高中数学大招手卡80招
武功心法秘籍,助你笑傲数学江湖
武功心法秘籍,助你笑傲数学江湖杨舒雯“扎扎实实地打好基础,练好基本功,我认为这是学好数学的‘秘诀。
”苏步青老师曾这么说。
由此可见,学习如同习武,打好基础至关重要。
在你想要成为“一剑封喉”的武林高手之前,学会扎好马步是必不可少的前提。
接下来,我就以“怎样夯实基础”为引,为大家介绍一些学好数学的法门,希望能助学弟学妹们早日实现菜鸟变大侠的梦想,笑傲数学江湖!心法口诀:精读目录,疏通脉络天下武功门派各异,不同的武学自然有着不同的奥义。
令江湖人士闻风丧胆的高中数学便是一门绝世武学,它包含六册课本秘籍,要想学好它绝非易事。
若是只进行囫囵吞枣、杂乱无章的填鸭式学习,肯定收效甚微。
在高三进行第一轮复习期间,同学们应将课本上的章节和专题根据方便自己复习的方式进行分类,各个击破。
在这里我建议大家将全部复习内容分为代数和几何两大类,以及一些可以快速攻破的小要点。
如:1.代数占据了高中数学的大部分内容,如集合、函数、三角比和数列等;2.几何包括解析几何和立体几何两大部分;3.其余的例如排列组合与二项式定理、概率论初步、基本统计方法,以及高三文科拓展专题中的线性规划和三视图等,则可以作为小要点进行快速攻破。
这样,高中数学就被整理划分成了三大板块,同学们可根据具体的知识点构建知识网络图,进行快速记忆和复习。
思维拓展:不同的省份“门派”有不同的“习武”教材,同学们只需根据教材的具体内容进行分类,便可以迅速找到突破口。
心法口诀:熟读课本,打好基础“根深才能叶茂”,千万不要忽视课本,一味地到一些辅导书上去寻求难题、偏题和怪题的解答技巧。
缘木求鱼,好高骛远,那样练出来的武功只会是“花架子”——中看却不中用。
所以,一定要先安心练习扎马步,打好自身基础。
《考试大纲》是高中三年很重要的一本秘籍,上边清楚地指明了考试的出题方向,因此同学们一定要予以重视。
根据这本秘籍可知,基础题占了高考数学的最大比例,中等难度的能力题次之,需要学会灵活运用数学思维解答的难题则占了最小的比例。
2024年全国普通高中九省联考仿真模拟数学试题(三)
2024年高考仿真模拟数学试题(三)试卷+答案本套试卷根据九省联考题型命制,题型为8+3+3+5模式,适合黑龙江、吉林、安徽、江西、甘肃、河南、新疆、广西、贵州等省份考生模拟练习.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的六位数,每个数字至少出现一次. (1)求满足条件的对接码的个数;(2)若对接密码中数字1出现的次数为X ,求X 的分布列和数学期望.16.(15分)已知函数()()ln 1f x x a x =−−. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.2024年高考仿真模拟数学试题(三)试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A答案ABC解析:对于A,假设﹣1∈A,则令x=y=﹣1,则=1∈A,x+y=﹣2∈A,令x=﹣1,y=1,则=﹣1∈A,x+y=0∈A,令x=1,y=0,不存在,即y≠0,矛盾,∴﹣1∉A,故A对;对于B,由题,1∈A,则1+1=2∈A,2+1=3∈A,…,2022∈A,2023∈A,∴∈A,故B对;对于C,∵1∈A,x∈A,∴∈A,∵y∈A,∈A,∴=xy∈A,故C对;对于D,∵1∈A,2∈A,若x=2,y=1,则x﹣y=1∈A,故D错误.故选ABC.的部分图三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的)连接当5k ≥时,可得()111k k ii a a a i k −+−=≤≤−, (∗) ②设32i k ≤≤−,则112k i k k a a a a a −−+>+=,所以{}1k i n a a a −+∉, 由111213320k k k k k k k a a a a a a a a a −−−−−−=−<−<<−<−= , 又由12320k k a a a a −−≤<<<< ,可得111122133133,,k k k k k k k k a a a a a a a a a a a a −−−−−−−−−=−=<−=−= , 所以1(13)k k ii a a a i k −−−=≤≤−, 因为5k ≥,由以上可知:111k k a a a −−−=且122k k a a a −−−=, 所以111k k a a a −−−=且122k k a a a −−−=,所以1(11)k k ii a a a i k −−−=≤≤−,(∗∗) 由(∗)知,()111k k ii a a a i k −+−=≤≤− 两式相减,可得()1111k k i i a a a a i k −+−=−≤≤−, 所以当5k ≥时,数列{}n a 为等差数列. ……………17分.。
高考数学大招秒杀压轴版
超强圆锥曲线结论总结结论1:过圆2222x y a +=上任意点P 作圆222x y a +=的两条切线,则两条切线垂直.结论2:过圆2222x y a b +=+上任意点P 作⿰木阴圆22221(0)x y a b a b+=>>的两条切线,则两条切线垂直.结论3:过圆2222(0)x y a b a b +=->>上任意点P 作双曲线22221x y a b-=的两条切线,则两条切线垂直.结论4:过圆222x y a +=上任意不同两点,A B 作圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆:2222x y a +=.结论5:过椭圆22221(0)x y a b a b+=>>上任意不同两点,A B 作椭圆的切线,如果切线垂直且相交于P ,则动点P 的轨迹为圆2222x y a b +=+.结论6:过双曲线22221(0)x y a b a b-=>>上任意不同两点,A B 作双曲线的切线,如果切线垂直.且相交于P ,则动点P 的轨迹为圆2222x y a b +=-.结论7:点()00,M x y 在椭圆22221(0)x y a b a b +=>>上,过点M 作椭圆的切线方程为00221x x y ya b+= 结论8:点()00,M x y 在椭圆22221 0x y a b a b+=>>()外,过点M 作椭圆的两条切线,切点分别为 ,A B 则切点弦AB 的直线方程为00221x x y ya b+=. 结论8:(补充)点()00,M x y 在椭圆22221 0x y a b a b+=>>()内,过点M 作椭圆的弦AB (不过椭圆中心),分别过,A B 作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:00221x x y ya b+=. 结论9:点()00,M x y 在双曲线22221(0,0)x y a b a b -=>>上,过点M 作双曲线的切线方程为00221x x y ya b-= 结论10:点()00,M x y 在双曲线22221(0,0)x y a b a b-=>>外,过点M 作双曲线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为00221x x y ya b-=. 结论10:(补充)点()00,M x y 在双曲线22221(0,0)x y a b a b-=>>内,过点M 作双曲线的弦AB (不过双曲线中心),分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:00221x x y ya b-= 结论11:点()00,M x y 在抛物线22(0)y px p =>上,过点M 作抛物线的切线方程为()00y y p x x =+.结论12:点()00,M x y 在抛物线22(0)y px p =>外,过点M 作抛物线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()00y y p x x =+.结论12:(补充)点()00,M x y 在抛物线22(0)y px p =>内,过点M 作抛物线的弦AB ,分别过,A B 作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()00y y p x x =+.结论13:点()00,M x y 在椭圆2222()()1x m y n a b--+=上,过点M 作椭圆的切线方程为()()0022()()1x m x m y n y n a b ----+=结论14:点()00,M x y 在双曲线2222()()1x m y n a b---=上,过点M 作双曲线的切线方程为()()0022()()1x m x m y n y n a b -----=结论15:点()00,M x y 在抛物线2()2()y n p x m -=-上,过点M 作抛物线的切线方程为()()00()2y n y n p x x m --=+-.结论16:点()00,M x y 在椭圆2222()()1x m y n a b --+=外,过点M 作椭圆的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()()0022()()1x m x m y n y n a b ----+=.结论17:点()00,M x y 在双曲线2222()()1x m y n a b---=外,过点M 作双曲线的两条切线,切点分别为,A B ,则切点弦AB 的直线方程为()()0022()() 1.x m x m y n y n ab-----=结论18:点()00,M x y 在抛物线2()2()y n p x m -=-外,过点M 作抛物线的两条切线,切点分别为,A B 则切点弦AB 的直线方程为()()00()2y n y n p x x m --=+-.结论16:(补充)点()00,M x y 在椭圆2222()()1x m y n a b --+=内,过点M 作椭圆的弦AB (不过椭圆中心),分别过,A B 作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:()()0022()()1x m x m y n y n ab----+=.结论17:(补充)点()00,M x y 在双曲线2222()()1x m y n a b ---=内,过点M 作双曲线的弦AB (不过双曲线中心),分别过,A B 作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:()()0022()()1x m x m y n y n ab-----=结论18:(补充)点()00,M x y 在抛物线2()2()y n p x m -=-内,过点M 作抛物线的弦AB ,分别过,A B 作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()()00()2y n y n p x x m --=+-.结论19:过椭圆准线上一点M 作椭圆的两条切线,切点分别为,A B ,则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论20:过双曲线准线上一点M 作双曲线的两条切线,切点分别为,A B 则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论21:过抛物线准线上一点M 作抛物线的两条切线,切点分别为,A B ,则切点弦AB 的直线必过焦点F ,且MF 垂直切点弦AB .结论22:AB 为椭圆的焦点弦,则过,A B 的切线的交点M 必在相应的准线上. 结论23:AB 为双曲线的焦点弦,则过,A B 的切线的交点M 必在相应的准线上. 结论24:AB 为抛物线的焦点弦,则过,A B 的切线的交点M 必在准线上.结论25:点M 是椭圆准线与长轴的交点,过点M 作椭圆的两条切线,切点分别为,A B ,则切点弦AB 就是通径.结论26:点M 是双曲线准线与实轴的交点,过点M 作双曲线的两条切线,切点分别为,A B ,则切点弦AB 就是通径.结论27:M 为抛物线的准线与其对称轴的交点,过点M 作抛物线的两条切线,切点分别为,A B ,则切点弦AB 就是其通径.结论28:过抛物线22(0)y px p =>的对称轴上任意一点(,0)(0)M m m ->作抛物线的两条切线,切点分别为,A B 则切点弦AB 所在的直线必过点(,0)N m .结论29:过椭圆22221(0,0)x y a b a b+=>>的对称轴上任意一点(,)M m n 作⿰木阴圆的两条切线,切点分别为,A B .(1)当0,||n m a =>时,则切点弦AB 所在的直线必过点2,0a P m ⎛⎫⎪⎝⎭; (2)当0,||m n b =>时,则切点弦AB 所在的直线必过点20,b Q n ⎛⎫⎪⎝⎭.结论30:过双曲线22221(0,0)x y a b a b-=>>的实轴上任意一点(,0)(||)M m m a <作双曲线(单支)的两条切线,切点分别为,A B ,则切点弦AB 所在的直线必过点2,0a P m ⎛⎫⎪⎝⎭. 结论31:过抛物线22(0)y px p =>外任意一点M 作抛物线的两条切线,切点分别为,A B ,弦AB 的中点为N ,则直线MN 必与其对称轴平行.结论32:若椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>共焦点,则在它们交点处的切线相互垂直.结论33:过椭圆外一定点P 作其一条割线,交点为,A B ,则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.结论34:过双曲线外一定点P 作其一条割线,交点为,A B 则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.结论35:过抛物线外一定点P 作其一条割线,交点为,A B 则满足||||||||AP BQ AQ BP ⋅=⋅的动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.结论36:过双曲线外一点P 作其一条割线,交点为,A B ,过,A B 分别作双曲线的切线相交于点Q ,则动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上. 结论37:过椭圆外一点P 作其一条割线,交点为,A B 过,A B 分别作椭圆的切线相交于点Q ,则动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.结论38:过抛物线外一点P 作其一条割线,交点为,A B ,过,A B 分别作抛物线的切线相交于点Q ,则动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.结论39:从椭圆22221(0)x y a b a b +=>>的右焦点向椭圆的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论40:从双曲线22221(0,0)x y a b a b-=>>的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆:222x y a +=.结论41:F 是椭圆22221(0)x y a b a b +=>>的一个焦点,M 是椭圆上任意一点,则焦半径[,]MF a c a c ∈-+.结论42:F 是双曲线22221(0)x y a b a b-=>>的右焦点,M 是双曲线上任意一点.(1)当点M 在双曲线右支上,则焦半径MF c a ≥-;(2)当点M 在双曲线左支上,则焦半径MF c a ≥+.结论43:F 是抛物线22(0)y px p =>的焦点,M 是抛物线上任意一点,则焦半径022p p MF x =+≥. 结论44:椭圆上任一点M 处的法线平分过该点的两条焦半径的夹角(或者说M 处的切线平分过该点的两条焦半径的夹角的外角),亦即椭圆的光学性质.结论45:双曲线上任一点M 处的切线平分过该点的两条焦半径的夹角(或者说M 处的法线平分过该点的两条焦半径的夹角的外角),亦即双曲线的光学性质.结论46:抛物线上任一点M 处的切线平分该点的焦半径与该点向准线所作的垂线的夹角,亦即抛物线的光学性质.结论47:椭圆的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF PQ ⊥. 结论48:双曲线的准线上任一点M 处的切点弦PQ 过其相应的焦点F ,且MF PQ ⊥. 结论49:抛物线的准线上任一点M 处的切点弦PQ 过其焦点F ,且MF PQ ⊥.结论50:椭圆上任一点P 处的切线交准线于,M P 与相应的焦点F 的连线交椭圆于Q ,则MQ 必与该椭圆相切,且MF PQ ⊥.结论51:双曲线上任一点P 处的切线交准线于,M P 与相应的焦点F 的连线交双曲线于Q ,则MQ 必与该双曲线相切,且MF PQ ⊥.结论52:抛物线上任一点P 处的切线交准线于,M P 与焦点F 的连线交抛物线于Q ,则MQ 必与该抛物线相切,且MF PQ ⊥.结论53:焦点在x 轴上的椭圆(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论54:焦点在x 轴上的双曲线(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论55:焦点在x 轴上的抛物线(或焦点在y 轴)上三点,,P Q M 的焦半径成等差数列的充要条件为,,P Q M 的横坐标(纵坐标)成等差数列.结论56:椭圆上一个焦点2F 关于椭圆上任一点P 处的切线的对称点为Q ,则直线PQ 必过该椭圆的另一个焦点1F .结论57:双曲线上一个焦点2F 关于双曲线上任一点P 处的切线的对称点为Q ,则直线PQ 必过该双曲线的另一个焦点1F .结论58:椭圆上任一点P (非顶点),过P 的切线和法线分别与短轴相交于£, ?Q S 则有,,P Q S 及两个焦点共于一圆上.结论59:双曲线上任一点P (非顶点),过P 的切线和法线分别与短轴相交于,Q S ,则有,P Q ,S 及两个焦点共于一圆上.结论60:椭圆上任一点P (非顶点)处的切线与过长轴两个顶点,A A '的切线相交于,M M ',则必得到以MM '为直径的圆经过该椭圆的两个焦点.结论61:双曲线上任一点P (非顶点)处的切线与过实轴两个顶点,A A '的切线相交于,M M ',则必得到以MM '为直径的圆经过该双曲线的两个焦点.结论62:以椭圆的任一焦半径为直径的圆内切于以长轴为直径的圆. 结论63:以双曲线的任一焦半径为直径的圆外切于以实轴为直径的圆. 结论64:以抛物线的任一焦半径为直径的圆与非对称轴的轴相切.结论65:焦点在x 轴上的椭圆(或焦点在y 轴上)上任一点M (非短轴顶点)与短轴的两个顶点B ,B '的连线分别交x 轴(或y 轴)于,P Q ,则2P Q x x a =(或)2P Q y y a =.结论66:焦点在x 轴上的双曲线(或焦点在y 轴上)上任一点M (非顶点)与实轴的两个顶点,B B '的连线分别交y 轴(或x 轴)于,P Q ,则(2P Q y y b =-或)2P Q x x b =-.结论67:P 为焦点在x 轴上的椭圆上任一点(非长轴顶点),则12PF F ∆与边2PF (或1PF )相切的旁切圆与x 轴相切于右顶点A (或左顶点A ').结论68:P 为焦点在x 轴上的双曲线右支(或左支)上任一点,则12PF F ∆的内切圆与x 轴相切于右顶点A (或左顶点A ').结论69:AB 是过椭圆22221(0)x y a b a b+=>>的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于N ,则||2||AB NF e=. 结论70:AB 是过双曲线22221(0,0)x y a b a b-=>>的焦点F 的一条弦(非通径,且为单支弦),弦AB 的中垂线交x 轴于M ,则||2||AB MF e=. 结论71:AB 是过抛物线22(0)y px p =>的焦点F 的一条弦(非通径),弦AB 的中垂线交x 轴于M ,则||2||AB MF =. 结论72:AB 为抛物线的焦点弦,分别过,A B 作抛物线的切线,则两条切线的交点P 在其准线上.结论73:AB 为椭圆的焦点弦,分别过,A B 作椭圆的切线,则两条切线的交点P 在其相应的准线上.结论74:AB 为双曲线的焦点弦,分别过,A B 作双曲线的切线,则两条切线的交点P 在其相应的准线上.结论75:AB 为过抛物线焦点F 的焦点弦,以AB 为直径的圆必与其准线相切.结论76:AB 为过椭圆焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相离(当然与另一条准线更相离).结论77:AB 为过双曲线焦点F 的焦点弦,以AB 为直径的圆必与其相应的准线相交,截得的圆弧度数为定值,且为12arccos e. 结论78:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相切,则该曲线必为抛物线.结论79:以圆雉曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相离,则该曲线必为椭圆.结论80:以圆锥曲线的焦点弦AB 为直径作圆,若该圆与其相应的准线相交,则该曲线必为双曲线,此时截得的圆弧度数为定值,且为12arccose结论81:AB 为过抛物线22(0)y px p =>焦点F 的焦点弦,()()1122,,,A x y B x y ,则||AB =12x x p ++结论82:AB 为过椭圆22221(0)x y a b a b +=>>焦点F 的焦点弦,()()1122,,,A x y B x y ,则||AB 122a e x x =-+结论83:AB 为过双曲线22221(0,0)x y a b a b-=>>焦点F 的焦点弦,()()1122,,,A x y B x y .若AB 为单支弦,则12||2AB e x x a =+-;若AB 为双支弦,则|12|||2AB e x x a =++ 结论84:F 为抛物线的焦点,,A B 是抛物线上不同的两点,直线AB 交其准线l 于M ,则FM 平分AFB ∠的外角.结论85:F 为椭圆的一个焦点,,A B 是椭圆上不同的两点,直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠的外角.结论86:F 为双曲线的一个焦点,,A B 是双曲线上不同的两点(同一支上),直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠的外角.