2019年中考数学分类精华知识点46 网格作图
中考数学网格作图题复习教案
《网格作图题》复习专题教学设计一、教材分析网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换。
这类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作。
本节课,知识点较多,但应该抓住关键点,分清变换类型,用变换的性质来解决实际问题,以训练为主。
2.考标要求:(1)应用平移、旋转、轴对称、中心对称等几种图形变换的性质解决数学问题。
(2)培养学生几何空间思维能力。
二、教学目标:(1).知识与技能:回忆所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识,理解掌握运用基础知识解决相关问题,提高解决问题的能力。
(2).数学思考:建立几何空间思维能力。
(3).过程与方法:学生自查遗忘的知识点,通过讨论、交流,教师答疑、解惑、指导,经历例题、习题的解答,提高技能,(4).情感态度:经历对所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识的复习,用所学知识解决相关问题,提高解决问题的能力。
三、教学重、难点:教学重点:对面积的计算。
教学难点:教学准备:多媒体课件、导学案、四、教学过程教学内容与教师活动学生活动设计意图一、知识梳理加强理解(1)中考题型(2)考点1.对称图形的计算和运用;2.平移图形的计算和运用;3.旋转图形的计算和运用;4.在网格中求面积;(3)准备知识1.对称作图的方法:轴对称(或中心对称)图形的作法:先找出原图形的各顶点,作出它们关于对称轴的对称点,然后根据原图连接各对称点。
2.平移作图的方法:(1)确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离,平移各个关键点,得到关键点的对应点;(4)按原图形依次连接各关键点的对应点,即的平移后的图形。
3.旋转作图的方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出原图的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角旋转,得到个关键点的对应点;(4)按按原图形依次连接各关键点的对应点,即的旋转后的图形。
中考数学题型训练网格作图
中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题) (第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1,△ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B 2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题) (第4题) 4.(07.安徽)△ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和 .(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于.(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题) (第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图错误!与图错误!关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形\o\ac(○,2)向下平移4个单位,画出平移后的图形错误!,并判断图形错误!与图形错误!的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题) (第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题) (第12题)12.(07.青海)如图所示,图错误!和图错误!中的每个小正方形的边长都为1个单位长度.(1)将图错误!中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图错误!中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度,∠A2=度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。
2019年安徽中考数学考前冲刺抢分课件 专题五 网格作图题
解:(1)如图所示,四边形 ABCD 即为所求. (2)如图所示,△AED 即 为所求,AE 与直线 CD 的交点到线段 AD 的距离为 2.
平移作图
图形变换中的平移作图的解题关键是掌握平移的性质,找出对应顶点 的位置.借助网格特点进行作图,抓住平移的方向、平移的距离等基本要 素,才能正确的绘制出相应的变换图形.此类问题容易出错的地方是:(1) 平移时忽视图形的整体平移;(2)作图时对应顶点不对应.
90π · 180
26=
226π .
5.(2018·黑龙江)如图,在正方形网格中,每个小正方形的边长都是 一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为 A(1, 4),B(1,1),C(3,1) .
(1)画出△ABC 关于 x 轴对称的△A1B1C1. (2)画出△ABC 绕点 O 逆时针旋转 90°后得到的△A2B2C2. (3)在(2)的条件下,求点 A 所经过的路径长(结果保留π ).
解:(1)如图,△A1B1C1 即为所求. (2)如图,△A2B2C2 即为所求.
(3)△A1B1C1 和△A2B2C2 成轴对称,对称轴为直线 A1B.
7.(2018·安庆一模)如图是由边长为 1 个单位长度的小正方形组成的 网格,线段 AB 的端点在格点上.
(1)请建立适当的平面直角坐标系 xOy,使得 A 点的坐标为(-3,-1), 在此坐标系中,B 点的坐标为 ;
位似作图
图形变换中的位似作图的关键是掌握位似的画法和性质.找准位似中 心和位似比,连接原图形上各点与位似中心,并延长(扩大)或取分点(缩小) 作出其对应点,再依次连接各对应点即可得到所求位似图形.
(2018·合肥蜀山二模)如图,在边长为 1 的小正方形组成 的网格中,△ABC 的三个顶点都在格点上.
