最全高中数学易错点
高考数学易错点及重要知识点归纳
高考数学易错点及重要知识点归纳高考数学是高中阶段各科中相对较难的一门科目,考试难度也相对较高,很容易让考生犯错,导致分数损失。
本文将总结高考数学易错点及重要知识点,并提供相应的解题技巧,希望考生能够避免犯错,取得好成绩。
一、易错点1.符号混淆这是数学中比较普遍的一个易错点,包括加减号、乘号、除号、左右括号等符号的混淆。
一旦出现符号混淆,就会直接导致答案错误或提高解题难度。
因此,考生在做题时要非常注意符号的正确使用。
2.大意误解有些考生在做题时,阅读理解出现失误,对题目的意思产生误解,从而造成答案错误。
所以一定要认真读题理解,分析问题。
尤其是碰到长篇阅读理解时,要先明确大意。
3.计算错误在数学中,很多题目难度相对较低,但往往因为一些简单的计算错误而导致错误答案。
这种错误需要我们在平时做题中多加注意和练习,对于那些需要计算的题目尤其重要。
4.公式错误在解决复杂问题时,我们往往会用到一些公式,不过使用公式时也有可能写错或理解不正确,导致答案错误。
因此,我们必须学会正确地运用公式。
5.转化错误在一些题目中,需要把题目中的信息转化为数学式子,但转化时有可能出现问题。
转化错误的解题方法很难想,因此,要认真仔细看题,并多加练习。
二、重要知识点1.根式根式是数学中常见的一类表达式,在高考数学中也经常出现。
根式的运算和化简需要考生细心认真对待。
2.平面几何平面几何中涉及到的知识点非常多,包括图形的基本性质、相邻角、对顶角、内角和、外角和、周长与面积等等。
考生需要熟记这些知识点,并掌握相应的解题技巧。
3.立体几何立体几何是高考数学中比较难的部分,需要考生掌握图形的三维空间形态,涉及到的知识点包括图形的表面积、体积、棱长、斜高等。
4.导数导数是高中数学中非常重要的一个概念,在高考数学中占有很大的分值和比重。
考生需要明确掌握导数的定义、运算法则等知识点,能够熟练地运用这些知识解决问题。
5.函数函数在高考数学中出现得非常频繁,考生需要掌握函数的概念、性质和运算法则,将它们应用到相应的问题中,解题思路要清晰、技巧到位。
高一数学常见易错点整理
高一数学常见易错点整理一、基础知识错误在高一数学学习的初期,学生常常会犯一些基础知识错误。
比如,对于数的性质、大小关系、运算规则等方面的理解可能不够准确。
这种错误容易导致后续计算和解题过程中出现问题。
为了提高学生的基础知识水平,以下是一些常见易错点的整理:1.1 负数的运算规则高一学生常常容易混淆负数的运算规则,例如,两个负数相乘是否为正数、两个负数相加是否为负数等。
正确理解负数的运算规则对于高一学生来说非常重要。
1.2 百分数和小数之间的转化百分数和小数之间的转化是高一数学中的重要知识点。
学生需要掌握百分数和小数之间的转换方法,以及在实际问题中的应用。
1.3 幂和指数的运算规则幂和指数的运算规则是高一数学中的基础内容,但也是学生容易出错的地方。
学生需要熟练掌握幂和指数的运算规则,尤其是在复合运算中的应用。
二、代数运算错误代数运算是高一数学中的关键内容,学生在进行代数运算时常常会犯一些易错点。
以下是一些常见的代数运算错误及解决方法:2.1 符号取反错误在运算过程中,学生常常容易忽略符号的取反操作,导致最终结果错误。
在进行代数运算时,学生需要注意各项前面的符号取反操作。
2.2 未合并同类项学生在进行多项式的运算时,常常忘记合并同类项,导致结果不正确。
学生需要注意同类项的特点,合并同类项后再进行运算。
2.3 未注意运算顺序学生在进行多项式的运算时,常常忽略运算顺序,直接进行加减乘除运算,导致结果错误。
学生需要根据运算法则正确确定运算顺序,并注意运算的优先级。
三、方程解题错误方程解题是高一数学中的重要内容,学生在方程解题中常常会犯一些易错点。
以下是一些常见的方程解题错误及解决方法:3.1 忘记检查解的合法性学生在解方程时,常常忘记检查解的合法性,直接将解代入方程,导致出现错误。
学生需要在解方程后,将解代入原方程检验是否满足,以确保解的正确性。
3.2 漏解或多解学生在解方程时,常常漏解或多解的情况。
学生需要仔细分析方程的特点,注意解的个数,并在解题过程中进行验证。
高中数学易错知识点整理
高中数学易错知识点整理高中数学是我们学数学以来一个更高的阶段,难度有很大的提升。
下面是小编为大家整理的关于高中数学易错知识点整理,希望对您有所帮助。
欢迎大家阅读参考学习!高中数学易错知识点整理一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于__对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
高中数学易错点盘点
高中数学易错点盘点考试临近,对于考点知识都清楚了?结合练习整理一下自己解题时的易错点以便考试时能做到尽可能少错。
以下是我整理的易错点供同学们参考,重要的是找出自身的易错点。
1. 集合中元素的特征认识不明元素具有确定性,无序性,互异性三种性质。
要看清楚集合的描述对象,到底是数集,还是点集,是求x范围呢,还是求y的范围。
2. 遗忘空集A包含于B时求集合A,容易遗漏A可以为空集的情况。
比如A 为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。
3. 忽视集合中元素的互异性一般检验的时候要检查元素是否互异。
4. 充分必要条件颠倒致误必要不充分和充分不必要的区别——:比如p可以推出q,而q 推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。
还容易错的是语序错误,例如,“p的充分条件是q”等价于“q 是p的充分条件”,q推出p,很多学生一看到充分条件就“前推后”,导致错误,要注意题目的措辞。
5. 对含有量词的命题否定不当比如说“至少有一个”的否定是“一个都没有”,“至少有两个”的否定是“至多有一个”,“至多有三个”的否定是“至少有四个”。
诸如此类。
6. 求函数定义域忽视细节致误根号内≥0,真数大于零,分母不为零,比较容易出错的是忽视分母。