结论87:F 为双曲线的一个焦点,,A B 是双曲线上不同的两点(左右支各一点),直线AB 交其相应的准线l 于M ,则FM 平分AFB ∠.结论88:AB 是椭圆22221(0)x y a b a b+=>>过焦点F 的弦,点P 是椭圆上异于,A B 的任一点,直线PA PB 、分别交相应于焦点F 的准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为42b c-.结论89:AB 是双曲线22221(0,0)x y a b a b-=>>过焦点F 的弦,点P 是双曲线上异于,A B任一点,直线PA 、PB 分别交相应于焦点F 的准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为42b c-.结论90:AB 是抛物线22(0)y px p =>过焦点F 的弦,点P 是抛物线上异于,A B 的任一点,直线PA PB 、分别交准线l 于M N 、,则点M 与点N 的纵坐标之积为定值,且为2p -.结论91:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线PA PB 、分别交直线2(0)a x m a m=<<于M N 、,则M N y y ⋅为定值,且有()2222M N b m a y y m -⋅=结论92:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN ⋅为定值,且有()()222222a m a mb EM FN m -+-⋅=.结论93:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆上任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM ⋅为定值,且有()()222222a m a mb EN FM m -+-⋅=结论94:,A B 为椭圆22221(0)x y a b a b+=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则FM FN ⋅为定值,且有()()222222a m a mb FM FN m -+-⋅=结论95:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM EN ⋅为定值,且有()()2222222a mb a m EM EN m +--⋅=结论96:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则BM FN ⋅为定值,且有()()22222a m a amb BM FN m -+-⋅=结论97:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM FN ⋅为定值,且有()()22222a m a amb AM FN m ---⋅=结论98:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),(0)E m F m m a -<<,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM BN ⋅为定值,且有()()22222a m ab AM BN m --⋅=结论99:,A B 为双曲线22221(0,0)x y a b a b-=>>的顶点,(,0),(,0),(0)E m F m m a -<<,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则M N y y ⋅为定值,且有()2222M N b m a y y m -⋅=.结论100:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN ⋅为定值,且有()()222222a m ab m EM FN m -++⋅=结论101:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM ⋅为定值,且有()()222222a m ab m EN FM m -++⋅=结论102:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则FM FN ⋅为定值,且有()()222222a m ab m FM FN m -+-⋅=结论103:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点,若直线,AP BP 分别交直线2a x m=于M N 、,则EM EN ⋅为定值,且有()()2222222a mb a m EM EN m ++-⋅=结论104:,A B 为双曲线22221(0,0)x y a b a b-=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则BM FN ⋅为定值,且有()()22222a m ab amBM FN m -++⋅=结论105:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM FN ⋅为定值,且有()()22222a m ab amAM FN m -+-⋅=结论106:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),()E m F m m a ->,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM BN ⋅为定值,且有()()22222a m ab AM BN m -+⋅=结论107:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AP BP k k ⋅为定值,且有2221AP BP AM BNb k k k k e a⋅=⋅=-=-结论108:,A B 为椭圆22221(0)x y a b a b +=>>长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AN BM k k ⋅为定值,且有2221AN BM b k k e a ⋅=-=-结论109:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AM AN k k ⋅为定值,且有()21AM AN a m k k e a m+⋅=--结论110:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则BM BN k k ⋅为定值,且有()21BM BN a m k k e a m-⋅=-+结论111:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),()E m F m m a ->,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN k k ⋅为定值,且有222EM FNb k k a m ⋅=-+结论112:,A B 为椭圆22221(0)x y a b a b +=>>的长轴顶点,(,0),(,0),()E m F m m a ->,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则EN FM k k ⋅为定值,结论113:,A B 为椭圆22221(0)x y a b a b +=>>的任一直径(中心弦),P 为椭圆上任一点(不与,A B 点重合),则PA PB k k ⋅为定值,且有2221PA PBb k k e a⋅=-=-结论114:,A B 为椭圆22221(0)x y a b a b+=>>的任一弦(不过原点且不与对称轴平行),M为弦AB 的中点,若OM k 与AB k 均存在,则OM AB k k ⋅为定值,且有2221OM ABb k k e a⋅=-=-结论115:AB 为椭圆22221(0)x y a b a b+=>>的任一弦(不与对称轴平行),若平行于AB 的弦的中点的轨迹为直线PQ ,则有2221PQ ABb k k e a⋅=-=-结论116:过椭圆22221(0)x y a b a b +=>>上任意一点(P 不是其顶点)作椭圆的切线PA ,则有2221PA OPb k k e a⋅=-=-结论117:椭圆22221(0)x y a b a b +=>>及定点(,0),()F m a m a -<<,过F 的弦的端点为A ,B ,过点A ,B 分别作直线2a x m =的垂线,垂足分别为,DC ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论118:椭圆22221(0)x y a b a b +=>>及定点(,0),()F m m c =±,过F 任作一条弦,AB E 为椭圆上任一点,连接,AE BE ,且分别与准线2a x m =相交于,P Q ,则有1FP FQ k k ⋅=-结论119:椭圆22221(0)x y a b a b +=>>及定点(,0),(,0)F m a m a m -<<≠,过F 任作一条弦,AB E 为椭圆上任一点,连接AE BE 、,且分别与直线2a x m =相交于,P Q ,则有222FP FQb k k m a⋅=- 结论120:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AP BP k k ⋅为定值,且有2221AP BP AM BNb k k k k e a⋅=⋅=-=结论121:,A B 为双曲线22221(0)x y a b a b +=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则AN BM k k ⋅为定值,且有21AN BM k k e ⋅=-结论122:,A B 双曲线22221(0)x y a b a b +=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m =于M N 、,则AM AN k k ⋅为定值,且有()21AM AN a m k k e a m+⋅=--结论123:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,P 为双曲线上任一点(非实轴顶点),若直线AP BP 、分别交直线2a x m =于M N 、,则BM BN k k ⋅为定值,且有()21BM BN a m k k e a m-⋅=-+结论124:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EM FN k k ⋅为定值,且有222EM FNb k k a m ⋅=+ 结论125:,A B 为双曲线22221(0,0)x y a b a b -=>>的顶点,(,0),(,0),(),E m F m m a P ->为双曲线上任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于M N 、,则EN FM k k ⋅为定值,且有222EN FMb k k a m⋅=+ 结论126:AB 为双曲线22221(0,0)x y a b a b -=>>的任一直径,P 为双曲线上任一点(不与,A B 点重合),则PA PB k k ⋅为定值,且有2221PA PBb k k e a⋅==- 结论127:AB 为双曲线22221(0,0)x y a b a b-=>>的任一弦(不过原点且不与对称轴平行),M 为弦AB 的中点,若OM k 与AB k 均存在,则AB OM k k ⋅为定值,且有22AB OMb k k a⋅= 结论128:AB 为双曲线22221(0,0)x y a b a b-=>>的任一弦(不与对称轴平行),若平行于AB 的弦的中点的轨迹为直线PQ ,则有2221AB PQb k k e a⋅==- 结论129:过双曲线22221(0,0)x y a b a b-=>>上任意一点P (不是其顶点)作双曲线的切线PA ,则有2221PA OPb k k e a⋅==- 结论130:双曲线22221(0,0)x y a b a b -=>>及定点(,0),(F m m a >或)m a <-,过F 的弦的䇄山端点为,A B ,过,A B 分别作直线2a x m =的垂线,垂足分别为,D C ,直线2a x m=与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论131:双曲线22221(0,0)x y a b a b -=>>及定点(,0),()F m m c =±,过F 任作一条弦AB ,E 为双曲线上任一点,连接,AE BE ,且分别与准线2a x m =相交于,P Q ,则有1FP FQ k k ⋅=- 结论132:双曲线22221(0,0)x y a b a b -=>>及定点(,0),(F m m a >或)m a <-,过F 任作一条弦,AB E 为双曲线上任一点,连接,AE BE ,且分别与直线2a x m =相交于,P Q ,则有222FP FQb k k a m ⋅=- 结论133:抛物线22(0)y px p =>及定点(,0),(0)F m m >,过F 的弦的端点为,A B 过A ,B分别作直线x m =-的垂线,垂足分别为,D C ,直线x m =-与x 轴相交于E ,则直线AC 与BD 恒过EF 的中点,且有0AE BE k k +=.结论134:抛物线22(0)y px p =>及定点(,0),2p F m m ⎛⎫=⎪⎝⎭,过F 任作一条弦,AB E 为抛物线上任一点,连接AE BE 、,分别与准线x m =-相交,P Q ,则1FP FQ k k ⋅=-结论135:抛物线22(0)y px p =>及定点(,0),(0)F m m >,过F 任作一条弦,AB E 为抛物线上任一点,连接AE BE 、分别与直线x m =-相交,P Q ,则2FP FQ p k k m⋅=-结论136:过抛物线22(0)y px p =>的焦点,02p F ⎛⎫⎪⎝⎭的弦(焦点弦)与抛物线相交于A ,B ,过B 作直线BC 与x 轴平行,且交准线于C ,则直线AC 必过原点(即其准线与x 轴交点E 与焦点F 的线段的中点).结论137:AB 为椭圆22221(0)x y a b a b+=>>的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于,M N ,则直线,AN BM 均过线段EF 的中点.结论138:AB 为双曲线22221(0,0)x y a b a b-=>>的焦点F 的弦,其相应的准线与x 轴交点为E ,过A ,B 作x 轴的平行线与其相应的准线分别相交于,M N ,则直线,AN BM 均过线段EF 的中点.结论139:过圆锥物线(可以是非标准状态下)焦点弦的一个䇄山端点向其相应的准线作垂线,垂足与另一个弦的端点的连线必经过焦点到相应的准线的垂线段的中点.结论140:AB 为垂直于椭圆22221(0,0,)x y a b a b a b+=>>≠长轴上的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该椭圆上.结论141:AB 为垂直于双曲线2222(0)x y a bλλ-=≠实轴的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该双曲线上.结论142:AB 为垂直于抛物线2y tx =或()2(0)x ty t =≠对称轴的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该抛物线上.结论143:AB 为垂直于圆锥曲线的长轴(椭圆)(或实轴(双曲线)或对称轴(抛物线))的动弦,其准线与x 轴相交于Q ,则直线AF 与BQ (或直线BF 与AQ )的交点M 必在该圆锥曲线上.结论144:圆锥曲线的焦点弦AM (不为通径,若双曲线则为单支弦),则在x 轴上有且只有一点Q 使AQF MQF ∠=∠.结论145:过F 任作圆锥曲线的一条弦AB (若是双曲线则为单支弦),分别过,A B 作准线l 的垂线(Q 是其相应准线与x 轴的交点),垂足为11A B 、,则直线1AB 与直线1A B 都经过QF 的中点K ,即A 、1K B 、及1B K A 、、三点共线.结论146:若AM BM 、是圆锥曲线过点F 且关于长轴(椭圆)对称的两条动弦(或实轴(双曲线)或对称轴(抛物线)),则四线1111AM BN NB MA 、、、共点于K .结论147:,A B 分别为椭圆22221(0)x y a b a b +=>>的右顶点和左顶点,P 为椭圆任一点(非长轴顶点),若直线,AP BP 分别交直线2a x m=于,M N ,则以线段MN 为直径的圆必过两个定点,且椭圆外定点为2,0a Q m ⎛⎫+ ⎪ ⎪ ⎪⎝⎭及椭圆内定点为2,0a R m ⎛⎫- ⎪⎪ ⎪⎝⎭结论148:,A B 分别为双曲线22221(0,0)x y a b a b -=>>的右顶点和左顶点,P 为双曲线上任一点(非实轴顶点),若直线,AP BP 分别交直线2()a x m a m=>于,M N ,则以线段MN 为直径的圆必过两个定点,且双曲线内定点为2,0a Q m ⎛⎫+⎪ ⎪ ⎪⎝⎭及双曲线外定点为2,0a R m ⎛⎫- ⎪⎪ ⎪⎝⎭结论149:过直线(0)x m m =≠上但在椭圆22221(0)x y a b a b+=>>外一点M 向椭圆引两条切线,切点分别为,A B ,则直线AB 必过定点2,0a N m ⎛⎫ ⎪⎝⎭,且有()22222AB MN b m k k a a m ⋅=-.结论150:过直线(0)x m m =≠上但在双曲线222210,0) (x y a b a b-=>>外(即双曲线中心所在区域)一点M 向双曲线引两条切线,切点分别为,A B ,则直线AB 必过定点2,0a N m ⎛⎫⎪⎝⎭,且有()22222AB MNb m k k a m a⋅=-. 结论151:过直线 0x m m =≠()上但在抛物线22(0)y px p =>外(即抛物线准线所在区域)一点M 向抛物线引两条切线,切点分别为,A B ,则直线AB 必过定点(,0)N m -,且有2AB MN pk k m⋅=结论152:设点M 是圆锥曲线的准线上一点(不在双曲线的渐近线上),过点M 向圆锥曲线引两条切线,切点分别为,A B ,则直线AB 必过准线对应的焦点F ,且FM AB ⊥.结论153:过直线1mx ny +=上但在椭圆22221(0)x y a b a b+=>>外一点M 向椭圆引两条切线,切点分别为,A B 则直线AB 必过定点()22,N ma nb .结论154:过直线1mx ny +=上但在双曲线22221(0,0)x y a b a b-=>>外(即双曲线中心所在区域)一点M 向双曲线引两条切线,切点分别为,A B ,则直线AB 必过定点()22,N ma nb .结论155:过直线10 mx ny m +=≠)(上但在抛物线22(0)y px p =>外(即抛物线准线所在区域)一点M 向抛物线引两条切线,切点分别为,A B ,则直线AB 必过定点1,pn N m m ⎛⎫-- ⎪⎝⎭结论156:,A B ,是椭圆22221(0)x y a b a b+=>>的左右顶点,点P 是直线(||,0)x t t a t =≠≠上的一个动点(P 不在椭圆上),直线PA 及PB 分别与椭圆相交于,M N ,则直线MN 必与x轴相交于定点2,0a Q t ⎛⎫ ⎪⎝⎭.结论157:,A B 是在双曲线22221(0,0)x y a b a b-=>>的顶点,点P 是直线(||,0)x t t a t =≠≠上的一个动点(P 不在双曲线上),直线PA 及PB 分别与双曲线相交于,M N ,则直线MN 必与x 轴相交于定点2,0a Q t ⎛⎫ ⎪⎝⎭. 结论158:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若直线AB 过定点(2,0)N p ,则OA OB ⊥,且A ,B 的横坐标之积及纵坐标之积均为定值.结论159:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,则直线AB 必过定点(2,0)N p ,且,A B 的横坐标之积及纵坐标之积均为定值.结论160:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,过O 作OM AB ⊥,则动点M 的轨迹方程为2220(0)x y px x +-=≠.结论161:,A B 是抛物线22(0)y px p =>上异于顶点O 的两个动点,若OA OB ⊥,则()2min 4AOB S p ∆=结论162:过抛物线22(0)y px p =>上任一点()00,M x y 作两条弦,MA MB ,则MA MB⊥的充要条件是直线AB 过定点()002,N x p y +-结论163:过抛物线22(0)y px p =>上任一点()00,M x y 作两条弦,MA MB ,则(0)MA MB k k λλ=≠的充要条件是直线AB 过定点002,p N x y λ⎛⎫-- ⎪⎝⎭结论164:过椭圆22221(0)x y a b a b+=>>上任一点()00,M x y 作两条弦,MA MB ,则MA MB ⊥的充要条件是直线AB 过定点2222002222,a b b a N x y a b a b ⎛⎫-- ⎪++⎝⎭特别地,(1)当M 为左、右顶点时,即00,0x a y =±=时,MA MB ⊥的充要条件是直线AB 过定点()2222,0a a b N a b ⎛⎫±- ⎪ ⎪+⎝⎭。
55个绝密数学公式(万能心算口诀)
55个绝密数学公式(万能心算口诀)下面是向学霸进军为高中的学生们整理的2022高中数学必背之50个公式,50种快速做题方法,以供参考。
1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(ab)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1) x,这是一阶特征根方程的运用。
2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber
19
0.35 [ 抛 掷 这 枚 硬 币 三 次 恰 有 两 次 正 面 朝 上 的 有 010,010,100,100,010,001,100 共 7 组,则抛掷这枚硬币三次恰有两次 正面朝上的概率可以为270=0.35.]