2024年中考数学复习重难点题型训练—网格作图(含答案解析)
2024年中考数学复习重难点题型训练—网格作图(含答案解析)类型一平移1.如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.【答案】解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.2.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【解析】(1)如解图①所示,△CDE即为所求.(2)如解图②所示,▱ABFG即为所求.3.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;(3)求△CC1C2的面积.【答案】(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积=12×3×6=9.【考点定位】:作图-位似变换;作图-平移变换.属基础题.【试题解析】解:(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.;△CC1C2的面积=12×3×6=9.【命题意图】本题主要考查位似变换与平移变换,得出变换后的对应点的位置是解题的关键.【方法、技巧、规律】网格问题就是在网格中研究格点问题,这类问题现在在中考中比较常见,成为中考中的热点问题,具有很强的操作性,考查的类型问题有:点与有序数对的一一对应问题、平移问题、旋转问题、轴对称问题、勾股定理问题、分类思想的运用等. 4.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.将△ABC向左平移3个单位长度,再向下平移2个单位长度得到△A1B1C1.(1)写出△ABC的顶点坐标;(2)请在图中画出△A1B1C1.【答案】(1)A(1,0),B(0,-1),C(2,-2);(2)参见解析.【解析】(1)由观察得知:A(1,0),B(0,-1),C(2,-2);(2)将A,B,C三点坐标横坐标分别减3,纵坐标分别减2得A1(-2,-2),B1(-3,-3),C1(-1,-4).三点连线即可.如下图:5.作图题:(1)把△ABC向右平移5个方格;CBA(2)绕点B的对应点顺时针方向旋转90°CBA【答案】见解析【解析】(1)如图所示:(2)如图所示:6.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A 1B 1C 1,并写出A 1的坐标;(2)P (a ,b )是△ABC 的AC 边上一点,△ABC 经平移后点P 的对称点P′(a+3,b+1),请画出平移后的△A 2B 2C 2.【答案】(1)作图见解析,A 1的坐标是(3,-4);(2)作图见解析.【解析】(1)如图所示:A 1的坐标是(3,-4);(2)△A 2B 2C 2是所求的三角形.类型二旋转7.(2021·湖北黄石·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【解析】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.8.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1),将△BOC 绕点O 逆时针旋转90度,得到△B 1OC 1,画出△B 1OC 1,并写出B 、C 两点的对应点B 1、C 1的坐标,【解析】解:如图,△B1OC1为所作,点B1,C1的坐标分别为(1,3),(-1,2).9.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.【答案】(1)E(3,3),F(3,﹣1);(2)答案不唯一,如:(﹣2,0).【解析】(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF在图中表示为:∵AO⊥AE,AO=AE,∴点E的坐标是(3,3),∵EF=OB=4,∴点F的坐标是(3,﹣1);(2)∵点F落在x轴的上方,∴EF<AO,又∵EF=OB,∴OB<AO,AO=3,∴OB<3,∴一个符合条件的点B的坐标是:答案不唯一,如:(﹣2,0).10.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(-3,-1).(1)试作出△ABC以C为旋转中心,沿逆时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.【解析】解:根据旋转中心为点C,旋转方向为逆时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(3,1).11.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解析】(1)O(0,0),90°.(2)如解图.(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形.∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC ,∴(a +b)2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab ,∴a 2+b 2=c 2.12.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.【解析】解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:13.如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C的对应点C1坐标;(不必画出平移后的三角形)(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.【答案】解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.14.如图,已知坐标平面内的三个点A(3,5),B(3,1),O(0,0),把△ABO向下平移3个单位,再向右平移2个单位后得到△DEF.(1)直接写出A,B,O三个对应点D、E、F的坐标;(2)画出将△AOB绕O点逆时针方向旋转90∘后得到的△A'OB';(3)求△DEF的面积.【解析】解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3).(2)如图,△A'OB'即为所求作.(3)△DEF的面积=12×4×3=6.15.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【解析】解:(1)如图所示;(2)如图所示.16.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)判断△A2B2C2是否可由△AB1C1绕某点M旋转得到;若是,请画出旋转中心M,并直接写出旋转中心M的坐标.