7. 函数单调性的判断错误这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。
8. 函数奇偶性判定中常见的两种错误判定主要注意:1,定义域必须关于原点对称,2,注意奇偶函数的判断,化简要小心负号。
9. 求解函数值域时忽视自变量的取值范围总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。
如果用了换元法求函数值域,一定要先求出“新元”的范围。
10. 抽象函数中推理不严谨致误注意赋值法的运用,一般赋0,±1,-x,1/x等。
11. 函数,方程和不等式的转换不熟练二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么△=b的平方-4ac大于等于小于0种种。
高中数学易错题大汇总及其解析
【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。
而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。
本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。
二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。
解析:首先利用已知条件列方程,得到三元一次方程组。
然后利用切线的斜率性质,得到关于a和b的关系式。
最后代入已知条件解方程组即可求得a、b、c的值。
(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。
解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。
2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。
解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。
(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。
解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。
3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。
解析:利用向量的夹角公式求出a与b的夹角。
(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。
解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。
高中数学37个易错点
易错点1遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.易错点2忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.易错点3混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.易错点4充分条件、必要条件颠倒致误对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.易错点5“或”“且”“非”理解不准致误命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p 真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解.易错点6函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.易错点7判断函数的奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数.易错点8函数零点定理使用不当致误如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.易错点9导数的几何意义不明致误函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”.易错点10导数与极值关系不清致误f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验.易错点11三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin x的单调性相反,就不能再按照函数y=sin x的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断.易错点12图像变换方向把握不准致误函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变).即先作相位变换,再作周期变换,最后作振幅变换.若先作周期变换,再作相位变换,应左(右)平移|φ|ω个单位.另外注意根据φ的符号判定平移的方向.易错点13忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.易错点14向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况.易错点15an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.易错点16对等差、等比数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列.易错点17数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题.数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一.在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.