20
合作 探究 释疑 难
21
基本事件及其计数问题
【例 1】 连续掷 3 枚硬币,观察落地后 3 枚硬币是正面向上还 是反面向上.
(1)写出这个试验的所有基本事件; (2)“恰有两枚正面向上”这一事件包含哪几个基本事件?
22
[解] (1)由树形图表示如下:
23
试验的所有基本事件为(正,正,正),(正,正,反),(正,反, 正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反).
(2)“恰有两枚正面朝上”包含以下 3 个基本事件:(正,正,反), (正,反,正),(反,正,正).
(2)若把所取出卡片的标号之和作为基本事件,则共有多少个基 本事件?是古典概型吗?
(3)求所取卡片标号之和小于 4 的概率.
30
思路点拨:先列举出基本事件,紧扣古典概型的特点加以判断, 再用古典概型概率公式求相应概率.
31
[解] (1)基本事件为(红 1,红 2),(红 1,红 3),(红 1,蓝 1),(红 1,蓝 2),(红 2,红 3),(红 2,蓝 1),(红 2,蓝 2),(红 3,蓝 1),(红 3,蓝 2),(蓝 1,蓝 2)共 10 种,由于基本事件个数有限,且每个基 本事件发生的可能性相同,所以是古典概型.
3.理解用模拟方法估计概率的实质, 率,提升数学抽象素养.
会用模拟方法估计概率.(重点)
4
自主 预习 探新 知
2017届高中数学(理)常用小结论及温馨提示
2017 届高考数学(理)常用小结论及温馨提示 图难于其易,为大于其细 重庆一中 李红林 有利于提高单位时间的效益。一般地,考试解题必须进行“兴奋灶” 转移,思考必须进行代数学科与几何学科的 相互换位, 必须进行从这一章节到那一章节的跳跃, 但“先同后异”可以避免“兴奋灶”过急、 过频和过陡的跳跃。 三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”。 F、一细一实 就是说,审题要细,做题要实。 题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学 含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是 题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的信息,这一步不要怕慢。 找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,啰嗦重复,尤忌画蛇添足。一般来说,一个原 理写一步就可以了,至于不是题目考查的过渡知识,可以直接写出结论。高考允许合理省略非关键步骤。 为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。 G、分段得分 对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况, 高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识 点就得分,踩得多就多得分。 鉴于这一情况,高考中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。其实,考生的“分段得 分”是高考“分段评分”的逻辑必然。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争 多得分。 1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最 终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不 全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。 经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分。 2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略, 就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。 ① 缺步解答 如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个 个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那 些解题层次明显的题目, 或者是已经程序化了的方法, 每进行一步得分点的演算都可以得分, 最后结论虽然未得出, 但分数却已过半,这叫“大题拿小分”,确实是个好主意。 ②跳步答题 解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不 能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。 由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续 有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面, “事实上, 某步可证明或演算如下”, 以保持卷面的工整。 若题目有两问, 第一问想不出来, 可把第一问作“已知”, “先做第二问”,这也是跳步解答。 ③退步解答 “以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象 退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。 为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法 提供有意义的启发。 ④辅助解答 题目的完整解答,既有主要实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的 步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数 等。书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写 认真—学习认真—成绩优良—给分偏高。 有些选择题, “大胆猜测”也是一种辅助解答, 实际上猜测也是一种能力。
【秒杀大招】高中数学导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔! (1)
如图所示,又点 Q a,2 a 到直线 x 0 的距离为 a ,
自然想到转化为动点 Q 到抛物线准线 x 1 的距离,
结合抛物线的概念可得 D
x a2
ex 2
a
2
a 2
PQ QH 1 PQ QF 1 ,所以 D PQ QF 1 PF 1 ,当且仅当 P,Q, F 共线,
bn
1
n n 1
,
-2-
慧学上进
所以只需证明
an
n
1
1 n
2
ln2
n 1 n
bn
n
1
n 1
.
由(1)知 a 1 时,有 x ln x x 1 ,即 ln x x 1 . x
令
x
n
n
1
1
,则
ln
n
n
1
n
1
1
,
所以
ln2
n 1 n
n
1
12
n
1
1 n
2
1 n 1
n
1
2
,
所以 ln2 2 ln2 3 ln2 n 1 1 1 n ;
命题角度 1 构造函数
【典例1】(赣州市2018届高三摸底考试)已知函数
f
x 1
ln x , g(x) x
ae ex
1 x
bx
,若曲线
y
f
x 与曲
线 y g x 的一个公共点是 A1,1 ,且在点 A 处的切线互相垂直.
(1)求 a,b 的值;
(2)证明:当 x 1 时, f x g(x) 2 .
缩法进行放缩解决问题.
命题角度 4 二元或多元不等式的解证思路 【典例 6】(皖南八校 2018 届高三第三次联考)若 x, a,b 均为任意实数,且 a 22 b 32 1 ,则
高中数学高一上学期第三章函数模型章节练习及答案
高中数学高一上学期第三章函数模型章节练习及答案一、选择题1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A.200副 B.400副C.600副 D.800副2、某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则( )A.a=b B.a>bC.a<b D.无法比较a、b的大小3、下列函数中,随x的增大,增长速度最快的是( )A.y=50x B.y=x50x(x∈N*)C.y=50x D.y=log504、拟定从甲地到乙地通话m分钟的电话费f(m)=1.06·(0.50×[m]+1),其中m>0,[m]是大于或等于m的最小整数(如[3]=3,[3.7]=4,[5.1]=6),则从甲地到乙地通适时间为5.5分钟的通话费为( )A.3.71 B.3.97C.4.24 D.4.775、1992年底世界人口数达到54.8亿,若人口的年平均增长率为x%,设2010年底世界人口数为y(亿),那么y与x的函数解析式为( )A.y=54.8(1+x%)18 B.y=54.8(1+x%)19C.y=54.8(x%)18 D.y=54.8(x%)196、今有一组实验数据如表所示:t 1.99 3.0 4.0 5.1 6.12 u1.54.047.51218.01则最佳体现这些数据关系的函数模型是( ) A .u =log 2t B .u =2t -2 C .u =t 2-12D .u =2t -27、若x ∈(0,1)则下列结论正确的是( ) A .2x>x 12>lgx B .2x>lgx>x 12C .x 12>2x >lgxD .lgx>x 12>2x8、某商店某种商品进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则该商品一个月的销售量会减少10件.商店为使销售商品的月利润最高,应将该商品每件定价为( )A .70元B .65元C .60元D .55元9、向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )10、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t 的函数,表达式是( )A .x =60tB .x =60t +50tC .x =⎩⎨⎧60t (0≤t ≤2.5)150 (2.5<t ≤3.5)150-50(t -3.5) (3.5<t ≤6.5)D .x =⎩⎨⎧60t (0≤t ≤2.5)150-50t (t>3.5)11、某林区的森林蓄积量每一年比上一年平均增长10.4%,那么经过x 年可增长到原来的y 倍,则函数y =f(x)的图象大致为( )12、某动物数量y(只)与时间x(年)的关系为y =alog 3(x +1),设第二年有100只,则到第八年它们发展到( )A .200只B .400只C .500只D .600只二、填空题13、某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.14、将进价为8元的商品,按10元一个销售,每天可卖出100个,若这种商品的销售价每个上涨1元,日销售量就减少10个,为了获得最大利润,此商品的销售价应为每个________元.15、某工厂12月份的产量是1月份产量的7倍,那么该工厂这一年中的月平均增长率是________.16、某商品前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来的价格比较,变化情况是________.17、某地区居民生活用电分为高峰和低谷两个时间段进行分时计价,该地区的电网销售电价表如下:若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为________元(用数字作答).三、解答题18、为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系如图所示.(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜.19、某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(1.01210=1.127)20、(10分)根据总的发展战略,第二阶段,我国工农业生产总值从2000年到2020年间要翻两番,问这20年间,每年平均增长率至少要多少,才能完成这一阶段构想?21、(10分)某公司通过报纸和电视两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与报纸广告费用x1(万元)及电视广告费用x2(万元)之间的关系有如下经验公式:R=-2x12-x22+13x1+11x2-28.(1)若提供的广告费用共为5万元,求最优广告策略.(即收益最大的策略,其中收益=销售收入-广告费用)(2)在广告费用不限的情况下,求最优广告策略.22、商场销售某一品牌的豆浆机,购买人数是豆浆机标价的一次函数,标价越高,购买人数越少,把购买人数为零时的最低标价称为无效价格,已知无效价格为每台300元.现在这种豆浆机的成本价是100元/台,商场以高于成本价的相同价格(标价)出售.问:(1)商场要获取最大利润,豆浆机的标价应定为每台多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么豆浆机的标价应为每台多少元?23、为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比.药物释放完毕后,y 与t 的函数关系式为y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 ;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室.24、为了保护环境,实现城市绿化,某房地产公司要在拆迁地如图所示长方形ABCD 上规划出一块长方形地面建住宅小区公园(公园的一边落在CD 上),但不超过文物保护区△AEF 的红线EF.问如何设计才能使公园占地面积最大?并求出最大面积(已知AB =CD =200 m ,BC =AD =160 m ,AE =60 m ,AF =40 m).25、养鱼场中鱼群的最大养殖量为m t ,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量.已知鱼群的年增长量y t 和实际养殖量x t 与空闲率的乘积成正比,比例系数为k(k>0).(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k 的取值范围.26、依法纳税是每个公民应尽的义务,国家征收个人工资、薪金所得税是分段计算的:总收入不超过2 000元的,免征个人工资、薪金所得税;超过2 000元部分需征税,设全月纳税所得额(所得额指工资、薪金中应纳税的部分)为x,x=全月总收入-2 000元,税率如表所示:(1)(2)某人2008年10月份工资总收入为4 200元,试计算这个人10月份应纳个人所得税多少元?参 考 答 案一、选择题1、【解析】 由5x +4 000≤10x ,解得x ≥800,即日产手套至少800副时才不亏本.故选D.【答案】 D2、【解析】 ∵b =a(1+10%)(1-10%), ∴b =a[1-(10%)2]=a ⎝ ⎛⎭⎪⎫1-1100,∴b =a ×99100, ∴a>b.故选B. 【答案】 B3、C 【解析】 由于指数函数的增长是爆炸式的,则当x 越来越大时,函数y =50x 的增长速度最快.故选C.4、【解析】 5.5分钟的通话费为f(5.5)=1.06×(0.50×[5.5]+1)=1.06×(0.50×6+1)=1.06×4=4.24,故选C. 【答案】 C5、【解析】 由题意,1993年底人口为54.8(1+x%),1994年底人口为54.8(1+x%)2,…,故2010年底人口为54.8(1+x%)18.故选A.【答案】 A6、【解析】 图象不符合直线的特征,排除D ;图象不符合对数函数的特征,排除A ;当t =3时,2t-2=23-2=6,t 2-12=32-12=4,由表格知当t =3时,u =4.04.模型u =t 2-12能较好体现这些数据.故选C.【答案】 C7、 当0<x<1时,2x >1,0<x 12<1,lgx<0,∴2x >x 12>lgx.故选A.【答案】 A8、【解析】 设该商品每件单价提高x 元,销售该商品的月利润为y 元,则y =(10+x)(500-10x) =-10x 2+400x +5 000 =-10(x -20)2+9 000 ∴当x =20时,y max =9 000,此时每件定价为50+20=70元,故选A. 【答案】 A9、【解析】 图反映随着水深h 的增加,注水量V 增长速度越来越慢,这反映水瓶中水上升的液面越来越小,故选B.【答案】 B10、C 【解析】 应分三段建立函数关系,当0≤t ≤2.5时,x =60t ;当2.5<t ≤3.5时,离开A 地的距离不变是150;当3.5<t ≤6.5时,x =150-50(t -3.5).故选C.11、D 【解析】 设原来的蓄积量为a ,则a(1+10.4%)x=a ·y ,∴y=1.104x,故选D.12、A【解析】由已知第二年有100只,得100=alog33,∴a=100,将a=100,x=8代入得y=100×log3(8+1)=200.故选A.二、填空题13、【解析】当t=0.5时,y=2,∴2=e 12 k,∴k=2ln2,∴y=e2tln2,当t=5时,∴y=e10ln2=210=1 024.【答案】2ln2 1 02414、【解析】设每个上涨了x元,利润为y元,则y=(10+x-8)(100-10x)=-10x2+80x+200=-10(x-4)2+360,当x=4时,y有最大值360,即每个售价为10+4=14(元).【答案】1415、【解析】设1月份产量为a,则12月份的产量为7a,∴a×(1+x)11=7a,∴x=117-1【答案】117-116、【解析】设原来商品价格为1个单位,则1×(1+20%)2×(1-20%)2=0.921 6=92.16%,∴减少了7.84%.