【解析】解:(1)如图所示,△AB1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,△A2B2C2可由△AB1C1绕点M,顺时针旋转90°得到,其中点M坐标为(0,-1).17.如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),△A1B1C1与△ABC关于原点O成中心对称,△A2B2C2是由△ABC绕着原点O顺时针旋转90°后得到的.(1)画出△A1B1C1,并写出点A的对称点A1的坐标;(2)画出△A2B2C2,并写出点A的对称点A2的坐标;(3)求出点B到达点B2的路径长度.【解析】解:(1)如图,△A1B1C1为所作,A1(1,-3);(2)如图,△A2B2C2为所作,A2(3,1);(3)∵OB=42+12=17,∴B到达点B2的路径长度.18.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .【答案】(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【解析】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.类型三对称19.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【答案】(1)如图:△A1B1C1即为所求.(2)如图:△A2B2C2即为所求.20.在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.【答案】(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)9021.如图,在正方形网格中,△ABC 各顶点都在格点上,点A 、C 的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是________;点C 2的坐标是________;过C ,C 1,C 2三点的圆的圆弧的长是________(保留π).【答案】(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2B 2C 2即为所求.(3)(1,4)(1,-4)17π22.(2022年陕西中考)如图,ABC ∆的顶点坐标分别为(2,3)A -,(3,0)B -,(1,1)C --.将ABC ∆平移后得到△A B C ''',且点A 的对应点是(2,3)A ',点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是;(2)请在图中画出△A B C '''.【解答】解:(1)(2,3)--=。
第32课时 几何(网格、尺规)作图 课件 2025年中考数学一轮总复习
∴BF=④ ,∴BF=BA.
解:(1)如答案图所
示,BF即为所求作.(答案图)
∠BFC=∠D
CD
90°
6
考点三 尺规作图的综合运用例4 在学习了平行四边形的相关知识
后,小虹进行了拓展性研究.她发现,如
果作平行四边形一条对角线的垂直平分
线,那么这条垂直平分线在该四边形内
部的线段被这条对角线平分.其解决问题
的思路为通过证明对应线段所在两个三
角形全等即可得出结论.请根据她的思路完成以下作图和填空:
用直尺和圆规作平行四边形ABCD的对
求作.
(3)求△ABC的面积.
[答案] 解:(3)
S△ABC=4×3-
×1×3- ×4×1-
×2×3=5.5.
例2 (2024·安徽)如图,在由边长为1
个单位长度的小正方形组成的网格中建
立平面直角坐标系xOy,格点(网格线
的交点)A,B,C,D的坐标分别为
(7,8),(2,8),(10,4),
(5,4).
(1)以点D为旋转中心,将△ABC旋转
180°得到△A1B1C1,画出△A1B1C1;
[答案] 解:
(1)如图,
△A1B1C1即为所
求作.
(2)直接写出以B,C1,B1,C为顶点
的四边形的面积;
[答案] 解:(2)易知DB=DB1,DC=
DC1,∴四边形BC1B1C是平行四边形,∴ =2 =2× ×10×4
基本作图
图示
作法
经过一点作已知直线的垂线
过直线外一点作已知直线的垂线
①任意取一点K,使点K和点C在AB的两侧;②以点C为圆心,CK长为半径作弧,交AB于点D,E;③分别以点D,E为圆心,大于 DE的长为半径作弧,两弧相交于点F;④作直线CF,直线CF就是所求作的垂线
2019年中考数学题型专项训练(四)网格作图
题型专项(四) 网格作图网格作图题是对图形变换的综合考查,在网格中可以同时考查平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,难度不大,复习时注意练习即可.1.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.解:(1)、(2)如图.2.(2018·昆明五华区二模)如图所示,△ABC在平面直角坐标系中,顶点的坐标分别为A(-1,5),B(-4,2),C(-2,2).(1)平移△ABC,使点B移到B1(1,1),画出平移后的△A1B1C1,并写出点A1,C1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2.解:(1)△A1B1C1如图所示,A1(4,4),C1(3,1).(2)△A2B2C2如图所示.3.(2018·曲靖罗平县三模)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点).(1)在图1中,图①经过一次平移变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A(填“A”“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.解:如图.4.如图,在平面直角坐标系中,Rt △ABC 三个顶点都在格点上,点A ,B ,C 的坐标分别为A(-1,3),B(-3,1),C(-1,1).请解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 1的坐标;(2)画出△A 1B 1C 1绕点C 1顺时针旋转90°后得到的△A 2B 2C 1,并求出点A 1走过的路径长.解:(1)如图,B 1(3,1).(2)如图,A 1走过的路径长为90×π×2180=π. 5.(2018·昆明八校联考模拟)△ABC 在平面直角坐标系中的位置如图所示(坐标系内正方形的单位长度为1).(1)在网格内画出△ABC 以点O 为位似中心的位似图形△A 1B 1C 1,使△A 1B 1C 1和△ABC 的位似比为2∶1,且△A 1B 1C 1位于y 轴左侧;(2)分别写出A 1,B 1,C 1三个点的坐标:A 1(-3,-7),B 1(-1,-1),C 1(-7,-1);(3)△A 1B 1C 1的面积为18.解:△A 1B 1C 1如图所示.6.(2018·云南模拟)如图,在Rt △OAB 中,∠OAB =90°,且B 点的坐标为(4,2).