易错点18错位相减求和时项数处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和.基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.易错点19不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误.易错点20忽视基本不等式应用条件致误利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件.对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到.易错点21解含参数的不等式时分类讨论不当致误解形如ax2+bx+c>0的不等式时,首先要考虑对x2的系数进行分类讨论.当a=0时,这个不等式是一次不等式,解的时候还要对b,c进一步分类讨论;当a≠0且Δ>0时,不等式可化为a(x-x1)(x-x2)>0,其中x1,x2(x1<x2)是方程ax2+bx+c=0的两个根,如果a>0,则不等式的解集是(-∞,x1)∪(x2,+∞),如果a<0,则不等式的解集是(x1,x2).易错点22不等式恒成立问题处理不当致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系.易错点23忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽.易错点24面积、体积的计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法.(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.易错点25随意推广平面几何中的结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.易错点26对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.易错点27空间点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致.易错点28忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论.易错点29忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.易错点30忽视圆锥曲线定义中的条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.易错点31忽视特殊性、误判直线与圆锥曲线位置关系过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性.易错点32两个计数原理不清致误分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理.易错点33排列、组合不分致误为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题.易错点34混淆项的系数与二项式系数致误在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而项的系数是二项式系数与其他数字因数的积.易错点35循环结束的条件判断不准致误控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束.易错点36条件结构对条件的判断不准致误条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值.易错点37复数的概念不清致误对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数.解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错.。
高中数学常见易错点总结(原创)
高中数学常见易错点总结1、在应用条件A ∪B =B <=> A ∩B =A <=> A B 时,易忽略A 是空集Φ的情况,并且要时刻注意集合的三要素中的互异性和无序性;2、明确命题的否定与否命题关系的区别。
3、理解集合的表示法,区分集合中代表元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;},,12|),{(2Z y Z x x x y y x E ∈∈++== }12|{2++==x x x x D ;4.求解与函数有关的问题易忽略定义域优先的原则.比如在求函数单调区间和值域时5.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”。
单调区间不能用集合或不等式表示.两个单调区间之间要用逗号相连6、函数具有奇偶性的必要条件是其定义域关于原点对称。
如果不具备这个条件,一定是非奇非偶函数。
7.均值不等式a b +≥2ab (0,0a b >>)取等号的条件是“一正,二定,三相等”。
在解题过程中,务必要先检验取等号的三个条件是否成立。
常规的解法是①如果积或和不是定值,设法构造“定值”;② 若是0,0a b >>不能保证,可构造“正数”或利用导数求解;③若是等号不能成立,可根据“对勾函数”图象,利用单调性求解。
8.“数形结合”是重要思想方法之一,在解题时应充分利用函数性质,画准图形,不能主观臆造,导致图形“失真”,从而得出错误的答案。
9.用换元法解题时,易忽略换元前后的等价性,也就是换元之后的自变量的取值范围10、要注意分段函数是一个函数而不是几个函数,如果自变量取值不能确定,要对自变量取值进行分类讨论,同时还要关注分界点附近函数值变化情况。
11、曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;而曲线过某一点的切线是指过这个点的曲线的所有切线,此时的切线可能不止一条。