【答案】减少了7.84%17、【解析】高峰时段电费a=50×0.568+(200-50)×0.598=118.1(元).低谷时段电费b=50×0.288+(100-50)×0.318=30.3(元).故该家庭本月应付的电费为a+b=148.4(元).【答案】148.4元三、解答题18、【解析】(1)由图象可设y1=k1x+29,y2=k2x,把点B(30,35)、C(30,15)分别代入y1,y2得k1=1/5,k2=1/2.∴y1=1/5x+29(x≥0),y2=1/2x(x≥0).(2)令y1=y2,即1/5x+29=1/2x,则x=962/3.当x=962/3时,y1=y2,两种卡收费一致;当x<962/3时,y1>y2,即便民卡便宜;当x>962/3时,y1<y2,即如意卡便宜.19、【解析】(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%).2年后该城市人口总数为y=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2.3年后该城市人口总数为y=100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)2×(1+1.2%)=100×(1+1.2%)3.…x年后该城市人口总数为y=100×(1+1.2%)x(x∈N).(2)10年后人口数为100×(1+1.2%)10≈112.7(万).20、【解析】 设平均每年增长率为x.从2000年到2020年共21年,若记2000年工农业总产值为1,则2001,2002,2003,……的年总产值分别为(1+x),(1+x)2,(1+x)3,…,第n 年为(1+x)n -1.根据题意,有(1+x)20=22,两边取对数得20lg(1+x)=2lg2,即lg(1+x)=110lg2, ∴lg(1+x)=0.030 1,∴1+x ≈1.072,∴x ≈0.072=7.2%.即平均每年增长7.2%,即可完成第二阶段的任务.21、【解析】 (1)依题意x 1+x 2=5,∴x 2=5-x 1,∴R =-2x 12-x 22+13x 1+11x 2-28=-2x 12-(5-x 1)2+13x 1+11(5-x 1)-28=-3x 12+12x 1+2(0≤x 1≤5),∴收益y =R -5=-3x 12+12x 1-3=-3(x 1-2)2+9≤9,当且仅当x 1=2时取等号.∴最优广告策略是报纸广告费用为2万元,电视广告费用为3万元.(2)收益y =R -(x 1+x 2)=-2x 12-x 22+13x 1+11x 2-28-(x 1+x 2)=-2(x 1-3)2-(x 2-5)2+15≤15,当且仅当x 1=3,x 2=5时取等号.∴最优广告策略是报纸广告费用为3万元,电视广告费用为5万元.22、【解析】 设购买人数为z ,标价为x ,则z 是x 的一次函数,有z =ax +b(a<0).又当x =300时,z =0,∴0=300a +b ,∴b =-300a ,∴有z =ax -300a.(1)设商场要获得最大利润,豆浆机的标价为每台x 元,此时,所获利润为y.则y=(x-100)(ax-300a)=a(x2-400x+30 000)(100<x<300).又∵a<0,∴当x=200时,y最大.所以,标价为每台200元时,所获利润最大.(2)当x=200时,y=-10 000a,max令y=-10 000a×75%,即a(x2-400x+30 000)=-10 000a×75%,解得x=150,或x=250.所以定价为每台150元或250元时,所获利润为最大利润的75%.23、24、【解析】如右图所示,设P为EF上一点,矩形CGPH为划出的公园,PH=x,则PN=200-x.又∵AE=60,AF=40,∴由最大面积为24 0662/3 m 2.25、【解析】 (1)由题意得y =kx ⎝ ⎛⎭⎪⎫m -x m =kx ⎝⎛⎭⎪⎫1-x m (0≤x<m). (2)y =-k mx 2+kx =-k m ⎝ ⎛⎭⎪⎫x -m 22+km 4. ∴当x =m 2时,y 最大=km 4, 即鱼群年增长量的最大值为km 4t. (3)由题意可得0≤x +y<m ,即0≤m 2+km 4<m ,∴-2≤k<2, 又∵k>0,∴0<k<2.26、【解析】 (1)第1级:f(x)=x·5%=0.05x第2级:f(x)=500×5%+(x -500)×10%=0.1x -25第3级:f(x)=500×5%+1 500×10%+(x -2 000)×15%=0.15x -125.∴f(x)=⎩⎨⎧ 0.05x (0<x ≤500)0.1x -25 (500<x ≤2 000)0.15x -125 (2 000<x ≤5 000).(2)这个人10月份的纳税所得额为4 200-2 000=2 200(元),∴f(2 200)=2 200×0.15-125=205(元),即这个人10月份应纳个人所得税205元.。
全国卷高考数学答题卡模板word版
请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效 20、(本小题满分 12 分)
数学试题答题卡
请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效
姓 名 ________________________ 准考证号
考生禁填:缺考考生由 监考员填涂右 边的缺考标记.
考生条形码粘贴处
正确填涂 填
涂 样 错误填涂
例√× ○
●
1.答题前, 考生先将自己的姓名、准考证号填写清楚, 并
请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效
21、(本小题满分 12 分) A
B
C
请在各题目的答题区域内作答, 超出黑色矩形边框限定区域的答案无效 2以34●若5●什错6标如句辑(改三●1如2下四一提二用如碑(福●1如并列2听34如育之5如真6用如传●7而如话●8号如●9号如互三下1的如可2句了如端3的如能●用四1如二(生●明23●A如则B冒如与换C如国标着一主12如睛4“5如艺(婆6如7●A的B写如的引是如千(神发C段二括句只如他补如还●号句如(于三破中文其1如了2如年(3如4现567●强如的当突(铺四省应尾铁部例●限号如奖(荒省加有点如一多五使1在2是3如4用(丛封字《【练昨一看练小你爸小思物这练老有说头练都拐我的修我把必修一仔二认1例一分完意果2例在的俗展动3例2句例书(、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、【活分提么误题:号不为、特:、种示、于:。》:【列成戏:的中:像顿统【:不
高中数学破题36大招(详例精编)
目录目录 (1)第1关:极值点偏移问题--对数不等式法 (2)第2关:参数范围问题—常见解题6法 (6)第3关:数列求和问题—解题策略8法 (9)第4关:绝对值不等式解法问题—7大类型 (13)第5关:三角函数最值问题—解题9法 (19)第6关:求轨迹方程问题—6大常用方法 (24)第7关:参数方程与极坐标问题—“考点”面面看 (37)第8关:均值不等式问题—拼凑8法 (43)第9关:不等式恒成立问题—8种解法探析 (49)第10关:圆锥曲线最值问题—5大方面 (55)第11关:排列组合应用问题—解题21法 (59)第12关:几何概型问题—5类重要题型 (66)第13关:直线中的对称问题—4类对称题型 (69)第14关:利用导数证明不等式问题—4大解题技巧 (71)第15关:函数中易混问题—11对 (76)第16关:三项展开式问题—破解“四法” (82)第17关:由递推关系求数列通项问题—“不动点”法 (83)第18关:类比推理问题—高考命题新亮点 (87)第19关:函数定义域问题—知识大盘点 (93)第20关:求函数值域问题—7类题型16种方法 (100)第21关:求函数解析式问题—7种求法 (121)第22关:解答立体几何问题—5大数学思想方法 (124)第23关:数列通项公式—常见9种求法 (129)第24关:导数应用问题—9种错解剖析 (141)第25关:三角函数与平面向量综合问题—6种类型 (144)第26关:概率题错解分类剖析—7大类型 (150)第27关:抽象函数问题—分类解析 (153)第28关:三次函数专题—全解全析 (157)第29关:二次函数在闭区间上的最值问题—大盘点 (169)第30关:解析几何与向量综合问题—知识点大扫描 (178)第31关:平面向量与三角形四心知识的交汇 (179)第32关:数学解题的“灵魂变奏曲”—转化思想 (183)第33关:函数零点问题—求解策略 (194)第34关:求离心率取值范围—常见6法 (199)第35关:高考数学选择题—解题策略 (202)第36关:高考数学填空题—解题策略 (211)第1关:极值点偏移问题--对数不等式法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式,以下简单给出证明:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②①-②得:根据对数平均值不等式:,而,B正确,C错误而①+②得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:题目3:(2010天津理)已知函数.如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(2014江苏南通市二模)设函数,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:,①+②得:根据均值不等式:∵函数在单调递减∴题目5:已知函数与直线交于两点. 求证:【解析】由,,可得:①,②①-②得:③①+②得:④根据对数平均值不等式利用③④式可得:由题于与交于不同两点,易得出则∴上式简化为:∴第2关:参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
2023年成都市高中阶段教育学校统一招生暨初中学业水平考试数学白卷(含答案解析)
2023年成都市高中阶段教育学校统一招生暨初中学业水平考试数学白卷注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方.考试结束,监考人员将试卷和答题卡一并收回.3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.a ,b ,c ,d 四个数在数轴上的位置如图所示,则最小的数是()第1题图A.aB.bC.cD.d2.2月6日,成都市武侯区2023年一季度“三个做优做强”重大项目现场推进活动暨国际体育公园城开工仪式举行,该项目全部建成后,预计可实现年营业收入超30亿元、年纳税总额超2亿元,创造直接就业岗位超12000个,将数据12000用科学记数法表示为()A.12×103 B.1.2×104C.1.2×105D.0.12×1053.下列计算正确的是()A.2a +a =3aB.a 3·a =2a 3C.(a 3)2=a 5D.a 2÷a 2=a 4.在平面直角坐标系xOy 中,点P (2-x ,1)关于y 轴对称的点的坐标是(1+2x ,1),则点P 的坐标是()A.(-5,1) B.(53,1) C.(5,1) D.(-53,1)5.蒲江丑柑又名“不知火”,具有多肉易剥皮、好吃不上火的优势.某超市水果销售部为了提高营业员的积极性(使一半左右营业员的月销售额都能达标),实行“每天定额售量,超出有奖”的措施.如果你是管理者,你选择确定“定额”的统计量为()A.平均数B.众数C.方差D.中位数6.如图,在△ABC 中,∠B =52°,分别以点A ,C 为圆心,BC ,AB 长为半径画弧,两弧在直线BC 上方交于点D ,连接AD ,CD ,则∠D 的度数是()A.32°B.38°C.48°D.52°第6题图7.多人花样跳绳形式多样、对场地要求低、操作简单、健身效果明显,受到大众的喜爱.如图,绳被甩至最高处时的形状满足抛物线y =-14x 2+h ,甩绳的两名同学两手之间的距离AB =4,两人甩绳之手距地面的距离均为1.6m ,则绳的最高点与地面之间的距离为()A.1m B.1.6m C.2.6m D.3.6m第7题图8.如图,正五边形ABCDE 内接于⊙O ,连接AC ,OC ,则∠ACO 的度数为()A.16°B.18°C.20°D.22°第8题图第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.分式方程11-2x +x -22x -1=1的解是________.10.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若S △DEF ∶S △ABC =9∶25,则OD ∶AD =________.第10题图11.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分一个馒头,刚好分完.问大、小和尚各有多少人?若大和尚有x 人,小和尚有y 人.则可列出方程组________________.12.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂,小伟欲用撬棍撬动一块石头,已知在某一平衡状态下阻力和阻力臂分别是1000N 和0.4m ,若动力F 1>F 2(单位:N),则动力臂l 1与l 2(单位:m)之间的关系为l 1______l 2(填“>”“<”或“=”)13.如图,在△ABC 中,AB =AC ,BC =6,AD 是∠BAC 的平分线,E 是AD 上一点,若DE =CD ,则CE =________.第13题图三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:|2-2|-(13)-2+327+2cos 45°;(2)≤3(x +2),①<x 3.②“卡塔尔世界杯”中的中国元素受到了全世界的广泛关注,某中学采用随机抽样调查的方式对部分学生了解参与世界杯的中国元素的程度进行调查,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图表.了解程度人数不了解14了解很少40基本了解m非常了解10第15题图根据图表信息,解答下列问题:(1)样本容量为________,表中m的值为________;(2)求出扇形图中n的值;(3)若从对参与的中国元素达到“非常了解”程度的3名女生和1名男生中随机抽取2人办一期手抄报,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.丘迟《与陈伯之书》:“暮春三月,江南草长,杂花生树,群莺乱飞.”三四月份,各类风筝在成都某湿地公园的上空争奇斗艳!最令人瞩目的龙风筝引起了小月和同伴的注意,中午12点左右他们在A处测得龙头M的仰角为60°(龙头的大小不计,眼睛距地面的高度AB为1.6m),龙头正下方参照物C处的俯角为6°.求此时龙头风筝的高度(结果精确到1m).(参考数据:sin6°≈0.10,cos6°≈0.99,tan6°≈0.11,3≈1.73,2≈1.41).第16题图17.(本小题满分10分)如图,△ABC内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点D,BE⊥CD,EB的延长线交⊙O于F,CF交AB于点G,∠BCF=∠BCD.(1)求证:BE=BG;(2)若BE=1,求⊙O的半径.第17题图如图,在平面直角坐标系xOy 中,一次函数y 1=k 1x +b 的图象与反比例函数y 2=k 2x的图象交于A (m ,-2),B (6,1)两点.(1)求一次函数和反比例函数的表达式;(2)当y 1-y 2≤0时,根据图象直接写出自变量x 的取值范围;(3)我们把对角线与一边垂直的平行四边形叫做“铅垂平行四边形”.设C 是第一象限内反比例函数图象上一点,点D 在x 轴上方,当以A ,B ,C ,D 为顶点的四边形是“铅垂平行四边形”时,求点C ,D 的坐标.第18题图B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.化简:(m 2+n 22m +n )·m m +n=________.20.若关于x 的一元二次方程ax 2-10x +5=0有两个不相等的实数根,则整数a 的值可以是________.21.若x (x +y )=2,则x 4+2x 3y +x 2y 2+9=________.22.如图,A ,B ,C 为⊙O 上的三个点,C 为AB 的中点,连接OA ,OB ,AC ,BC ,以C 为圆心,AC 长为半径的弧恰好经过点O ,若要在圆内任取一点,则该点落在阴影部分的概率是________.第22题图23.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,直线EF经过点B,过点A作AE⊥EF于点E,过点C作CF⊥EF于点F,点G为EA延长线上一点,且EG=34CF,点H为AC的中点,连接GH,若AE=1,EB=3,则GH=__________.第23题图二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)“云健身”火了,也带动了小型居家健身器材的热销,某网店A,B两种健身器材的销量最高.已知售出2件A种健身器材和3件B种健身器材所得利润为700元,售出每件A种健身器材的利润是每件B种健身器材利润的2倍.(1)求每件A种健身器材的利润?(2)由于需求量大,A,B两种健身器材很快售完,该店决定再一次购进A,B两种健身器材共80件.如果将这80件健身器材全部售完后所得利润不低于10000元,那么该店至少需购进多少件A种健身器材?25.(本小题满分10分)在平面直角坐标系xOy中,已知抛物线y=x2-2mx+m2-2,直线y=-12x+2与x轴,y轴分别交于A,B两点.(1)求抛物线的对称轴及顶点坐标;(2)若m=1,点(x1,y1),(x2,y2)在该抛物线上,且-2<x1<-1,1<x2<2,比较y1,y2的大小,并说明理由;(3)当抛物线与线段AB只有一个公共点时,请直接写出m的取值范围.26.