(1)画出△OAB 向下平移3个单位长度后的△O 1A 1B 1;(2)画出△OAB 绕点O 逆时针旋转90°后的△OA 2B 2;(3)求点B 旋转到点B 2所经过的路线长.(结果保留根号和π)解:(1)如图,△O 1A 1B 1 为所求.(2)如图,△OA 2B 2为所求.(3)在Rt △AOB 中,OA =4,AB =2,∴由勾股定理,得OB =22+42=2 5.所以点B 旋转到点B 2所经过的路线长为90·π·25180=5π.7.(2018·玉溪模拟)在正方形网格中,建立如图所示的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,点B 的坐标(1,1).请解答下列问题:(1)画出△ABC 向左平移5个单位长度后的△A 1B 1C 1,并写出A 1的坐标;(2)将△ABC 绕点B 顺时针旋转90°,画出旋转后的△A 2BC 2,并求出BA 所扫过的面积.解:(1)△A 1B 1C 1如图所示,A 1(-1,4).(2)△A 2BC 2如图所示,∵BA =32+32=32,∴BA 扫过的面积为90·π·(32)2360=9π2.8.(2018·南宁)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC 向下平移5个单位长度后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2;(3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.(3)△OA 1B 的形状为等腰直角三角形.。
中考数学尺规作图真题汇编
中考数学之尺规作图真题汇编一、网格纸作图【2019·武汉】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【2019·无锡】按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【2020·安徽】如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网M N在网格线上,格线的交点)为端点的线段AB,线段,()1画出线段AB关于线段MN所在直线对称的线段11A B(点A B分别为,A B的对应点);11()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.【2021·荆州】如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD 的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD 为边画正方形ABCD ,再以线段DE 为斜边画等腰直角三角形DEF ,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.【分析】(1)根据正方形,等腰直角三角形的定义画出图形即可.(2)画出边长为的正方形即可.【解答】解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.二、角平分线【2021·铜仁】.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6【分析】利用基本作图得到AF平分∠BAC,过F点作FH⊥AB于H,如图,根据角平分线的性质得到FH=FC,再根据勾股定理计算出AC=6,设CF=x,则FH=x,然后利用面积法得到×10•x+×6•x=×6×8,解得x=3,最后利用勾股定理计算AF的长.【解答】解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.三、垂直平分线【2019·泰州】如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.【2021·北部湾】如图,四边形ABCD中,AB//CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.【答案】(1)证明:∵AB//CD,∴∠ACD=∠CAB,在△ABC和△CDA中,{∠B=∠D∠CAB=∠ACD AC=CA,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∴12AB⋅CE=10,∵AB=5,∴CE=4.【2019·盐城】如图,AD是△ABC的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是形.(直接写出答案)【解答】解:(1)如图,直线EF即为所求.(2)∵AD平分∠ABC,∴∠BAD=∠CAD,∴∠BAD=∠CAD,∵∠AOE=∠AOF=90°,AO=AO,∴△AOE≌△AOF(ASA),∴AE=AF,∵EF垂直平分线段AD,∴EA=ED,F A=FD,∴EA=ED=DF=AF,∴四边形AEDF是菱形.故答案为菱形.四、全等或相似【2019·福建】如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.(2)证明(略)【答案】见解析【解析】【2021·贵港】尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB >AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.CBACBA【分析】(1)作线段BC的垂直平分线交AB于点D,连接CD即可.(2)作∠ADT=∠ACB,射线DT交AC于点E,点E即为所求.【解答】解:(1)如图,点D即为所求.(2)如图,点E即为所求.五、三角形四心(内心、外心、重心、垂心)【2019·陇南】已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB=√32+42=5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、其他类型【2021·山西】已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.。
2019年全国中考数学真题分类 网格作图(精品文档)
2019年全国中考数学真题分类
网格作图
4 的正方形网格,每个小正方形的顶点称为格点,在图①19.(2019·吉林)图①,图②均为4
中已画出线段AB,在图②中已画出线段CD,其中A,B,C,D均为格点,按下列要求画图:
(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;
(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°
解:
【知识点】菱形,勾股定理
20.(2019·长春)图①、图②、图③处均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图①中以线段AB为边画一个△ABM,使其面积为6.
