应的控制信号。
它可以实现对输入信号的有效监测和判断。
在计算机系统中,时序检测器可以用于指令的解码和执行控制。
在通信系统中,时序检测器可以用于数据包的识别和处理。
时序检测器的设计需要考虑输入信号的特征和系统需求,以实现准确、可靠的时序检测。
5. 时序同步器时序同步器用于将异步输入信号转化为同步输出信号。
它可以解决输入信号时序不同步的问题,确保信号在系统内各个模块间的同步传输。
时序同步器的设计需要考虑输入信号的时序特性和同步方式,以实现可靠的同步传输。
时序逻辑电路
第十三章 时序逻辑电路
集美轻工业学校精品课程
《电子技术基础》教学演示文稿
(2)电路组成
4位二进制同步加法计数器逻辑图
工
程
应
用
计数不正常的故障检测 第一步,先查工作电源是否正常;第二步,检查触 发器的复位端是否被长置成复位状态;第三步,用示波器观测计数脉冲是否加到 了触发器的CP端;第四步,替换触发器,以确定集成电路是否损坏。
第十三章 时序逻辑电路
集美轻工业学校精品课程
《电子技术基础》教学演示文稿
3.异步减法计数器
(1)3位递减计数器的状态
(2)电路组成3位二进来自异步减法计数器逻辑图 第十三章 时序逻辑电路
集美轻工业学校精品课程
《电子技术基础》教学演示文稿
二、十进制计数器
十进制递减计数器的状态
第十三章 时序逻辑电路
集美轻工业学校精品课程
意见和建议可联系电子信箱:chen-zhenyuan@
第十三章 时序逻辑电路
集美轻工业学校精品课程
《电子技术基础》教学演示文稿
工
程
应
用
利用计数器测量脉冲频率,见图(a)。 由计数器构成数字钟,见图(b)。
(a)测量脉冲频率的框图
(b)数字钟组成框图
第十三章 时序逻辑电路
集美轻工业学校精品课程
《电子技术基础》教学演示文稿
应用实例
由计数器所组成的 物件计数电路如右图所 示,用于检测生产线输 送带上的物件并对其进 行计数,计数范围为 1~99。该电路主要由检 测、计数、译码显示三 部分组成。
第十三章 时序逻辑电路
集美轻工业学校精品课程
《电子技术基础》教学演示文稿
图中FF0为最低位触发器,其控制端Cl 接收输入脉冲,输出信号Q0 作为触发器 FF1的CP,Q1 作为触发器FF2的CP,Q2 作为FF3的CP。各触发器的J、K 端均悬空, 相当于J=K=1,处于计数状态。各触发器接收负跳变脉冲信号时状态就翻转,它的 时序图见下图。
时序逻辑电路的设计与应用
时序逻辑电路的设计与应用技术报告:时序逻辑电路的设计与应用报告摘要:时序逻辑电路是一种重要的数字电路,其在微处理器、电子计算机等计算机系统中开展着重要的作用。
本文首先讨论时序逻辑电路的基本概念、分类和结构特点,以及其和其他数字电路的主要区别。
然后,就时序逻辑电路的设计方法和应用场景作出详细介绍,并介绍了时序逻辑电路的工作原理、设计要点和设计步骤,以及其在实际应用中可能遇到的问题及其解决方法。
最后,本文介绍了时序逻辑电路在存储器控制、外设控制等系统中的应用,以及与其他数字电路的比较。
关键词:时序逻辑电路,设计,应用1 简介时序逻辑电路又称时序逻辑器件,是由若干个状态元件(称为时序元件)组成的一种数字电路。
它可以在一定时间内完成某些特定任务,并达到有效节能、强大功能和高效率的效果。
时序逻辑电路可以用于实现复杂的控制功能,使得复杂的计算机系统可以正常运行。
其在微处理器、电子计算机等计算机系统中开展着重要的作用。
2 基本概念时序逻辑电路是指由两种或两种以上独立的时序元件组成的一种数字电路,它可以在一定时间内完成一定任务,并达到有效节能、强大功能和高效率的效果。
时序逻辑电路由控制部分和时序部分组成,其中控制部分是由多个控制逻辑元件组成的,可以用来控制时序元件的工作状态,而时序部分是由多个时序元件组成的,它们可以在指定的时间内完成一定的任务。