(本小题满分12分)综合与实践问题情境:在数学活动课上,老师给出了这样一个问题:如图①,在正方形纸片ABCD中,点E是边AB的中点,将△BCE沿CE所在的直线折叠,得到△B′CE,延长CB′交AD于点P,连接AB′.猜想证明:(1)求证:∠PAB′=∠PB′A;第26题图拓展探究:如图②,延长AB′交CD于点F.(2)求证:CF=DF;(3)求AB′B′F的值.参考答案与解析快速对答案A卷(共100分)B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.m+n220.2(答案不唯一)21.1322.23-3π23.654二、解答题请看“详解详析”详解详析1.A2.B3.A【解析】逐项分析如下:选项逐项分析正误A2a+a=3a√B a3·a=a4≠2a3×C(a3)2=a6≠a5×D a2÷a2=1≠a×4.C【解析】∵点P(2-x,1)关于y轴对称的点的坐标为(x-2,1),∴x-2=1+2x,解得x=-3,∴点P的坐标是(5,1).5.D6.D【解析】由作图可知AD=BC,CD=AB,∴四边形ABCD是平行四边形,则∠D=∠B=52°.7.C【解析】∵AB =4,∴OA =OB =2,∴B (2,0),将B (2,0)代入y =-14x 2+h ,得0=-14×22+h ,解得h =1.∵1+1.6=2.6,∴绳的最高点与地面之间的距离为2.6m.命题立意本题主要考查二次函数的实际应用,锻炼了学生将实际问题与课本知识结合的能力,试题命制符合《义务教育数学课程标准(2022年版)》中“能结合图象对简单实际问题中的函数关系进行分析”的要求,需关注.8.B 【解析】如解图,连接OD .∵五边形ABCDE 是正多边形,∴AB =BC ,∠ABC =∠BCD =(5-2)×180°5=108°,∴∠ACB =12(180°-∠ABC )=36°,∴∠ACD =∠BCD -∠ACB =108°-36°=72°.∵∠COD =360°5=72°,OC =OD ,∴∠OCD =12(180°-∠COD )=54°,∴∠ACO =∠ACD -∠OCD =72°-54°=18°.第8题解图9.x =-210.3∶8【解析】∵S △DEF ∶S △ABC =9∶25,∴相似比等于3∶5,即OD ∶OA =3∶5,∴OD ∶AD =3∶8.11.+y =100x +y 3=100命题立意本题以《算法统宗》中百僧分馍问题为背景,结合二元一次方程组,让学生在学习数学的过程中,了解我国数学文化.将中国古代数学文化融入试题,引导学生关注我国古代数学文化的成就,对于激发学生的学习兴趣具有重要作用.12.<【解析】由题意知F ·l =1000×0.4=400,∴F =400l,∴动力F 与动力臂l 满足反比例函数关系.∵400>0,∴当l >0时,F 随l 的增大而减小,∴当F 1>F 2时,l 1<l 2.13.32【解析】在△ABC 中,∵AB =AC ,AD 是∠BAC 的平分线,∴AD 是BC 边上的中线,AD ⊥BC ,∴CD =12BC =3,∠CDE =90°.∵DE =CD ,∴△CDE 是等腰直角三角形,∴CE =2CD =32.14.解:(1)原式=2-2-9+3+2×22(3分)=-4;(6分)(2)解不等式①得x ≥-1,(2分)解不等式②得x <3,(4分)∴不等式组的解集是-1≤x <3.(6分)15.解:(1)80,16;(2分)【解法提示】∵了解很少的有40人,占50%,∴接受调查的学生共有40÷50%=80(人),即样本容量为80;∴m =80-(14+40+10)=16.(2)∵1080×100%=12.5%,∴n 的值为12.5;(4分)(3)记3名女生分别为A ,B ,C ,1名男生为D ,列表如下:AB C D A (A ,B )(A ,C )(A ,D )B (B ,A )(B ,C )(B ,D )C (C ,A )(C ,B )(C ,D )D(D ,A )(D ,B )(D ,C )由列表可知,共有12种等可能的情况,其中恰好抽到一名男生和一名女生的情况有6种,∴P (恰好抽到一名男生和一名女生)=612=12.(8分)16.解:如解图,过点A 作MC 的垂线,垂足为点D .由题意可知∠MAD =60°,∠CAD =6°,CD =AB =1.6.(2分)在Rt △ACD 中,tan ∠CAD =CDAD,即1.6AD=tan 6°≈0.11,∴AD =1.60.11≈14.5.(5分)在Rt △ADM 中,tan ∠DAM =DMAD ,即DM 14.5=tan 60°=3,∴DM =14.53≈25.1,∴此时龙头风筝的高度为DM +CD =25.1+1.6=26.7≈27m .(8分)第16题解图17.(1)证明:如解图,连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCB +∠BCD =90°.∵OC =OB ,∴∠OCB =∠OBC .(3分)∵∠BCF =∠BCD ,∴∠BCF +∠OBC =90°,∴∠BGC =90°,即BG ⊥CF .∵∠BCF =∠BCD ,BE ⊥CD ,∴BE =BG ;(5分)第17题解图(2)解:∵AB 是⊙O 的直径,CF ⊥AB ,∴ BC= BF ,∴BC =BF ,∴∠BCF =∠F .∵BE ⊥CD ,∠BCF =∠BCD ,∴∠BCF =∠BCD =∠F =30°,∴∠OBC =60°.(8分)∵BE =1,∴BC =2.∵OB =OC ,∠OBC =60°,∴△OBC 为等边三角形,∴OB =BC =2,即⊙O 的半径为2.(10分)18.解:(1)∵点B (6,1)在反比例函数的图象上,∴k 2=6×1=6,∴反比例函数的表达式为y 2=6x.∵A (m ,-2)在反比例函数的图象上,∴-2=6m ,解得m =-3,∴A (-3,-2).将点A (-3,-2),B (6,1)代入y 1=k 1x +b 2=-3k 1+b ,=6k 1+b ,1=13,=-1,∴一次函数的表达式为y 1=13x -1;(4分)(2)x ≤-3或0<x ≤6;(6分)【解法提示】当y 1-y 2≤0时,y 1≤y 2,即一次函数的图象在反比例函数图象的下方,观察图象可知,此时x 的取值范围是x ≤-3或0<x ≤6.(3)设C (a ,6a).①如解图①,当AB 为边,AC 为对角线时,由题意知AC ⊥BC ,∴k AC ·k BC =-1∴6a +2a +3·6a -1a -6=-1,整理得a 2=2,∴a =2或a =-2(舍),∴C (2,32).(7分)∵四边形ABCD为平行四边形,=x B+x D 2,=y B+y D2,=6+x D2,=1+y D2,D=2-9,D=32-3,∴D(2-9,32-3);(8分)第18题解图①②如解图①,当AB为边,BC为对角线时,同①可得C(2,32).∵四边形ABDC为平行四边形,=x A+x D2,=y A+y D2,=-3+x D2,=-2+y D2,D=9+2,D=3+32,∴D(9+2,3+32);(9分)③如解图②,当AB为边,BC为对角线时,由题意得AB⊥BC.第18题解图②=-3x+19,=6x,1=6,1=12=13,2=18,∴C(13,18).∵四边形ABDC为平行四边形,=x A+x D2,=y A+y D2,=-3+x D2,=-2+y D2,D=283,D=21,∴D(283,21).综上所述,当以A,B,C,D为顶点的四边形是“铅垂平行四边形”时,C(2,32),D(2-9,32-3)或C(2,32),D(9+2,3+32)或C(13,18),D(283,21).(10分)【一题多解法】解法二(求C坐标部分):设C(a,6a).如解图③,过C作x轴的平行线,过点A,B作EF的垂线,垂足分别为点E,F,易得△ACE∽△CBF,∴AECF=CEBF,即6a+26-a=a+36a-1,(后面解答过程略)第18题解图③解法三(求C坐标部分):设C(a,6a).∵AC⊥BC,∴AC 2+BC 2=AB 2,∴(a +3)2+(6a +2)2+(a -6)2+(6a-1)2=(6+3)2+(1+2)2.(运算特别繁琐,建议舍弃)【难点点拨】本题第(3)问的难点在于正确理解“铅垂平行四边形”的定义,实质就是△ABC 是直角三角形,因C 在第一象限,应对B ,C 分别为直角顶点分类讨论,再利用中点公式确定D 的坐标.19.m +n2【解析】原式=m 2+n 2+2mn 2m ·m m +n =(m +n )22m ·m m +n =m +n2.20.2(答案不唯一)【解析】∵关于x 的一元二次方程ax 2-10x +5=0有两个不相等的实数根,∴b 2-4ac =(-10)2-4a ×5>0,解得a <5.∵一元二次方程二次项系数不为0,∴a <5且a ≠0,∴a 可以为2.21.13【解析】∵x (x +y )=2,∴x 2+xy =2,∴原式=x 4+x 3y +x 3y +x 2y 2+9=x 2(x 2+xy )+xy (x 2+xy )+9=x 2·2+xy ·2+9=2(x 2+xy )+9=2×2+9=13.22.23-3π【解析】如解图,连接OC ,设⊙O 的半径为r .∵C 为AB 的中点,∴AC=BC ,∴AC =BC .∵以C 为圆心,AC 长为半径的弧恰好经过点O ,∴OC =AC =BC =OA =OB ,∴△AOC ,△BOC 均是等边三角形,∴∠ACO =60°,∴S 弓形AO =S 扇形ACO -S △AOC =60π·r 2360-34r 2=π6r 2-34r 2,∴S 阴影=4S 弓形AO =2π3r 2-3r 2.∵⊙O 的面积为πr 2,∴该点落在阴影部分的概率是2π3r 2-3r 2πr 2=23-3π.第22题解图23.654【解析】解法一:如解图①,过点C 作CN ⊥EA ,交EA 延长线于点N ,过点H作HP ⊥EG 于点P .∵GE ⊥EF ,∴∠AEB =90°,∴∠EAB +∠EBA =90°.∵∠ABC =90°,∴∠EBA +∠FBC =90°,∴∠EAB =∠FBC .∵CF ⊥EF ,∴∠BFC =90°,∴∠AEB =∠BFC .∵AB =BC ,∴△ABE ≌△BCF ,∴BF =AE =1,CF =BE =3.由题意易得四边形EFCN 为矩形,∴EF =CN =BE +BF =4,EN =FC =3,∴AN =EN -AE =2.∵HP ⊥EG ,CN ⊥EG ,∴CN∥HP.∵点H为AC的中点,∴HP为△ACN的中位线,∴HP=12CN=2,AP=12AN=1.∵GE=34CF,∴GE=94,∴GP=GE-AE-AP=14.在Rt△HPG中,GH=GP2+HP2=(14)2+22=654.图①图②第23题解图解法二:如解图②,过点H作HP⊥EG于点P,连接HE,HB.∵GE⊥EF,∴∠AEB=90°,∴∠EAB+∠EBA=90°.∵∠ABC=90°,∴∠EBA+∠FBC=90°,∴∠EAB=∠FBC.∵CF⊥EF,∴∠BFC=90°,∴∠AEB=∠BFC.∵AB=BC,∴△ABE≌△BCF,∴BF =AE=1,CF=BE=3.∵∠ABC=90°,AB=BC,∴△ABC为等腰直角三角形,∴∠CAB=∠ACB=45°.∵AE=1,BE=3,∠AEB=90°,∴AB=10.∵点H为AC的中点,∴HB⊥AC,∴AH=BH=5.又∵GE⊥EF,∴∠AEB=∠AHB=90°,∴A,E,B,H四点共圆,∴∠HEB =∠HAB=∠HEA=∠ABH=45°.∵HP⊥EG,∴△HPE为等腰直角三角形,∴EP=HP.设AP=x,则EP=HP=x+1,在Rt△AHP中,AP2+HP2=AH2.即x2+(x+1)2=5,解得x1=1,x2=-2(舍去),∴HP=EP=2.∵GE=34CF,∴GE=94,∴GP=GE-EP=14.在Rt△HPG中,GH=GP2+HP2=(14)2+22=654.【难点点拨】解法一:过点H作HP⊥GE,本题难点在于求HP与EP的长,可通过过点C 作CN⊥EP于点N,利用中位线的性质即可求解;解法二:连接EH,BH,过点H作HP⊥EG,利用A,E,B,H四点共圆得出∠AEH=45°,利用勾股定理得出HP,EP的长即可求解.24.解:(1)设每件B种健身器材的利润为x元,则每件A种健身器材的利润为2x元,由题意得2×2x+3x=700,解得x=100,∴2x=200,答:每件A种健身器材的利润为200元;(4分)(2)设购进m件A种健身器材,则购进(80-m)件B种健身器材,由题意得200m+100(80-m)≥10000,解得m≥20.∵m为整数,∴m的最小值为20.答:该店至少需购进20件A种健身器材.(8分)25.解:(1)∵抛物线y=x2-2mx+m2-2=(x-m)2-2,∴抛物线的对称轴为直线x=m,顶点坐标为(m,-2);(3分)(2)y1>y2,理由如下:∵m=1,∴y=x2-2x-1,∴抛物线的对称轴为直线x=1.∵a=1>0,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小.∵-2<x1<-1,1<x2<2,∴x1关于对称轴x=1对称的t的取值范围为3<t<4,∴y1>y2;(5分) (3)m的取值范围为-2≤m<2或4-2<m≤4+2.(10分)【解法提示】由直线y=-12x+2,得交点为A(4,0),B(0,2),分三种情况讨论:①当抛物线过点B时,可得m2-2=2,解得m=2或m=-2.当m=2时,抛物线的表达式为y=x2-4x+2,=x2-4x+2,=-12x+2,解得x1=0或x2=72.∵x 2=72<4,∴两交点都在线段AB 上.当m =-2时,同理可得x 1=0或x 2=-92(负值舍去),∴-2≤m <2;②当抛物线过点A 时,可得(4-m )2-2=0,解得m =4+2或m =4-2,∴4-2<m ≤4+2;③当直线y =-12x +2与抛物线的公共点为抛物线顶点时,∵由(1)知抛物线顶点的纵坐标为-2,故此情况不存在.综上所述,m 的取值范围为-2≤m <2或4-2<m ≤4+2.命题立意本题属于二次函数纯性质综合题,锻炼了学生利用数学知识进行推理论证的能力,培养科学精神,且试题命制符合《义务教育数学课程标准(2022年版)》中新增“了解代数推理”的要求,具有一定的趋势性.26.(1)证明:∵四边形ABCD 为正方形,∴∠B =∠BAD =90°.由折叠的性质知∠EB ′C =∠B =90°,EB ′=EB ,∴∠EB ′P =180°-∠EB ′C =180°-90°=90°,∴∠BAD =∠EB ′P .∵点E 是AB 的中点,∴AE =BE =B ′E ,∴∠EAB ′=∠EB ′A ,∴∠BAD -∠EAB ′=∠EB ′P -∠EB ′A ,即∠PAB ′=∠PB ′A ;(3分)(2)证明:由(1)知∠EAB ′=∠EB ′A ,∴∠BEB ′=2∠EAB ′.∵∠BEB ′=2∠BEC ,∴∠EAB ′=∠BEC ,∴AF ∥EC .∵AE ∥CF ,∴四边形AECF是平行四边形,∴CF=AE=12AB=12CD,∴CF=DF;(7分)【一题多解法】解法二:如解图①,分别延长BC,AF交于点Q,第26题解图①在正方形ABCD中,AD=BC,AD∥BC,∴∠PAB′=∠Q.由(1)得,∠PAB′=∠PB′A.又∵∠PB′A=∠CB′Q,∴∠CB′Q=∠Q,∴CB′=CQ.由折叠的性质可知,CB=CB′.∴CQ=CB=AD.又∵∠AFD=∠QFC,∴△AFD≌△QFC,∴DF=CF;(7分)解法三:如解图②,连接BB′.由(1)得EA=EB=EB′,∴∠AB′B=90°,∴AF⊥BB′,由折叠可得BB′⊥EC,∴AF∥EC,∵AE∥CF,∴四边形AECF是平行四边形,∴CF=AE=12AB=12CD,∴CF=DF;(7分)第26题解图②(3)解:如解图②,连接BB ′,BB ′交EC 于点O .∵BB ′⊥EC ,∴∠BOC =90°,∴∠OBC +∠OCB =90°.∵∠ABB ′+∠OBC =90°,∴∠ABB ′=∠OCB .∵∠AB ′B =∠EBC =90°,∴△AB ′B ∽△EBC ,∴AB ′BB ′=EB CB =12,即2AB ′=BB ′,设AE =EB =a ,则AB =BC =CD =AD =2a .在Rt △ABB ′中,AB 2=AB ′2+BB ′2,即4a 2=AB ′2+(2AB ′)2,解得AB ′=255a .∵AD =2a ,DF =a ,∠D =90°,∴AF =AD 2+DF 2=(2a )2+a 2=5a ,∴FB ′=5a -255a =355a ,∴AB ′B ′F =255a 355a =23.(12分)新考法解读本题以综合与实践课中的折纸为背景,通过“问题情境—猜想证明—拓展探究”的形式,考查学生动手操作、探究证明的能力,落实了《义务教育数学课程标准(2022年版)》核心素养中的模型观念和将“综合与实践”领域作为学生开展数学思考、实践、探究、交流、表达的重要内容,考查学生综合运用所学知识分析和解决问题的能力,具有一定的趋势性.。
高考数学大招秒杀
高考数学大招秒杀高考,是每一位学子人生的重要里程碑,而数学,作为高考中的重要科目,更是让无数考生头疼的难题。
然而,今天我要分享的,是关于如何在高考数学中快速解决问题,以“秒杀”姿态轻松应对高考数学的方法。
秒杀,顾名思义,就是在极短的时间内完成对问题的解答。
而这种能力的锻炼,需要我们在平时的学习和练习中不断积累。
以下是我为你们总结的几个大招:1、基础知识必须扎实:数学,就像一座金字塔,每一个公式、每一个概念都是金字塔的一块砖。
没有坚实的基础知识,我们无法在考试中做到秒杀。
因此,牢记公式、理解概念,是秒杀数学题的基础。
2、大量练习提高熟练度:只有通过大量的练习,我们才能对各种题型有深入的理解和掌握。
这样,在考试中遇到相似的题目时,我们可以迅速找到解题思路,从而快速解答。
3、学会利用图像解决问题:数学中有很多问题可以通过图像来解决。
例如,解析几何问题可以通过绘制图形,更直观地找到解题思路。
所以,学会利用图像解决问题,可以让我们更快速地找到答案。
4、灵活运用解题方法:高中数学有很多通用的解题方法,如赋值法、反证法、数形结合等。
在解题时,灵活运用这些方法可以大大简化解题过程。
5、培养自己的逻辑思维:数学,更像是一门逻辑科学。
所以,培养自己的逻辑思维,学会推理和分析,可以使我们在解答问题时更有条理和效率。
我想说的是,高考数学虽然有一定难度,但只要我们平时认真学习、大量练习,考试时保持冷静、自信,就一定能够取得好的成绩。
希望我的这些大招能对大家有所帮助。