(2)在图②中以线段CD为边画一个△CDN,使其面积为6.
(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.
解:(1)如图所示:
(2)如图所示:
(3)如图所示:
【知识点】作图—应用与设计作图.。
2019中考数学专题复习之作图问题(附答案详解)
2019中考数学专题复习之作图问题(附答案详解)类型1 尺规作图1.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l 和l 外一点P.求作:直线l 的垂线,使它经过点P.作法:如图:(1)在直线l 上任取两点A 、B ;(2)分别以点A 、B 为圆心,AP ,BP 长为半径画弧,两弧相交于点Q ;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:______________________________________________(2)已知:直线l 和l 外一点P.求作:⊙P ,使它与直线l 相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:(1)到线段两端点距离相等的点在这条线段的垂直平分线上(2)如图⊙P 即为所求.2.如图,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN =30°,B 为AN ︵的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA +PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA +PB 的最小值.解:(1)如图1所示,点P 即为所求;(2)由(1)可知,PA +PB 的最小值即为A′B 的长,连接OA′、OB 、OA ,∵A′点为点A 关直线MN 的对称点,∠AMN =30°,∴∠AON =∠A′ON =2∠AMN =2×30°=60°,又∵B 为AN ︵的中点,∴AB ︵=BN ︵,∴∠BON =∠AOB =12∠AON =30°,∴∠A′OB =60°+30°=90°,又∵MN =4,∴OA′=OB =12MN =12×4=2.∴在Rt △A′OB 中,A′B =22,∴PA +PB 的最小值为2 2.3.如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数.解:(1)如图1,⊙O 即为所求.(2)如图2,连接OD ,OE ,∴OD ⊥AB ,OE ⊥BC ,∴∠ODB =∠OEB =90°,∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.4.小明在“课外新世界”中遇到这样一道题:如图1,已知∠AOB =30°与线段a ,你能作出边长为a 的等边三角形△COD 吗?小明的做法是:如图2,以O 为圆心,线段a 为半径画弧,分别交OA ,OB 于点M ,N ,在弧MN 上任取一点P ,以点M 为圆心,MP 为半径画弧,交弧CD 于点C ,同理以点N 为圆心,NP 为半径画弧,交弧CD 于点D ,连结CD ,即△COD 就是所求的等边三角形.(1)请写出小明这种做法的理由;(2)在此基础上请你作如下操作和探究(如图3):连结MN ,MN 是否平行于CD ?为什么?(3)点P 在什么位置时,MN ∥CD ?请用小明的作图方法在图1中作出图形(不写作法,保留作图痕迹).解:(1)如图2,连结OP ,由题意可得MC ︵=MP ︵,∴∠COM =∠POM ,PN ︵=DN ︵,∴∠PON=∠DON ,∴∠POM +∠PON =∠COM +∠DON =30°,∴∠COD =2∠MON =60°,∴△OCD 是等边三角形;(2)不一定,只有当∠COM =15°,CD ∥MN ,理由:∵∠COM =15°,∠MON =30°,∴∠CON =45°,∵∠C =60°,∴∠OEC =75°,∵ON =OM ,∴∠ONM=∠OMN =75°,∴∠OEC =∠ONM ,∴CD ∥MN ;(3)当P 是MN ︵的中点时,MN ∥CD ;如图3所示.类型2 网格作图和其他5.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( B )A.22<r<17 B.17<r<3 2C.17<r<5 D.5<r<29解:给各点标上字母,如图所示.AB=22+22=22,AC=AD=42+12=17,AE =32+32=32,AF=52+22=29,AG=AM=AN=42+32=5,∴17<r<32时,除点A外恰好有3个在圆内.6.我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为__1∶2__.在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有__121__个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是__正三角形或正六边形__;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.