因此求曲线的切线时,首先要区分是什么类型的切线。
高中数学易错知识点总结 直线与方程
高中数学易错知识点总结直线与方程易错点1:忽略90°倾斜角的特殊情形例1:求经过点A(m,3)和B(1,2)的直线的斜率,并指出倾斜角α的取值范围。
错误解法】根据斜率公式,直线AB的斜率k为:k = (3-2)/(m-1)①当m>1时,k>0,因此直线的倾斜角α的取值范围是0°<α<90°;②当m<1时,k<0,因此直线的倾斜角α的取值范围是90°<α<180°。
错误原因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别研究,得出每一类结果,最终解决整个问题。
本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负。
也可以分为m=1,m>1,m<1三种情况进行讨论。
参考答案】详见试题解析。
易错点2:忽略斜率不存在的特殊情形例2:已知直线l1经过点A(3,a)和B(a-2,3-a),直线l2经过点C(2,3)和D(-1,a-5),若l1⊥l2,求a的值。
错误解法】由l1⊥l2⇔k1·k2=-1,所以a=0.k2 = (3-a-3)/(a-2+1) = (a-6)/(a-1),k1不存在。
错误原因分析】只有在两条直线斜率都存在的情况下,才有l1⊥l2⇔k1·k2=-1,还有一条直线斜率为0,另一条直线斜率不存在的情况也要考虑。
试题解析】由题意知l2的斜率一定存在,则l2的斜率可能为0,下面对a进行讨论。
当k2=0时,a=5,此时k1不存在;当k2≠0时,由k1·k2=-1可得a=4或a=-2.因此,a的取值为4、-2或5.2.由两条直线平行或垂直求参数的值:在解这类问题时,需要先考虑斜率不存在的可能性,是否需要分情况讨论;解题后,需要检验答案的正确性,看是否出现增解或漏解。
3.两条直线的位置关系可以通过斜截式或一般式来表示。
高中数学常见易错点提醒
高中数学常见易错点提醒易错点 充要条件判断不准1.“x 2=x +2”是“x x +2=x 2”的________条件.错解1 由x 2=x +2⇒x =x +2⇒x 2=x x +2得出“x 2=x +2”是“x x +2=x 2”的充分条件.错解2 由x x +2=x 2⇒x +2=x ⇒x +2=x 2得出“x 2=x +2”是“x x +2=x 2”的必要条件.找准失分点 错解1中,事实上x 2=x +2不能⇒x =x +2;错解2中,x x +2=x 2也不能⇒x +2=x .正解 方程x 2=x +2的解集为{-1,2},x x +2=x 2的解集为{0,2},所以“x 2=x +2”是“x x +2=x 2”的既不充分也不必要条件.答案 既不充分也不必要易错点 函数概念不清致误2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是 . 错解 由f (1-x 2)>f (2x )得1-x 2>2x ,即-1-2<x <-1+2.找准失分点 在解决分段函数的问题时,先要判断其在各个定义域内的单调性,其次要看所求参数或取值范围是否满足相对应的定义域,此题容易无视1-x 2>0.正解 画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象知:若f (1-x 2)>f (2x ),则⎩⎨⎧1-x 2>01-x 2>2x , 即-1<x <-1+2.易错点 混淆“切点”致误3.求过曲线y =x 3-2x 上的点(1,-1)的切线方程.错解 ∵y ′=3x 2-2,∴k =y ′|x =1=3×12-2=1,∴切线方程为y +1=x -1,即x -y -2=0.找准失分点 错把(1,-1)当切点.正解 设P (x 0,y 0)为切点,则切线的斜率为y ′|x =x 0=3x 20-2.∴切线方程为y -y 0=(3x 20-2)(x -x 0), 即y -(x 30-2x 0)=(3x 20-2)(x -x 0).又知切线过点(1,-1),把它代入上述方程,得-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1,或x 0=-12. 故所求切线方程为y -(1-2)=(3-2)(x -1), 或y -(-18+1)=(34-2)(x +12),即x -y -2=0,或5x +4y -1=0. 易错点 图象变换方向或变换量把握不准致误4.要得到y =sin(-3x )的图象,需将y =22(cos 3x -sin 3x )的图象向______平移______个单位(写出其中的一种特例即可).错解 右 π4或右 π12找准失分点 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12. 题目要求是由y =sin ⎝⎛⎭⎫-3x +π4→y =sin(-3x ). 右移π4平移方向和平移量都错了;右移π12平移方向错了. 正解 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12, 要由y =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12得到y =sin(-3x )只需对x 加上π12即可,因而是对y =22(cos 3x -sin 3x )向左平移π12个单位. 答案 左 π12易错点 错误理解向量的平移就是点的平移致误5.已知点A (3,7),B (5,2),向量AB →按a =(1,2)平移后所得向量是 .错解 (3,-3)正解 向量AB →平移后所得向量还是向量AB →=(2,-5).易错点 应用a n =S n -S n -1 (n ≥2)时,无视n ≥2从而导致错误6.已知数列{a n }的前n 项和S n =2n +1,求数列的通项a n .错解 a n =S n -S n -1=2n -1.