加油!高考,是每一位学子人生的重要里程碑,其中数学作为三巨头之一,无疑占据了举足轻重的地位。
对于许多考生来说,数学既是机遇也是挑战。
而在这个充满竞争的时代,掌握高效、实用的解题技巧是至关重要的。
本文将介绍“秒杀”系列,帮助大家在高考数学中取得更好的成绩。
一、秒杀之“快速解题法”在数学考试中,时间是非常宝贵的。
为了节省时间,我们需要掌握一些快速解题的方法。
其中,“快速解题法”是一种非常实用的技巧,它可以帮助我们快速找到解题思路,减少思考时间。
2023年高考数学复习学习计划
2023年高考数学复习学习计划2023年高考数学复习学习计划1一、背景分析近几年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考查全面、比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。
更加注重考查学生进入高校学习所需的基本数学素养,这些变化应引起我们在教学中的关注和重视。
二、指导思想在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。
通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学基础知识,从而培养学生思维能力,激发学生学习数学的兴趣,使学生树立学好数学的信心。
老师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,准确把握课程标准和考试说明的各项基本要求,立足基本知识、基本技能、基本思想和基本方法教学,针对学生实际,指导学法,着力培养学生的创新能力和运用数学的意识和能力。
三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题能力。
为此,我们确立了一轮复习的总体目标:通过梳理考点,培养学生分析问题、解决问题的能力;使学生养成思考严谨、分析条理、解答正确、书写规范的良好习惯,为二轮复习乃至高考奠定坚实的基础。
具体要求如下:1、第一轮复习必须面向全体学生,降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大部分“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
计数原理与概率统计高中数学试卷
计数原理与概率统计高中数学试卷学校:___________姓名:___________班级:___________考号:___________一、解答题1.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如表:(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,33+科目,剩下三门为选考科目.选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级,并以此打分得到最后得分.假定某省规定:选考科目按考生原始分数从高到低排列,按照占总体15%、35%、35%、13%和2%划定A、B、C、D、E五个等级,并分别赋分为90分、80分、70分、60分和50分,为了让学生们体验“赋分制”计算成绩的方法,该省某高中高一(1)班(共40人)举行了一次摸底考试(选考科目全考,单科全班排名),已知这次摸底考试中的历史成绩(满分100分)频率分布直方图,地理成绩(满分100分)茎叶图如图所示,小明同学在这次考试中历史82分,地理70多分.(1)采用赋分制后,求小明历史成绩的最后得分;(2)若小明的地理成绩最后得分为80分,求小明的原始成绩的可能值;(3)若小明必选历史,其它两科从地理、政治、物理、化学、生物五科中任选,求小明考试选考科目包括地理的概率.3.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查样本中有40名女生.下图是根据样本的调查结果绘制的等高条形图(阴影区域表示关注“嫦娥五号”的部分).2()()()()K a b c d a c b d =++++,其中n a b c d =+++ (1)完成上面的2×2列联表,并计算回答是否有95%的把握认为“对‘嫦娥五号’关注程度与性别有关”?(2)若将频率视为概率,现从该中学高三的女生中随机抽取3人.记被抽取的3名女生中对“嫦娥五号”新闻关注的人数为随机变量X ,求X 的分布列及数学期望. 4.一只红玲虫的产卵数y 和温度t 有关.现收集了7组观测数据如表:先建立y 与t 的指数回归方程0.272 3.849(1)t y e ∧-=,然后通过对数变换ln u y =,把指数关系变为u 与t 的线性回归方程:(1)0.272 3.849u t =-;模型②:先建立y 与t 的二次回归方程(2)20.367202.543y t =-,然后通过变换2x t =,把二次关系变为y 与x 的线性回归方程:(2)0.367202.543y x =-.(1)分别利用这两个模型,求一只红玲虫在40°时产卵数的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和11550.538Q =,模型①的相关指数210.98R =;模型②的残差平方和215448.431Q =,模型②的相关指数220.8R =;7.03178113110962981ln7 1.946e e e ====,,,,ln11 2.398ln21 3.045==,,ln24 3.178ln66 4.190ln 15 4.745ln325 5.784l ====,,,)5.某公司举办了一场新产品推介会,为了进一步了解产品的消费群体的年龄和性别特征,销售人员拟从参加现场会的人员中抽取一个容量为200的样本.(1)你认为销售人员应该采用哪种抽样方法,能使样本更好具有代表性,简要说明理由; (2)经过调查,销售人员获得了如下数据你是否有99%的把握认为是否喜欢该产品和年龄有关; (3)根据以上信息,你对该公司这款产品销售策略有何建议. 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++6.已知函数e 2f x x =-.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)是否存在()12,0,2x x ∈,使得曲线()y f x =在点()()11,x f x 和点()()22,x f x 处的切线互相垂直?说明理由.(参考数据:e 2.72≈,ln20.69≈) 7.已知(2n x 的展开式中各项的二项式系数之和为32.(1)求n 的值; (2)求(2n x 的展开式中2x 项的系数;(3)求(2n x x ⎛⎝展开式中的常数项. 8.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,2019年12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求经验回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2组数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y 关于x 的经验回归方程ˆˆˆybx a =+; (3)若由经验回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的经验回归方程是可靠的,试问(2)中所得的经验回归方程是否可靠?参考公式:经验回归方程ˆˆˆybx a =+中,()()()121ˆˆˆ,niii nii x x yy b ay bx x x ==--==--∑∑. 9.互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:(2)据统计表明,y 与x 之间具有线性相关关系,请用样本相关系数r 对y 与x 之间的相关性强弱进行判断.(若||0.75r >,则可认为y 与x 有较强的线性相关关系, r 的值精确到0.001) 10.某研究公司为了调查公众对某事件的关注程度,在某年的连续6个月内,对月份i x 和关注人数i y (单位:百)(1,2,3,,6i =)的数据做了初步处理,得到下面的散点图及一些统计量的值如表所示.66判断两个变量x ,y 是否线性相关,计算样相关系数r ,并说明它们的相关程度.参考公式:样木相关系数()()nii xx y y r --=∑,若||0.95r >,则y 与x 的线性相关程度相当高.36.5≈.11.在新中国成立七十周年之际,赤峰市某中学的数学课题研究小组在某一个社区做了一个关于在每天晚上7:30~10:00共2.5小时内,居民浏览“学习强国”的时间的调查.如果这个社区共有成人10 000人,每人每天晚上7:30~10:00期间打开“学习强国App ”的概率均为P (某人在某一时刻打开“学习强国App ”的概率,01p p =<<学习时长调查总时长),并且每人是否打开进行学习是相互独立的.他们统计了其中100名成人每天晚上浏览“学习强国”的时间(单位:min ),得到下面的频数表,以样本中100名成人每天晚上的平均学习时长作为该社区每个人的学习时长.(2)设X 表示这个社区每天晚上打开“学习强国App ”进行学习的人数. ①求X 的数学期望()E X 和方差()D X ; ②若随机变量Z 满足Z =,则可认为()~0,1Z N .假设当49505100X ≤≤时,表示该社区处于最佳学习氛围,试由此估计该社区每天晚上处于最佳学习氛围的时长(结果保留整数). 附:若()2~,Z N μσ,则()0.683,(22)0.954P Z P Z μσμσμσμσ-≤≤+≈-≤≤+≈,(33)0.997P Z μσμσ-≤≤+≈.12.为了加强对环保知识的宣传,某学校组织了垃圾分类知识竞赛活动活动.设置了四个箱子,分别写着“厨余垃圾”、“有害垃圾”、“可回收物”、其他垃圾”,另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取20张,按照自己的判断,将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得5分,投放错误得0分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得5分,放入其他箱子,得0分.从所有参赛选手中随机选取20人,将他们的得分按照[0,20],(20,40],(40,60],(60,80],(80,100]分组,并绘成频率分布直方图如图所示.(1)分别求出所选取的20人中得分落在[0,20]和(20,40]内的人数;(2)从所抽取的20人中得分落在[0,40]内的选手中随机选取3名选手,以X 表示这3名选手中得分不超过20分的人数,求X 的分布列和数学期望.13.某学校要招聘志愿者,参加应聘的学生要从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试.已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为34,且甲、乙两人是否答对每个试题互不影响. (1)试通过概率计算,分析甲、乙两人谁通过初试的可能性更大;(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为Y ,求Y 的分布列数学期望和方差.14.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得1-分;若都治愈或都未治愈,则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,()0,18p i =,,表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则08110,1,(1,2,,7)i i i i p p p ap bp cp i -+===++=,其中(1),(0),(1)a P X b P X c P X ==-====.假设0.50.8αβ==,.(i )证明:{}1(0,1,2,,7)i i p p i +-=为等比数列;(ii )求4p ,并根据4p 的值解释这种试验方案的合理性.15.某企业向国内100家大型农贸市场提供大米.据统计,每家大型农贸市场的年平均销售量(单位:t ),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.(1)求频率分布直方图中x 的值和年平均销售量的众数和中位数;(2)在年平均销售量为[220,240),[240,260),[260,280),[280,300]的四组大型农贸市场中,用分层随机抽样的方法抽取11家大型农贸市场.求应在年平均销售量在[220,240),[240,260),[260,280),[280,300]内的农贸市场中各抽取多少家.参考答案1.答案:(1)根据题表中数据知,甲机床生产的产品中一级品的频率是1500.75200=,乙机床生产的产品中一级品的频率是1200.6200=. (2)根据题表中的数据可得22400(1508050120)40010.2562701302020039K ⨯⨯-⨯==≈⨯⨯⨯.因为10.256 6.635>,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异. 解析:2.答案:(1)90分(2)40名学生中,地理赋分为90分有4015%6⨯=人,这六人的原始成绩分别为96,93,93,92,91,89;赋分为80分有4035%14⨯=人,其中包含原始成绩为80多分的共10人,70多分的有4人,分别为76,76,77,78;∵小明的地理成绩最后得分为80分,且原始成绩为70多分, ∴小明的原始成绩的可能值为76,77,78.(3)记地理、政治、物理、化学、生物依次为,,,,A a b c d ,∴小明从这五科中任选两科的所有可能选法有(),A a ,(),A b ,(),A c ,(),A d ,(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,(),c d 共10种,而其中包括地理的有(),A a ,(),A b ,(),A c ,(),A d 共4种,∴小明选考科目包括地理的概率为:42105P ==.解析: 3.答案:(1)23.941 3.84142584060203K ==≈>⨯⨯⨯所以有95%的把握认为“对‘嫦娥五号’关注与性别有关” (2)因为随机选一高三女生,对此事关注的概率1234010P == 又因为3~3,10X B ⎛⎫⎪⎝⎭,所以随机变量X 的分布列为显然,()10E X np == 解析:4.答案:解:(1)对于模型①,当40t C =︒时,0.27240 3.8497.031u =⨯-=, 由ln u y =可得7.0311131u y e e ===,即根据模型①,可预测1只红玲虫在40C ︒时产卵1131个.对于模型②,当40t C =︒时,2401600x ==,0.3671600202.543385y =⨯-≈. 即根据模型②,可预测1只红玲虫在40C ︒时产卵385个. (2)因为12Q Q <,且2212R R >, ∴模型①得到的预测值更可靠. 解析:5.答案:(1)由于总体数据存在较大差异,所以采用分层抽样的方法抽取校本更具有代表性. (2)根据题意得221200(30405080)16.498 6.6351109012080K ⨯⨯-⨯=≈>⨯⨯⨯所以有99%以上的把握认为喜欢该产品和性别有关.22200(90404030)13.187 6.6351208070130K ⨯⨯-⨯=≈>⨯⨯⨯所以有99%以上的把握认为喜欢该产品和年龄有关(3)根据以上信息可知:喜欢该产品和年龄、性别都有关系,由于统计表中女性喜欢新产品的比例明显高于男性:50岁以上人员喜欢新产品的比例明显高于50岁以下人员.因此,建议该产品销售群体要偏向50岁以上女性. 解析:6.答案:解:(1)()'e 4x f x x =-,()'01f =,()01f =, 则切线方程为:()110y x -=-,即1y x =+. (2)令()()'e 4x g x f x x ==-,若存在()12,0,2x x ∈,使得曲线()y f x =在点()()11,x f x 和点()()22,x f x 处的切线互相垂直,则存在()12,0,2x x ∈,()()121g x g x ⋅=-.()'e 4x g x =-,令()'0g x =,解得:()ln 40,2x =∈.所以()g x 在()0,ln 4上单调递减,在()ln 4,2上单调递增.()01g =,()ln 444ln 4 1.42g =-≈-,()22e 80.6016g =-≈-故()[)1.42,1g x ∈-,所以存在()12,0,2x x ∈,使得()()121g x g x ⋅=-,例如()()1265,56g x g x =-=.解析:7.答案:(1)由题意结合二项式系数的性质可得232n =,解得5n =. (2)由(1)得5n =,5(2x的通项为35552155C (2)2C r r rr rr r T x x---+==,令3522r-=,得2r =, 所以5(2x+的展开式中2x 的系数为3252C 80⨯=. (3)由(2)知,5(2x的展开式的通项为3552152C r rrr T x--+=,令3512r-=-,得4r =; 令31522r -=,得3r =, 故5(x x-+展开式中的常数项为544533552C 2C 104030---=-=-.解析:8.答案:(1)设取到不相邻2组数据为事件A .因为从5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻2组数据的情况有4种,所以43()1-105P A ==,故选取的2组数据恰好是不相邻的2组数据的概率为35.(2)利用12月2日至12月4日的数据,求得11(111312)12,(253026)2733x y =⨯++==⨯++=,()()31(1)(2)130(1)5ii i xx y y =--=-⨯-+⨯+⨯-=∑,()322221(1)102i i x x =-=-++=∑,所以()()()313215ˆˆˆ,-32ii i ii xx y y bay bx xx ==--===-=-∑∑. 