解析:(1)△A-△A1是经过旋转所得,△A1-△A2是经过旋转所得,△A2-△A3是经过平移所得.由于△B是由4个△A组成,因此S△B=4S△A,因此相似比为2∶1.当△C的一条边上有11个小三角形时,那么它们的相似比为11∶1,面积比121∶1,即△C中有121个这样的小三角形;故答案为:1∶2,121.(2)正三角形或正六边形.(3)如图.7.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED 、EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把点E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把点E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图①,∠A =∠B =∠DEC =55°,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图②,在矩形ABCD 中,AB =5,BC =2,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD 的边AB 上的一个强相似点E ;拓展探究:(3)如图③,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处,若点E 恰好是四边形ABCM 的边AB 上的一个强相似点,试探究AB 和BC 的数量关系.解:(1)点E 是四边形ABCD 的边AB 上的相似点.理由:∵∠A =55°,∴∠ADE +∠DEA =125°,∵∠DEC =55°,∴∠BEC +∠DEA =125°,∴∠ADE =∠BEC.∵∠A =∠B ,∴△ADE ∽△BEC.∴点E 是四边形ABCD 的AB 边上的相似点.(2)如图如下:(3)∵点E 是四边形ABCD 的边AB 上的一个强相似点,∴△AEM ∽△BCE ∽△ECM ,∴∠BCE =∠ECM =∠AEM ,由折叠可知:△ECM ≌△DCM ,∴∠ECM =∠DCM ,CE =CD ,∴∠BCE =13∠BCD =30°,∴BE =12CE =12AB.在Rt △BCE 中,tan ∠BCE =BE BC=tan 30°,∴BE BC =33,∴AB BC =233.。
中考数学压轴题之无刻度直尺作图技巧分类详解
中考数学压轴题之无刻度直尺作图、网格点作图技巧详解仅用无刻度直尺作图和网格点作图问题已成为各地中考热门考点,近年来在江西、武汉、天津等地中考中均以压轴题出现,其难度一般会超过单纯的证明题或计算题。
这类题型主要考察同学们对几何图形性质的熟悉程度,还有同学们平时方法和技巧的掌握。
常见的考察点有:特殊点问题、特殊角问题、垂直问题、平行问题、角平分线问题、与圆有关的问题等。
无刻度直尺的作用只有一个:将已知的两点连线。
我们要充分利用格点的作用:取点、平行等。
下面对各类常见题型的技巧进行了分类总结。
一、特殊点问题例1:在下面网格图中用无刻度直尺作出线段AB的中点。
分析与解:利用“8”字型平行线分线段成比例、平行四边形对角线互相平分等性质,图中不同颜色的线均可将AB平分。
例2:在下面网格图中用无刻度直尺作出线段AB的中点,其中A为格点,B为任意点。
分析与解:如图,取格点C,连接CB并延长交网格线于E,取AC、AE与网线的交点D、F(即中点),连接DF交AB于G,则G即为所求作点。
这儿我们利用了中位线和平行线分线段成比例等性质。
例3:在下面网格图中,在线段AB 上找一点C ,使AB AC 31=。
方法1方法2 方法3分析与解:方法1和方法2都利用了网格线平行的性质,通过“8”字型模型,构造1:2的相似比例,从而将线段AB 分为1:2两段。
方法3利用了重心的性质,AB 和EF 为BED ∆的两条中线,所以C 为BED ∆的重心。
二、特殊角问题例4:在下面网格图中找格点C ,使O BAC 45=∠。
分析与解:利用“12345”模型,即若βα、均为锐角,且31tan ,21tan ==βα,则O 45=+βα。
例5:如下图,利用无刻度直尺在线段MN 上找一点Q ,使O AQB 45=∠。
分析与解:O AQB 45=∠,典型定弦定角问题。
注意到O AMB 90=∠,所以点Q 在以M 为圆心,MA 长为半径的圆上,故2=MQ 。
中考数学专题复习:网格问题课件
【例16】请阅读下列材料: 问题:现有5个边长为1的正方形,排列形式如图1,请把它们分 割后拼接成一个新的正方形.要求:画出分割线并在正方形网 格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新 正方形. 小东同学的做法是:设新正方形的边长为x(x>0).依题意,割 2 补前后图形的面积相等,有 x 5 ,解得 x 5 .由此可知新正 方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出 如图2所示的分割线,拼出如图3所示的新正方形.