正解 n =1时,a 1=S 1=21+1=3,n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -1,∴a n =⎩⎪⎨⎪⎧3,n =1,2n -1,n ≥2易错点 在等比数列求和时无视对公比是否为1的讨论7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=S 9,则数列的公比q 是________. 错解 -1 找准失分点 当q =1时,符合要求.很多考生在做此题时都想当然地认为q ≠1.正解 ①当q =1时,S 3+S 6=9a 1,S 9=9a 1,∴S 3+S 6=S 9成立.②当q ≠1时,由S 3+S 6=S 9 得a 1(1-q 3)1-q +a 1(1-q 6)1-q =a 1(1-q 9)1-q∴q 9-q 6-q 3+1=0,即(q 3-1)(q 6-1)=0.∵q ≠1,∴q 3-1≠0,∴q 6=1,∴q =-1.答案 1或-1易错点 无视等比数列中的隐含条件致误8.各项均为实数的等比数列{a n }的前n 项和为S n ,若S 10=10,S 30=70,则S 40=________.错解 150或-200找准失分点 数列S 10,S 20-S 10,S 30-S 20,S 40-S 30的公比q 10>0.忽略了此隐含条件,就产生了增解-200.正解 记b 1=S 10,b 2=S 20-S 10,b 3=S 30-S 20,b 4=S 40-S 30,b 1,b 2,b 3,b 4是以公比为r =q 10>0的等比数列.∴b 1+b 2+b 3=10+10r +10r 2=S 30=70,∴r 2+r -6=0,∴r =2或r =-3(舍去),∴S 40=b 1+b 2+b 3+b 4=101-241-2=150. 答案 150易错点 直线倾斜角与斜率关系不清致误9.已知直线x sin α+y =0,则该直线的倾斜角的变化范围是__________.错解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,直线的倾斜角的变化范围是⎣⎡⎦⎤π4,34π.找准失分点 直线斜率k =tan β(β为直线的倾斜角)在[0,π)上是不单调的且不连续. 正解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,当-1≤k <0时,倾斜角的变化范围是⎣⎡⎭⎫34π,π;当0≤k ≤1时,倾斜角的变化范围是⎣⎡⎦⎤0,π4. 故直线的倾斜角的变化范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π. 答案 ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π 易错点 无视斜率不存有情形致误10.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.错解 直线l 1的斜率k 1=-t +21-t, 直线l 2的斜率k 2=-t -12t +3, ∵l 1⊥l 2,∴k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,解得t =-1. 答案 -1 找准失分点 (1)盲目认为两直线的斜率存有,无视对参数的讨论.(2)无视两直线有一条直线斜率为0,另一条直线斜率不存有时,两直线垂直这个情形.正解 方法一 (1)当l 1,l 2的斜率都存有时,由k 1·k 2=-1得,t =-1.(2)若l 1的斜率不存有,此时t =1,l 1的方程为x =13,l 2的方程为y =-25, 显然l 1⊥l 2,符合条件;若l 2的斜率不存有,此时t =-32, 易知l 1与l 2不垂直,综上t =-1或t =1.方法二 l 1⊥l 2⇔(t +2)(t -1)+(1-t )(2t +3)=0⇔t =1或t =-1.答案 -1或1。
高中数学易错知识点梳理
高中数学易错知识点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先必须弄清代表元素,才能理解集合的意义.(1)已知“集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N”;与“集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x ∈R}求M ∩N ”的区别.(2)已知集合{}{}A B ==圆,直线,则A B 中的元素个数是____个.你注意空集了吗?(3)设()f x 的定义域A 是无限集,则下列集合中必为无限集的有①{|(),}y y f x x A =∈ ②{(,)|(),}x y y f x x A =∈③{|()0,}x f x x A ≥∈ ④{|()2,}x f x x A =∈ ⑤{|()}x y f x =3. 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集B A ⊆时是否忘记A =∅.例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了2a =的情况了吗?4. (C U A)∩( C U B) = C U (A ∪B) , (C U A)∪( C U B) = C U (A ∩B); ,A B B B A A B B A B =⇔⊆=⇔⊆ ,对于含有n 个元素的有限集合M , 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个?(特别注意∅)5. 解集合问题的基本工具是韦恩图.某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6. 两集合之间的关系.},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. 命题的四种形式及其相互关系;全称命题和存在命题. (1)原命题与逆否命题同真同假;逆命题与否命题同真同假. (2)“命题的否定”与“否命题”的区别:____________________ 练习:(1)命题“异面直线,a b 不垂直,则过a 的任一平面与b 都不垂直”,求出该命题的否命题. (2)命题“2,3x Q x ∃∈=使成立”,求该命题的否定.