所以y 关于x 的经验回归方程为5ˆ32yx =-. (3)当10x =时,5ˆ10322,222322y =⨯-=-<,同样地,当8x =时,5ˆ83172y =⨯-=,|1716|2-<,所以(2)中所得到的经验回归方程是可靠的.解析:9.答案:(1)由题可知52981175x ++++==,231051575y ++++==,外卖甲的日接单量的方差222222(57)(27)(97)(87)(117)=105s -+-+-+-+-=甲,外卖乙的日接单量的方差222222(27)(37)(107)(57)(157)23.65s -+-+-+-+-==乙,因为x y =,22s s <甲乙,即外卖甲的平均日接单量与外卖乙的平均日接单量相同,但外卖甲的日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)因为()()nii xx y y r --=∑易得()()5166i i i x x y y =--=∑,77≈,所以代入计算可得,样本相关系数660.8570.7577r ≈≈>,所以可认为y 与x 有较强的线性相关关系.解析:10.答案:由题图可知,变量x ,y 线性相关. 1(111316152021)166y =+++++=,()62176i i y y =∴-=∑.又()()()6621117.5,35ii i i i xx x x y y ==-=--=∑∑,∴样本相关系数()()60.96ii xx y y r --===≈∑.0.960.95>,∴x 与y 这两个变量成正相关,且相关程度相当高.解析:11.答案:(1)该社区内的成人每天晚上的平均学习时长为()550.1650.2750.4850.2950.175min ⨯+⨯+⨯+⨯+⨯=, 而调查总时长为()150min ,故7511502p ==. (2)①根据题意,1~10000,2X B ⎛⎫ ⎪⎝⎭.故1()1000050002E X np ==⨯=, 11()(1)10000250022D Xnp p =-=⨯⨯=.②110050Z X ==-. 当49505100X ≤≤时,1201)(,~,Z Z N -≤≤, 0.9540.683(12)(2)0.9540.81852P Z P Z μσμσ--≤≤=-≤≤+≈-=.故()()49505100120.8185P X P Z ≤≤=-≤≤≈.()1500.8185123min ∴⨯≈,即该社区每天晚上处于最佳学习氛围的时长约为123 min . 解析:12.答案:(1)由题意知,所选取的20人中得分落在[0,20]内的人数为0.005020202⨯⨯=,得分落在(20,40]内的人数为0.007520203⨯⨯=.因此,所选取的20人中得分落在[0,20]内的人数有2人,得分落在(20,40]内的人数有3人. (2)由题意可知,随机变量X 的所有可能取值为0,1,2,则3122132323333555C C C C C 133(0),(1),(2)C 10C 5C 10P X P X P X =========,所以随机变量X 的分布列为所以随机变量X 的数学期望()012105105E X =⨯+⨯+⨯=. 解析:13.答案:(1)由题意得,甲通过初试的概率314626144x 8C C C 11C C 14P =+=, 乙通过初试的概率31434244313189C C 444256P ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 1118914256>,∴甲通过初试的可能性更大. (2)设乙答对试题的个数为X ,则X 的可能取值为0,1,2,3,4,且3~4,4X B ⎛⎫⎪⎝⎭,4431()C (0,1,2,3,4)44k kk P X k k -⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,易知5Y X =,Y ∴的分布列为()54154E Y =⨯⨯=, 3175()254444D Y =⨯⨯⨯=. 解析:14.答案:(1)X 的所有可能取值为1-,0,1. (1)(1)P X αβ=-=-, (0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-.所以X 的分布列为因此110.40.50.1i i i i p p p p -+=++, 故()()110.10.4i i i i p p p p +--=-, 即()114i i i i p p p p --=--. 又因为1010p p p -=≠,所以{}()10,1,27i i p p i +-=,,为公比为4, 首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+()()()877610p p p p p p =-+-++-81413p -=.由于81p =,故18341p =-, 所以()()()()444332211014113257p p p p p p p p p p -=-+-+-+-==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 解析:15.答案:(1)由频率分布直方图的性质得,(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,解得0.0075x =. 年平均销售量的众数是2202402302+=. (0.0020.00950.011)200.450.5++⨯=<, ∴年平均销售量的中位数在[220,240)内.设中位数为a ,则(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=, 解得224a =,∴年平均销售量的中位数为224.(2)年平均销售量在[220,240)内的农贸市场有0.01252010025⨯⨯=(家), 年平均销售量在[240,260)内的农贸市场有0.00752010015⨯⨯=(家), 年平均销售量在[260,280)内的农贸市场有0.0052010010⨯⨯=(家), 年平均销售量在[280,300]内的农贸市场有0.0025201005⨯⨯=(家),∴抽取比例为111 25151055=+++,∴应在年平均销售量在[220,240)内的农贸市场中抽取12555⨯=(家),应在年平均销售量在[240,260)内的农贸市场中抽取11535⨯=(家),应在年平均销售量在[260,280)内的农贸市场中抽取11025⨯=(家),应在年平均销售量在[280,300]的农贸市场中抽取1515⨯=(家),故应在年平均销售量在[220,240),[240,260),[260,280),[280,300]内的农贸市场中各抽取5家,3家,2家,1家.解析:。
高中数学教学设计案例
高中数学教学设计案例作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学获得成功、提高教学质量的基本条件。
那么大家知道正规的教案是怎么写的吗?下面是由作者给大家带来的高中数学教学设计案例7篇,让我们一起来看看!高中数学教学设计案例篇1教学目标:1。
通过生活中优化问题的学习,体会导数在解决实际问题中的作用,增进学生全面认识数学的科学价值、运用价值和文化价值。
2。
通过实际问题的研究,增进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:如何建立实际问题的目标函数是教学的重点与难点。
教学进程:一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的运用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。
几何方面的运用(面积和体积等的最值)。
2。
物理方面的运用(功和功率等最值)。
3。
经济学方面的运用(利润方面最值)。
三、知识建构例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?说明1解运用题一样有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一样的求法加以简化,其步骤为:S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而肯定为函数的最大(小)值,必要时作答。
高中数学教学“四化”谈
铭记 , 并且 能使 他们 受益 终身 。所 以,在 高 中数 学课 堂教 学 中 , 我们 必须 要 让学 生领 悟数 学源 于 生活 而用 于 生活 的道 理 , 以数 学 应 用 为核 心 ,教 会 学 生 用数 学 的眼 光 去 观 察 世 界 ;用 数 学 的思 想 去说 明 问题 ;用数 学 的方 式去 分析 对策 ;用 数 学 的知识 去 处理 工作 ,引导 学生 把所 学 的知 识应 用到 生活 中去 ,让学 生体 会 “ 学 有所 用 ,学 有所 为 ”的 乐趣 ,并 以此 来激 发 学生 的学 习 兴趣 ,激 励 学生 的求 知欲 望 , 内化 学 生 的数学 思想 ,最 后 形成 一种 数 学素 质 ,让 学生 能更 好地 去 生活 。为 了让 学 生巩 固知 识 ,熟 练掌 握所 学 知识 的应 用 ,在 学完 《 机事 件 的概 率》 后 ,我 设计 了这样 一 随 个 生活应 用题 。 “ 现 实 生 活 中 , 离不 开 储 蓄 卡 。储 蓄 卡 上 的 密码 是一 组 在 四位 数 字号 码 ,每 位 上 的数 字 可 以在 0 9 l 个 数 字 中选 出 。 至 这 O ( )使 用储 蓄 卡 时 ,如 果 随意 按 下一 个 四位 数 字 号码 ,正 好按 1 对 这张 储 蓄 卡 的密 码 的概 率 是 多少 ? ( )某 人 未 记住 储 蓄 卡 的 2 密 码 的最 后一位 数 字 ,他在 使用 这 张储 蓄卡 时 ,如 果前 三位 号码 仍 按本 卡密 码 ,而 随意 按下 最后 一位 数 字 ,正好 按对 密码 的概率 是 多少 ?同学 们不 妨动 动手 和脑 。”储 蓄卡 是 学生 生活 中极 常见 的物 品 ,在 使 用过 程 中出现 密码 遗 忘的 经历 也 是很 多学 生所 亲 身 经 历过 的 。学 生经 过这 节课 的 学习基 本 掌握 了关 于储 蓄 卡 的基 本 知 识 ,以后在 生活 中就 会运用 概 率的 知识 了。 陶 行知 先 生说过 : “ 师 的责任 不 在教 , 而在 于教 学生 学 。 教 教 师应 着 力构 建 自主 的课 堂 ,让学 生在 生动 、活泼 的状 态 中高 效 率 地学 习 ,教 师要 善于 从 学生 的发 言 中发现 有价 值 的元 素作 好价 值 引 导 ,随机 应变 地运 用 好 “ 课眼 ”,充 分关注 学 生 的体验 ,做 好 “ 师 ” 的角色 。学 生 的成 长过 程也 是我 们 教师 成长 的过 程 , 导 终 身学 习 ,不断成 长 ,是我 们作 为教师 的 唯一选 择 。
高中数学第三章统计案例1独立性检验卡方检验素材苏教版
2χ检验(一)掌握内容1. 2χ检验的用途。
2. 四格表的2χ检验.(1) 四格表2χ检验公式的应用条件; (2) 不满足应用条件时的解决办法; (3) 配对四格表的2χ检验。
3. 行⨯列表的2χ检验. (二) 熟悉内容频数分布拟合优度的2χ检验. (三) 了解内容1.2χ分布的图形。
2.四格表的确切概率法。
(一) 2χ检验的用途2χ检验(Chi —square test )用途较广,主要用途如下:1.推断两个率及多个总体率或总体构成比之间有无差别 2.两种属性或两个变量之间有无关联性 3.频数分布的拟合优度检验 (二) 2χ检验的基本思想1.2χ检验的基本思想是以2χ值的大小来反映理论频数与实际频数的吻合程度。
在零假设0H (比如0H :21ππ=)成立的条件下,实际频数与理论频数相差不应该很大,即2χ值不应该很大,若实际计算出的2χ值较大,超过了设定的检验水准所对应的界值,则有理由怀疑0H 的真实性,从而拒绝0H ,接受H 1(比如1H :21ππ≠).2. 基本公式:()∑-=TT A 22χ,A 为实际频数(Actual Frequency ),T 为理论频数(Theoretical Frequency ).四格表2χ检验的专用公式正是由此公式推导出来的,用专用公式与用基本公式计算出的2χ值是一致的。
(三)率的抽样误差与可信区间 1.率的抽样误差与标准误样本率与总体率之间存在抽样误差,其度量方法:np )1(ππσ-=,π为总体率,或 (8—1)np p S p )1(-=,p为样本率;(8—2)2.总体率的可信区间当n 足够大,且p 和1—p 均不太小,p 的抽样分布逼近正态分布.总体率的可信区间:(ppS u p S u p ⨯+⨯-2/2/,αα)。
(8—3)(四)2χ检验的基本计算见表8-1。
表8—1 2χ检验的用途、假设的设立及基本计算公式资料形式 用途 0H 、1H 的设立与计算公式 自由度 四格表 ①独立资料两 样本率的比较②配对资料两样本率的比较0H :两总体率相等 1H :两总体率不等①专用公式))()()(()(22d b c a d c b a n bc ad ++++-=χ②当n ≥40但1≤T 〈5时,校正公式))()()(()2/(22d b c a d c b a n n bc ad ++++--=χ③配对设计cb c b +--=22)1(χ1 R ⨯C 表 ①多个样本率、 0H :多个总体率(构成比)相等 (R —1)构成比的比较②两个变量之间关联性分析(0H:两种属性间存在关联)1H:多个总体率(构成比)不全相等(H:两种属性间存在关联))1(22-=∑CRnnAnχ(C—1)频数分布表频数分布的拟合优度检验H:资料服从某已知的理论分布1H:资料不服从某已知的理论分布∑-TTA2)(据频数表的组数而定(五)四格表的确切概率法当四格表有理论数小于1或n〈40时,宜用四格表的确切概率法。
(完整版)高中数学考点卡片
考点卡片1.集合的包含关系判断及应用【知识点的认识】概念:1.如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集;A⊆B;如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,即A⊂B;2.如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,即A=B.【解题方法点拨】1.按照子集包含元素个数从少到多排列.2.注意观察两个集合的公共元素,以及各自的特殊元素.3.可以利用集合的特征性质来判断两个集合之间的关系.4.有时借助数轴,平面直角坐标系,韦恩图等数形结合等方法.【命题方向】通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.2.必要条件、充分条件与充要条件的判断【知识点的认识】正确理解和判断充分条件、必要条件、充要条件和非充分非必要以及原命题、逆命题否命题、逆否命题的概念是本节的重点;掌握逻辑推理能力和语言互译能力,对充要条件概念本质的把握是本节的难点.1.充分条件:对于命题“若p则q”为真时,即如果p成立,那么q一定成立,记作“p ⇒q”,称p为q的充分条件.意义是说条件p充分保证了结论q的成立,换句话说要使结论q成立,具备条件p就够了当然q成立还有其他充分条件.如p:x≥6,q:x>2,p是q成立的充分条件,而r:x>3,也是q成立的充分条件.必要条件:如果q成立,那么p成立,即“q⇒p”,或者如果p不成立,那么q一定不成立,也就是“若非p则非q”,记作“¬p⇒¬q”,这是就说条件p是q的必要条件,意思是说条件p是q成立的必须具备的条件.充要条件:如果既有“p⇒q”,又有“q⇒p”,则称条件p是q成立的充要条件,或称条件q是p成立的充要条件,记作“p⇔q”.2.从集合角度看概念:如果条件p和结论q的结果分别可用集合P、Q 表示,那么①“p⇒q”,相当于“P⊆Q”.即:要使x∈Q成立,只要x∈P就足够了﹣﹣有它就行.②“q⇒p”,相当于“P⊇Q”,即:为使x∈Q成立,必须要使x∈P﹣﹣缺它不行.③“p⇔q”,相当于“P=Q”,即:互为充要的两个条件刻画的是同一事物.3.当命题“若p则q”为真时,可表示为,则我们称p为q的充分条件,q是p的必要条件.这里由,得出p为q的充分条件是容易理解的.但为什么说q是p的必要条件呢?事实上,与“”等价的逆否命题是“”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p是必不可少的,所以说q是p的必要条件.4.“充要条件”的含义,实际上与初中所学的“等价于”的含义完全相同.也就是说,如果命题p等价于命题q,那么我们说命题p成立的充要条件是命题q成立;同时有命题q 成立的充要条件是命题p成立.【解题方法点拨】1.借助于集合知识加以判断,若P⊆Q,则P是Q的充分条件,Q是的P的必要条件;若P=Q,则P与Q互为充要条件.2.等价法:“P⇒Q”⇔“¬Q⇒¬P”,即原命题和逆否命题是等价的;原命题的逆命题和原命题的否命题是等价的.3.对于充要条件的证明,一般有两种方法:其一,是用分类思想从充分性、必要性两种情况分别加以证明;其二,是逐步找出其成立的充要条件用“⇔”连接.【命题方向】充要条件主要是研究命题的条件与结论之间的逻辑关系,它是中学数学最重要的数学概念之一,它是今后的高中乃至大学数学推理学习的基础.在每年的高考中,都会考查此类问题.3.函数的定义域及其求法【知识点的认识】函数的定义域就是使函数有意义的自变量的取值范围.求解函数定义域的常规方法:①分母不等于零;②根式(开偶次方)被开方式≥0;③对数的真数大于零,以及对数底数大于零且不等于1;④指数为零时,底数不为零.⑤实际问题中函数的定义域;【解题方法点拨】求函数定义域,一般归结为解不等式组或混合组.(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)抽象函数的定义域:①对在同一对应法则f 下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.