网格问题是近几年新课程中考数学命题的热点问题, 新颖的题目不断涌现,但是归根到底,中考题还是来 源于课本,网格问题是课本知识的情景再现,我们一 定要围绕课本开展复习.
【例10】如图所示,A、B是4×5网络中的格点,网格中的每个小 正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角 形是等腰三角形的所有格点C的位置.圆规: 以A为圆心,AB长为半径画圆,圆弧 经过格点C1、C2 ;以B为圆心,AB 长为半径画圆,圆弧经过格点C3 .
3 5
;D.
4 5
[解析] 本题在网格中考查锐角 的正弦的意义,首先要用勾股 定理计算直角三角形斜边的 . 长.一般情况下,为了减小计 算量,把小正方形的边长设为 1.选C.
α
【例6】如图5,小正方形边长为1,连接小正方形的三个顶 点,可得△ABC,则AC 边上的高是( ).
3 2 A、 2
B.
3 ; 5 C. 10
[
【例17】在平面内,将一个图形沿某个方向移动一定距离, 这样的图形变换为平移,如图1,将网格中的三条线段沿网格线 的方向(水平或垂直)平移后组成一个首尾依次相接的三角形, 至少需要移动( ). A.12格; B.11格 ; C.9格; D.8格. A
重庆市2019届中考数学一轮复习《5.4尺规作图》讲解含答案.doc
第四节尺规作图课标呈现——指引方向1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线:过一点作已知直线的垂线.2.会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形:已知底边及底边上的高线作等腰三角形:已知一直角边和斜边作直角三角形.3.会利用基本作图完成:过不在同一直线上的三点作圆:作三角形的外接圆、内切圆:作圆的内接正方形和正六边形.4.在尺规作图中,了解作图的原理,保留作图的痕迹,不要求写出作法,考点梳理——夯实基础1.格作图:利用平移、旋转、轴对称、中心对称、位似在格中作图称为格作图2.尺规作图(1)尺规作图的定义:在几何里把限定用没有刻度的直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称为基本作图.(2)五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角:③作一个角的角平分线:④作线段的垂直平分线:⑤经过一点作已知直线的垂线.(3)尺规作图的步骤:①已知:写出已知的线段和角,画出图形:②求作:求作什么图形,它符合什么条件,一一具体化:③作法:应用五种基本作图,叙述时不需要重述基本作图的过程,但图中必须保留基本作图的痕迹:④证明:为了验证所作图形的正确性,把图作出后,根据有关的定义、定理等并结合作法证明所作图形完全符合题设条件,⑤对所作图形下结论.(4)作三角形:①已知三边作三角形;②已知两边及其夹角作三角形:③已知两角及其夹边作三角形:④已知底边及底边上的高作等腰三角形.(5)探究如何过一点、两点和不在同一直线上的三点作圆.考点精析——专题突破【例1】(2019四川巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图,请根据条件画出变换后的三角形.(1)将△ABC向有平移2个单位得到△A1B1C1;(2)与△ABC关于x轴对称的图形△A2B2C2.(3)与△ABC关于原点对称的图形△A3B3C3.【答案】解题点拨:作图平移变换、轴对称、中心对称,图略【例2】(2019四川凉山州)如图,在边长为1的正方形格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1 B1C.(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.【答案】解题点拨:(1)根据旋转中心方向及角度找出点A 、B 的对应点A 1、B 1的位置,然后顺次连接即可,根据A 、B 的坐标建立坐标系,据此写出点A 1、B 1的坐标;(2)利用勾股定理求出AC 酌长,根据△ABC 扫过的面积等于扇形CAA 1的面积与△ABC 的面积和,然后列式进行计算即可.解:(1)所求作△A 1B 1C 如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点Ai 的坐标为(-1,4),点Bi 的坐标为(1,4); (2)∵AC=22222313AB BC +=+=,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为:S 扇形CAA 1+S△ABC 290(13)1323602π⋅=+⨯⨯ 1334π=+【例3】(2019育才)两个城镇A 、B 与两条公路ME ,MF 位置如图所示,其中ME 是东西方向的公路.现电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路ME ,MF 的距离也必须相等,且在∠FME 的内部,那么点C 应选在何处?请在图中,用尺规作图找出符合条件的点C .(不写已知、求作、作法,只保留作图痕迹)【答案】解题点拨:此题考查了尺规作图,正确的作出图形是解答本题的关键.到A、B距离相等则作线段AB的垂直平分线,到ME、MF距离相等则作∠FME的角平分线,它们的交点即为所求.