3 分类根据用途的不同,时序逻辑电路可以分为两类:(1)累加器(Accumulator):用于累加计算机系统中的数据,以实现控制和计算功能。
(2)计时器(Timer):用于在指定的时间内完成特定任务,并可以控制外部设备的工作状态。
4 结构特点时序逻辑电路是由一些具有特定时序功能的时序元件组成的,它们可以按照一定的时序规律控制电路的工作状态。
时序逻辑电路的主要结构特点如下:(1)可实现复杂的控制功能:时序逻辑电路可以实现很多复杂的控制功能,如多次重复计算、状态跟踪和状态检测等,从而使得复杂的计算机系统可以正常运行。
时序逻辑电路在实际中的应用
时序逻辑电路在实际中的应用时序逻辑电路是一种重要的数字逻辑电路,其特点是电路任何一个时刻的输出状态不仅取决于当时的输入信号,而且与电路的原状态有关,具有记忆功能。
构成组合逻辑电路的基本单元是逻辑门,而构成时序逻辑电路的基本单元是触发器。
时序逻辑电路在实际中的应用很广泛,数字钟、交通灯、计算机、电梯的控制盘、门铃和防盗报警系统中都能见到。
主要介绍典型的时序逻辑部件:集成计数器的识别与应用,集成寄存器的识别与应用;时序逻辑电路的分析和设计。
计数器在计算机及各种数字仪表中应用广泛,具有记忆输入脉冲个数的功能,还可以实现分频、定时等。
计数器种类繁多,按技术体制可分为二进制计数器和N进制计数器;按增减趋势可分为加计数器和减计数器;按技术脉冲引入方式可分为同步计数器和异步计数器。
同步计数器的特点是构成计数器的所有触发器共用同一个时钟脉冲,触发器的状态同时更新,计数速度快;而异步计数的特点是构成计数器的触发器不共用同一个时钟脉冲,所有触发器更新状态的时刻不一致,计数速度相对较慢。
在实际应用中,计数器是以集成电路形式存在的,主要有集成二进制计数器、集成十进制计数器两大类,其他进制计数器可由它们通过外电路设计来实现。
在每一大类计数器中,又以同步与异步、加计数与可逆计数来细分。
寄存器具有接收数码、存放或传递数码的功能,由触发器和逻辑门组成。
其中,触发器用来存放二进制数,逻辑门用来控制二进制数的接收、传送和输出。
由于一个触发器只能存放1位二进制数,因此,存放n位二进制数的n位寄存器,需要n个触发器来组成。
寄存器有数码寄存器和移位寄存器2种。
输入输出方式有并入-并出、并入-串出、串入-并出、串入-串出4种。
当寄存器的每一位数码由一个时钟脉冲控制同时接收或输出时,称为并入或并出。
而每个时钟脉冲只控制寄存器按顺序逐位移入或移出数码时,称为串入或串出。
移位寄存器除了具有存储数码的功能以外,还具有移位功能。
所谓移位功能,是指寄存器里存储的数码能在时钟脉冲作用下依次左移或右移。
时序逻辑电路应用举例(精选)共20页文档
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在举例(精选)
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SD RD Q 100 011 1 1不
变 0 0不
允 许
28
9.1.1.2 可控RS触发器
图9-2 可控RS触发器 a) 逻辑图 b) 图形符号
29
触发器的输出状态与R、S端输入状态的关系列在表9-2中。 表9-2 可控RS触发器的状态表
SR 00 01 10 11
Qn+1 Qn 0 1 不允许
30
9.1.2 JK触发器和D触发器
9.1.2.1 JK触发器
图9-3 主从型JK触发 a) 逻辑图 b) 逻辑符号
31
反映JK触发器的 Q n 和 Q n 、J、K之间的逻辑关系的 状态表,如表9-3所示。
表9-3 JK触发器的状态表
J K Qn
Qn+1
000
0
001
是N 进制计数器 ,一片即可.