【命题方向】高考会考中多以小题形式出现,也可以是大题中的一小题.4.函数的值域【知识点的认识】函数值的集合{f(x)|x∈A}叫做函数的值域.A是函数的定义域.【解题方法点拨】(1)求函数的值域此类问题主要利用求函数值域的常用方法:配方法、分离变量法、单调性法、图象法、换元法、不等式法等.无论用什么方法求函数的值域,都必须考虑函数的定义域.(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目.此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力.在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强.(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决.此类题要求考生具有较强的分析能力和数学建模能力.【命题方向】函数的值域及其求法是近几年高考考查的重点内容之一,有时在函数与导数的压轴题中出现,是常考题型.5.函数单调性的判断与证明【知识点的认识】一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题方法点拨】证明函数的单调性用定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利用函数的导数证明函数单调性的步骤:第一步:求函数的定义域.若题设中有对数函数一定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第二步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利用f′(x)=0的根和不可导点的x的值从小到大顺次将定义域分成若干个小开区间,并列表.第四步:由f′(x)在小开区间内的正、负值判断f(x)在小开区间内的单调性;求极值、最值.第五步:将不等式恒成立问题转化为f(x)max≤a或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题方向】从近三年的高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高;客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测明年高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力.6.函数单调性的性质【知识点的认识】所谓单调性一般说的是单调递增或单调递减,即在某个定义域内,函数的值域随着自变量的增大而增大或者减小,那么我们就说这个函数具有单调性.它是求函数值域或者比较大小的常用工具.【解题方法点拨】定义法、导数法、性质法①定义法:在满足定义域的某区间内任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数.②导数法:(当函数在所考察区间内可微(可导)时,才能利用导数研究它的单调性)若f'(x)>0则f(x)单调上升,则函数严格单调递增(如果存在有限个孤立的点的导函数为0仍为递增函数).③性质法:n个单调递增(递减)的函数的和仍为递增(递减)函数【命题方向】函数单调性的应用.作为一个工具,凡是涉及到最值问题、大小比较问题都应立马联想到它的单调性,并对一般常见函数的单调性有清醒的认识,这里面的一个扩展是一些数列问题也可以转化为函数来求解.7.函数的最值及其几何意义【知识点的认识】函数最大值或最小值是函数的整体性质,从图象上看,函数的最大值或最小值是图象最高点或最低点的纵坐标,求函数的最值一般是先求出极值在求出端点的值,然后进行比较可得.【解题方法点拨】①基本不等式法:如当x>0时,求2x+的最小值,有2x+≥2=8;②转化法:如求|x﹣5|+|x﹣3|的最小值,那么可以看成是数轴上的点到x=5和x=3的距离之和,易知最小值为2;③求导法:通过求导判断函数的单调性进而求出极值,再结合端点的值最后进行比较.【命题方向】本知识点是常考点,重要性不言而喻,而且通常是以大题的形式出现,所以务必引起重视.本知识点未来将仍然以复合函数为基础,添加若干个参数,然后求函数的定义域、参数范围或者满足一些特定要求的自变量或者参数的范围.常用方法有分离参变量法、多次求导法等.8.函数恒成立问题【知识点的认识】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数f(x)=ax^2+1恒大于0,就必须对a进行限制﹣﹣令a≥0,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单【解题方法点拨】一般恒成立问题最后都转化为求最值得问题,常用的方法是分离参变量和求导.例:f(x)=x2+2x+3≥ax,(x>0)求a的取值范围.解:又题意可知:a≤恒成立即a≤x++2⇒a≤2+2【命题方向】恒成立求参数的取值范围问题是近几年高考中出现频率相当高的一类型题,它比较全面的考查了导数的应用,突出了导数的工具性作用.9.指数函数单调性的应用【知识点的认识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:0<a<1 a>1y=ax a>1 0<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1 当x>0时,0<y<1;x<0时,y>1在R上是增函数在R上是减函数2、底数对指数函数的影响:①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当0<a<l时,底数越小,函数图象在第一象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数y=ax 与函数y=的图象关于y轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较:若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.10.对数函数的定义域【知识点归纳】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定义域:(0,+∞)11.函数的零点【函数的零点】一般地,对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x∈D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.【解法﹣﹣二分法】①确定区间[a,b],验证f(a)*f(b)<0,给定精确度;②求区间(a,b)的中点x1;③计算f(x1);④若f(x1)=0,则x1就是函数的零点;⑤若f(a)f(x1)<0,则令b=x1(此时零点x0∈(a,x1));⑥若f(x1)f(b)<0,则令a=x1.(此时零点x0∈(x1,b)⑦判断是否满足条件,否则重复(2)~(4)【总结】零点其实并没有多高深,简单的说,就是某个函数的零点其实就是这个函数与x轴的交点,另外如果在(a,b)连续的函数满足f(a)•f(b)<0,则(a,b)至少有一个零点.这个考点属于了解性的,知道它的概念就行了.12.函数最值的应用【函数最值的应用】函数的最值顾名思义就是指函数在某段区间内的最大值和最小值.在日常生活中我们常常会遇到如何使成本最低,如何用料最少,如何占地最小等等的问题,这里面就可以转化为求函数的最值问题.另外,最值可分为最大值和最小值.【函数最值得应用】这种题的关键是把现实的问题转化为数学上的问题,具体的说是转化为函数最值问题,这里面需要同学们要具有转化思维,具有一定的建模能力,在很多高考题中也常常以大题的形式出现,所以务必引起重视.这里我们以具体的例题来讲解.例:城关中学要建造一个长方形游泳池,其容积为4800立方米,深为3米,如果建造池底的单价是建造池壁单价的1.5倍,怎样设计水池才能使总造价最低?设池壁造价为每平方米m元,则最低造价为多少?解:设水池底面的长为x米,宽为4800÷3x米,总造价为y,则=2400m+6()m…(6分)求导可得令,可得x=40…(11分)∴函数在(0,40)上单调递增,在(40,+∞)上单调递减∴当池底长为40米,宽为40米时,总造价最低为2880m元.这是工程上一个很常见的成本最低的问题,也很有代表性,在这个立体当中,我们要做的第一步是构建数学模型,把求成本最低的问题转化为求函数的最小值,这个题在构建模型的时候最关键的是要找到造价与底面长的关系,从而又把造价问题转化为关于底面长的一个函数,这也是我们常用的方法.第二步构建函数,然后运用数学方法求解,这个是重点,求解的一般方法为基本不等式和求导判定单调性.【高考预测】应用题紧贴实际,很能体现学以致用,是出题老师很喜欢的一种题型,解答这种题需要考生先苦练基本功,会求一般函数的最值;然后也具备基本的建模能力,在文字当中找到它们的内在逻辑关系,最后以函数的形式表达出来.13.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.14.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a<0,b<0,则p=与q=a+b的大小关系为()A.p<q B.p≤q C.p>q D.p≥q解:p﹣q=﹣a﹣b==(b2﹣a2)﹣,∵a<0,b<0,∴a+b<0,ab>0,若a=b,则p﹣q=0,此时p=q,若a≠b,则p﹣q<0,此时p<q,综上p≤q,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A.<<B.<<C.<<D.<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.15.其他不等式的解法【知识点的知识】不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例:①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则.(3)无理不等式:转化为有理不等式求解.(4)指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式①应用分类讨论思想去绝对值;②应用数形思想;③应用化归思想等价转化.注:常用不等式的解法举例(x为正数):16.不等式【知识点的知识】1、不等式的基本性质:(1)对于任意两个实数a,b,有且只有以下三种情况之一成立:①a>b⇔a﹣b>0;②a<b⇔a﹣b<0;③a=b⇔a﹣b=0.(2)不等式的基本性质①对称性:a>b⇔b<a;②传递性:a>b,b>c⇒a>c;③可加性:a>b⇒a+c>b+c.④同向可加性:a>b,c>d⇒a+c>b+d;⑤可积性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;⑥同向整数可乘性:a>b>0,c>d>0⇒ac>bd;⑦平方法则:a>b>0⇒a n>b n(n∈N,且n>1);⑧开方法则:a>b>0⇒(n∈N,且n>1).2、几个重要不等式3、几个著名不等式:17.绝对值不等式【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0 a=0 a<0 |x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R 2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A(a),B(b)两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.2.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.3、解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m (m为正常数),利用实数绝对值的几何意义求解较简便.18.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0 a=0 a<0 |x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R 2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m (m为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A(a),B(b)两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.19.不等式的证明【知识点的知识】证明不等式的基本方法:1、比较法:(1)作差比较法①理论依据:a>b⇔a﹣b>0;a<b⇔a﹣b<0.②证明步骤:作差→变形→判断符号→得出结论.注:作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.(2)作商比较法①理论依据:b>0,>1⇒a>b;b<0,<1⇒a<b;②证明步骤:作商→变形→判断与1的大小关系→得出结论.2、综合法(1)定义:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得到命题成立,这种证明方法叫做综合法.综合法又叫做推证法或由因导果法.(2)思路:综合法的思索路线是“由因导果”,也就是从一个(组)已知的不等式出发,不断地用必要条件代替前面的不等式,直至推导出要求证明的不等式.3、分析法(1)定义:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法.(2)思路:分析法的思索路线是“执果索因”,即从要证的不等式出发,不断地用充分条件来代替前面的不等式,直到打到已知不等式为止.注:综合法和分析法的内在联系是综合法往往是分析法的相反过程,其表述简单、条理清楚.当问题比较复杂时,通常把分析法和综合法结合起来使用,以分析法寻找证明的思路,用综合法叙述、表达整个证明过程.4、放缩法(1)定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种证明方法称为放缩法.(2)思路:分析证明式的形式特点,适当放大或缩小是证题关键.常用的放缩技巧有:20.综合法与分析法(选修)【知识点的认识】1.分析法从所要证明的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的命题成立,这种证明方法称为分析法,即“执果索因”的证明方法.2.综合法从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理,论证而得出命题成立,这种证明方法称为综合法即“由因寻果”的方法.【关键要点点拨】1.综合法与分析法的内在联系综合法往往是分析法的相反过程,其表述简单、条理清楚.当问题比较复杂时,通常把分析法和综合法结合起来使用,用分析法寻找证明的思路,而用综合法叙述、表达整个证明过程.21.反证法与放缩法【知识点的认识】放缩法在证明不等式时,有时我们要把所证不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.这种方法称为放缩法.反证法的步骤1.作出否定结论的假设;2.进行推理,导出矛盾;3.否定假设,肯定结论.【关键要点点拨】放缩法证明不等式的主要理论依据(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(分母)异分母(分子)的两个分式大小的比较.[注意]放缩要适度,“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析,多次尝试得出.。
广西田阳高中2025届高三下第一次测试数学试题含解析
广西田阳高中2025届高三下第一次测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823π 2.已知正四面体A BCD -外接球的体积为86π,则这个四面体的表面积为( ) A .183B .163C .143D .1233.设P ={y |y =-x 2+1,x ∈R},Q ={y |y =2x ,x ∈R},则 A .P ⊆Q B .Q ⊆P C .R C P ⊆QD .Q ⊆R C P4.已知i 是虚数单位,则( ) A .B .C .D .5.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A .B .C .D .6.设i 为虚数单位,则复数21z i=-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2B .(]1,4C .[)2,+∞D .[)4,+∞ 8.已知x ,y 满足条件0020x y y x x y k ≥≥⎧⎪≤⎨⎪++≤⎩,(k 为常数),若目标函数3z x y =+的最大值为9,则k =( )A .16-B .6-C .274-D .2749.已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为2c .点A 为双曲线C 的右顶点,若点A 到双曲线C 的渐近线的距离为12c ,则双曲线C 的离心率是( ) A 2B 3C .2D .310.下列函数中,既是奇函数,又是R 上的单调函数的是( ) A .()()ln 1f x x =+B .()1f x x -=C .()()()222,02,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩D .()()()()2,00,01,02x xx f x x x ⎧<⎪⎪⎪==⎨⎪⎛⎫⎪-> ⎪⎪⎝⎭⎩11.已知{}n a 为等差数列,若2321a a =+,4327a a =+,则5a =( ) A .1 B .2C .3D .612.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离二、填空题:本题共4小题,每小题5分,共20分。