解:答案如图:1.(2019浙江舟山)数掌活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和规作直线PQ,使PQ⊥l于点Q”.分别作出了下列四个图形.其中作法错误的是 ( )【答案】A2.(2019湖北宜昌)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示,若连接EH、HF、FG,GE,则下列结论中,不一定正确的是 ( )A.△EGH为等腰三角形 B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形第2题【答案】B3.(2019吉林长春)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为.第3题【答案】104.已知:如图,∠α,∠β,线段m.求作:△ABC,使∠A=∠α,∠B=∠β,AB=m.第4题【答案】解:如图所示,△ABC即为所求.第4题答案图A组基础训练一、选择题1.(2019河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是 ( )第1题【答案】B2.(2019重庆育才)用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B′=∠AOB的依据是( )A.SAS B.ASA C.SSS D.AAS第2题【答案】C3.(2019西大附中)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是 ( )A.矩形 B.菱形 C.正方形 D.等腰梯形第3题【答案】B4.(2019河北)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹,步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,与弧①交于点D ;步骤3:连接AD ,交BC 延长线于点H 。
人教版中考数学一轮复习课件第7章 第26讲 视图、展开图、网格作图
考点1 三视图 1.下列几何体中,其俯视图一定是圆的有( B )
A.1个 C.3个
B.2个 D.4个
2.如图是某几何体的三视图,该几何体是( A ) A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
3. 一 个 由 圆 柱 和 长 方 体 组 成 的 几 何 体 如 图 水 平 放 置 , 它 的 俯 视 图 是 (C )
4.如图是由一些相同的小正方体组合成的几何体的三视图,则小正方 体的个数是( B )
A.4
B.5
C.6
D.7
考点2 几何体的展开图 5.(2019深圳)下列图形是正方体展开图的是( B )
6.如图为正方体的展开图,那么在原正方体中与“你”字所在面相对 的面上的字为( B ) A.前 B.程 C.似 D.锦
答图
10.如图,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做
格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.
(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,
并且使所作的位似图形与△OAB的相似比等于
1 2
;
(2)将△OAB以点O为旋转中心,逆时针旋转90°,得到△OA1B1,
第七章 图形的变换 第26讲 | 视图、展开图、网格作图
1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影. (1)平行投影:由平行光线形成的投影.物体与投影面平行时的投影全 等.如太阳光. (2)正投影:投影线垂直于投影面产生的投影. (3)中心投影:由同一点(点光源)发出的光线形成的投影.物体与投影面平 行时投影放大(位似变换).如灯泡.
几何体 主视图 左视图 俯视图
2.(1)如图,是一个底面为等边三角形的正三棱柱,它的主视图是( A )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点:网格作图
4 的正方形网格,每个小正方形的顶点称为格点,19.(2019·吉林)图①,图②均为4
在图①中已画出线段AB,在图②中已画出线段CD,其中A,B,C,D均为格点,按下列要求画图:
(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;
(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°
解:
【知识点】菱形,勾股定理
20.(2019·长春)图①、图②、图③处均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图①中以线段AB为边画一个△ABM,使其面积为6.
(2)在图②中以线段CD为边画一个△CDN,使其面积为6.
(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90°.
解:(1)如图所示:
(2)如图所示:
(3)如图所示:
【知识点】作图—应用与设计作图.。