(3)若存在..[13]a ∈,,使不等式2(2)20ax a x +-->,求x 的取值范围.8、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,映射与函数的关系如何?例如:函数()x f y =与直线a x =的交点的个数有 个 9、函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称.③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.⑥函数()y f x a =-+与函数()y f x b =+的图象关于直线2a bx -=对称 例如:(1)函数()x f y =满足()()11f x f x +=-+则关于直线 对称(2)函数()1y f x =+与()1y f x =-+关于直线 对称 (3)函数2log 1y ax =-(0a ≠)的图象关于直线2x =对称,则a=(4)函数sin 3y x =的图象可由1cos3y x =-的图象按向量a = (a最小)平移得到.10、求一个函数的解析式,你标注了该函数的定义域了吗? 例如:(1)若(sin )cos2f x x =,则()f x = (2)若3311()f x x x x+=+,则()f x = 11、求函数的定义域的常见类型记住了吗?复合函数的定义域弄清了吗? 例如:(1)函数y=)3lg()4(--x x x 的定义域是 ;(2)函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域.(3)函数(2)x f 的定义域是(0,1],求2(log )f x 的定义域.函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域12、你知道求函数值域的常用方法有哪些吗,含参的二次函数的值域、最值要记得讨论. 例如(1)已知函数()x f y =的值域是[b a ,],则函数()1y f x =-的值域是(2)函数y x =的值域是(3)函数y x =+的值域是(4)函数2121x x y -=+的值域是13、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称...........这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;例如:(1)函数()2(0)f x x x =≥的奇偶性是(2)函数()x f y =是R 上的奇函数,且0x >时,()12xf x =+,则()f x 的表达式为14、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法.在求函数的单调区间或求解不等式时,你知道函数的定义域要优先考虑吗?例如:(1)函数212log (23)y x x =--的单调减区间为(2)若函数212log (3)y x ax a =-+在区间[)2,+∞上是减函数,则实数a 的取值范围是(3)若定义在R 上的偶函数()f x 在区间[)0,+∞上是单调增函数,则不等式()1f ()lg f x <的解集为15、你知道钩型函数()0>+=a xax y 的单调区间吗?(该函数在(]a -∞-,和[)+∞,a 上单调递增;在[)0,a -和(]a ,0上单调递减)这可是一个应用广泛的函数!例如:函数2y =的值域为 2y =的值域为16、幂函数与指数函数有何区别? 例如:(1)若幂函数()()()223233f x xαααα--=-+是()0,+∞上的单调减函数,则α=(2)若关于x 的方程4210x xa a +++=有解,则实数a 的取值范围是17、对数的换底公式及它的变形,你掌握了吗?(b b abb a n ac c a n log log ,log log log ==)你还记得对数恒等式吗?(b aba =log )例如:(1)x 、y 、z ()0,∈+∞且346x y z ==,则3x 、4y 、6z 的大小关系可按从小到大的顺序排列为(2)若集合111log 2,23n A n n N ⎧⎫⎪⎪=-≤≤-∈⎨⎬⎪⎪⎩⎭,则A 的子集有 个 18、求解对数函数问题时,注意真数与底数的限制条件! 例如:(1)方程122log (2)x x -=+的解的个数是(2)不等式(1)(1)log (21)log (1)a a x x --->-成立的充要条件是19、“实系数一元二次方程02=++c bx ax 有实数解”转化为“042≥-=∆ac b ”,你是否注意到必须0≠a ;当a=0时,“方程有解”不能转化为042≥-=∆ac b .若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?已知函数()()22lg 111y a x a x ⎡⎤=-+++⎣⎦(1)若函数的定义域为R ,求a 的取值范围是(2)若函数的值域为R ,求a 的取值范围是二.三角1. 三角公式记住了吗?两角和与差的公式________________; 二倍角公式:_________________解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 2. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是 否为单调函数?你注意到正弦函数、余弦函数的有界性了吗? 3. 在三角中,你知道1等于什么吗?(221sin cos x x =+tan cot tansincos 0142x x ππ=⋅====这些统称为1的代换)常数 “1”的种种代换有着广泛的应用.诱导公试:奇变偶不变,符号看象限 4. 在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等)5. 你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来) 6. 