N >M 的情况: 采用多片M进制计数器构成。
22
图10-15所示是把两片74161级联起来构成的256 进制同步加法计数器。
图10-15 集成计数器的级连
23
10.2.3.2用反馈清零法获得任意进制计数器
图10-16所示的九进制计数器,就是借助74161的异步清 零功能实现的。
按数值增 减趋势
加计数器 Up Counter 减计数器 Down Counter 可逆计数器 Up/Down Counter
二进制计数器 Binary
按状态变量使 用的编码
二-十进制计数器 BCD
N进制计数器 Another
8
10.2.1 二进制计数器
10.2.1.1 同步二进制计数器 1.电路组成
第10章 常用时序逻辑电路及其应用
10.1 寄存器 10.2 计数器
1
教学基本要求:
1 .计数器、寄存器的功能及类型; 2 .集成计数器和移位寄存器的应用。
2
10.1 寄存器
寄存器
数码寄存器 移位寄存器
10.1.1 数码寄存器
图10-1 四位数码寄存器
3
10.1.2 移位寄存器
单向移位寄存器 移位寄存器
9.1.3.2 D触发器转换为JK触发器
D触发器的特性方程
Qn 1
待求的JK触发器的特性方程 Qn 1
D JQn
KQn
比较两特性方程得转换的逻辑图如图9-7所示。
图9-7 D触发器转换为JK触发器的逻辑图
36
9.1.3.3 JK触发器转换为T触发器
图9-8 JK触发器转换为T触发器的逻辑图
37
9.2 时序逻辑电路的分析方法
17
18
19
图10-13十进制加法计数器的有效状态图和工作波形
20
10.2.2.2 集成十进制计数器
图10-14 集成同步十进制计数器74LS160
21
10.2.3 利用集成计数器构成N进制计数器
在实际应用中,如果要设计各种进制的计数器, 可以直接选用集成计数器,外加适当的电路连 接而成。 10.2.3.1 集成计数器容量的扩展 N < M 的情况 : 已有的集成计数器是M 进制,需组成的
图9-5 转换示意图 转换的方法有多种,常用的一种方法为公式法
34
9.1.3.1 将JK触发器转换为D触发器
JK触发器的特性方程为
Q n 1 = JQ n + K Q n
待求的D触发器的特性方程为
Q n 1 = D DQ Q DQ DQ
与JK触发器的特性方程联立求解,得
JD KD
图9-6 JK触发器转换成D触发器的逻辑3图5
特点: 1. 有两个稳定状态“0”态和“1”态; 2. 能根据输入信号将触发器置成“0”或“1”态; 3. 输入信号消失后,被置成的“0”或“1”态能保
存 下来,即具有记忆功能。
26
9.1.1 RS触发器
9.1.1.1 基本RS触发器
图9-1 基本RS触发器 a) 逻辑图 b) 逻辑符号
27
从上述可知:基本RS触发器有两个稳定状态—置位状态和 复位状态,并具有接收输入信号以及存储或记忆的功能,其 状态表见表9-1。
1
010
0
011
0
100
1
10器的特性方程为
Qn+1 = J Q n + K Q n CP下降沿到来后有效
32
9.1.2.2 D触发器
表9-4 D触发器的状态表
D
Qn+1
0
0
1
1
图9-4 D触发器的逻辑符号 D触发器的特性方程为
Qn 1 = D
CP上升沿到来后有效
33
9.1.3 触发器功能间的相互转换
图10-5 三个JK触发器组成的同步二进制加法计数器
9
2.工作原理
各位JK触发器的J、K端的逻辑表达式为
10
图10-6 时序图 图 10-7 3位二进制加法计数器的状态转换图
11
10.2.1.2 异步二进制计数器
10-8 三位异步二进制加法计数器
各位JK触发器的J、K端的输入为: J0=K0=1 J1=K1=1 J2=K2=1
双向移位寄存器 10.1.2.1单向移位寄存器
图10-2 由D触发器组成的四位右移寄存器
4
图10-3 四位左移寄存器
5
10.1.2.2集成双向移位寄存器74LS194
图10-4 集成双向移位寄存器74LS194
6
7
10.2 计数器
•计数器的分类
按FF状态 同步 --所有FF的状态同时更新,共用一个CP 更新时刻 异步 --所有FF的状态不同时更新,不共用一个CP
图10-17所示电路是该九进制计数器的主循环状态图。
24
教学基本要求:
1.触发器的结构类型和功能分类及 触发器功能间的相互转换; 2 .时序逻辑电路的特点及功能表示 方法; 3.时序逻辑电路的分析方法和设计 方法.
25
9.1 触发器
触发器是一种具有记忆功能的逻辑单元电路,它能 储存一位二进制码,是构成时序电路的基本逻辑单元。
12
13
图10-9 工作波形图 10-10 三位异步二进制减法计数器
14
10.2.1.3 集成二进制计数器
图10-11 a) 161的逻辑电路图
15
图10-11 74161的引脚图和符号 b) 引脚图 c)符号
16
10.2.2 同步十进制计数器
10.2.2.1 同步十进制加法计数器
图10-12 8421BCD同步十进制加法计数器
9.2.1 时序逻辑电路的特点及其分类
时序逻辑电路的特点
(1)从功能上看,它的输出不仅与当时的输入有关,还与 (2)当时电路的状态(也就是过去的输入)有关;
(2)从组成结构上看,一定存有记忆元件,也就是含有触发器。
时序逻辑电路的分类
同步:存储电路里所有触发器有一个统一的时钟源