你还记得三角化简的通性通法吗?(切化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2x=(1-cos2x)/27. 你还记得某些特殊角的三角函数值吗?会求吗?41518sin ,42615cos 75sin ,42675cos 15sin -=︒+=︒=︒-=︒=︒ 练习: (1)tan (0)ba aθ=≠是cos 2sin 2a b a θθ+=的 条件.解析:sin tan sin cos sin sin cos sin cos 1cos 2sin 2cos 2sin 222b b a b a b a aa b a b aθθθθθθθθθθθθθ=⇔=⇔=⇔=-⇔=⇔+=反之,若cos 2sin 2a b a θθ+=成立,则未必有tan ,b a θ=取0,2a πθ==-即可,故为充分不必要条件易错原因:未考虑tan θ不存在的情况(2)已知34sin,cos ,2525θθ==-则θ角的终边在 解析:因为34sin ,cos ,2525θθ==-故2θ是第二象限角,即22()22k k k Z πθπππ+<<+∈,故424()k k k Z ππθππ+<<+∈,在第三或第四象限以上的结果是错误的,正确的如下: 由34sin ,cos ,2525θθ==-知322()42k k k Z πθπππ+<<+∈ 所以3424()2k k k Z ππθππ+<<+∈,故在第四象限 易错原因:角度的存在区间范围过大8. 你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 21,==扇形α) 9. 辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a,b 的符号确定,θ角的值由ab=θtan 确定)在求最值、化简时起着重要作用. 10. 三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x 值的集合吗?(别忘了k ∈Z )三角函数性质要记牢.函数y=++⋅)sin(ϕωx A k 的图象及性质:振幅|A|,周期T=ωπ2, 若x=x 0为此函数的对称轴,则x 0是使y 取到最值的点,反之亦然,使y 取到最值的x 的集合为 , 当0,0>>A ω时函数的增区间为 ,减区间为 ;当0<ω时要利用诱导公式将ω变为大于零后再用上面的结论.五点作图法:令ϕω+x 依次为ππππ2,23,,2求出x 与y ,依点()y x ,作图 练习:如图,摩天轮的半径为40m ,点O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处,(1)试确定在时刻min t 时点P 距地面的高度;(2)摩天轮转动的一圈内,有多长时间点P 距地面超过70m ?11.三角函数图像变换:(1)将函数为()y f x = 的图像向右平移4π个单位后,再作关于x 轴的对称变换,得到函数cos 2y x =的图像,则()f x =(2)()2sin()2cos 6f x x x π=+-的图像按向量m平移得到()g x 的图像,若()g x 是偶函数,求||m最小的向量m12.有关斜三角形的几个结论:在Rt ABC ∆中,222,,AC AD AB BC BD BA CD AD BD ===内切圆半径2a b cr +-=(S 为ABC ∆的面积)在ABC ∆中,①sin()sin ,cos()cos ,A B C A B C +=+=-tan tan tan tan an tan A B C A t B C ++=sin cos ,cos sin 2222A B C A B C++== ②正弦定理③余弦定理④面积公式111sin sin sin 222S ab C bc A ac B === ⑤内切圆半径2sr a b c=++13.在ABC ∆中,判断下列命题的正误(1)A B >的充要条件是cos 2cos 2A B <(2) tan tan tan 0A B C ++>,则ABC ∆是锐角三角形(3)若ABC ∆是锐角三角形,则cos sin A B <三、数列1.等差数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a +=+;(2)仍成等差数列数列}{ka },{a },{n 2n 12b a n +-;仍成等差数列n 23n n 2n n S S , S S , S --数列;(3)若{n a },{n b }是等差数列,,n n S T 分别为它们的前n 项和,则2121m m m m a S b T --=; (4)在等差数列中,求S n 的最大(小)值,其中一个思路是找出最后一正项(负项)k a ,那么max(min)()n k S S =B练习:①在等差数列{n a }中,若9418,240,30n n S S a -===,则n =②{n a },{n b }都是等差数列,前n 项和分别为,n n S T ,且2132n n S n T n -=+,则99ab = ③若{n a }的首项为14,前n 和为n S ,点1(,)n n a a +在直线20x y --=上,那n S 最大时,n =2.等比数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a ⋅=⋅; (2)k S ,k k S S -2,k k S S 23-成等比数列;(3)若{n a }是等差数列,则{n ab }是等比数列,若{n a }是等比数列且0n a >,则{log n a b }是等差数列;(4)类比等差数列而得的有关结论练习:①若{n a }是等比数列,4738512,124a a a a =-+= ,公比q 为整数,则10a =②已知数列{n x }满足31212313521n n x x x x x x x x n ====++++- ,并且128n x x x +++= ,那么1x =③等差数列{n a }满足12212nn a a na b n+++=+++ ,则{n b }也是等差数列,类比等比数列{n A }满足 3.等差数列的通项,前n 项和公式的再认识:①1(1)n a a n d An B =+-=+是关于n 的一次函数, ②1()2n n n a a S n a +== 中, ③2n S An Bn =+ 等比数列呢? 练习:等比数列{n a }中,前n 项和123n n S r -=⨯+,则r = 4.你知道 “错位相减” 求和吗?(如:求1{(21)33}n n --⋅-的前n 项和)你知道 “裂项相消” 求和吗?(如:求1{}(2)n n +的前n 项和)5.由递推关系求通项的常见方法: 练习:①{n a }中,112,21n n a a a +==-,则n a =②{n a }中,1112,22n n n a a a ++==+,则n a = (注:关系式中的2换成3呢)③{n a }满足123,2a a ==且21212n n n a a a n n++=-+-,则n a =④{n a }满足11a =且212n n n a a a +=+,则n a = ⑤{n a }满足12a =且1121()2n n a a a a +=+++ ,则n a = ,n s = 6.善于捕捉利用分项求和与放缩法使所得数列为等差等比数列再求和的机会 练习:①正项数列{n a }中,111,21n n a a a +=<+,求证:12111111112n n a a a +++>-+++ 分析:1111112112(1)121n n n n n n a a a a a a +++<+⇒+<+⇒>++ 231211111111()()()111122222n n n a a a +++>++++=-+++ ②已知{n a }中111,(2,)(1)!n a a n n N n +==≥∈-,求证:1233n a a a a ++++< 分析:11111(3)(1)!123(2)(1)(2)(1)21n a n n n n n n n n ==<=-≥------- 12311111111133223211n a a a a n n n ++++≤++-+-++-=-<---四、不等式1、同向不等式能相减,相除吗?2、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)3、分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,奇穿偶回) 4、解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.) 5、含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)6、利用重要不等式ab b a 2≥+ 以及变式22⎪⎭⎫⎝⎛+≤b a ab 等求函数的最值时,你是否注意到a ,b +∈R (或a ,b 非负),且“等号成立”时的条件,积ab 或和a +b 其中之一应是定值?(一正二定三相等)7、) R b , (a , ba 2ab 2222+∈+≥≥+≥+ab b a b a (当且仅当c b a ==时,取等号); a 、b 、c ∈R ,ca bc ab c b a ++≥++222(当且仅当c b a ==时,取等号);8、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底10<<a 或1>a )讨论完之后,要写出:综上所述,原不等式的解集是…….9、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.” 10、对于不等式恒成立问题,常用的处理方式?(转化为最值问题)五、向量1.两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意λ=是向量平行的充分不必要条件.(定义及坐标表示)2.向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:||2=·,cos ||||a ba b θ∙==3.利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意:(1)0,(,],0,,022a b a b a b a b a b πππ∙<⇔<>∈∙=⇔<>=∙> ,[0,)2a b π⇔<>∈(2)0<∙是向量和向量夹角为钝角的必要而非充分条件.4.向量的运算要和实数运算有区别:(1)如两边不能约去一个向量,即a b a c ∙=∙推不出b c = ,(2)向量的乘法不满足结合律,即c b a c b a )()(∙≠∙,(3)两向量不能相除.5.你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线的两个向量线性表示,它的系数的含义与求法你清楚吗?6.几个重要结论:(1)已知,OA OB 不共线,OP OA OB λμ=+,则A ,P ,B 三点共线的充要条件是1λμ+=;(2)向量中点公式:若C 是AB 的中点,则1()2OC OA OB =+;(3)向量重心公式:在ABC 中,0OA OB OC ++=⇔O 是ABC 的重心.例:设F 为抛物线24y x =的焦点,A ,B ,C 为该抛物线上三点,若0FA FB FC ++= ,则||||||FA FB FC ++=__________.7.向量等式OC OA OB λμ=+的常见变形方法:(1)两边同时平方;(2)两边同时乘以一个向量;(3)合并成两个新向量间的线性关系.8.一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量.例1.ABC 内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=,求数量积,,OA OB OB OC OC OA .例2.平面四边形ABCD 中,313,5,5,cos ,5AB AD AC DAC ===∠=12cos 13BAC ∠=,设AC xAB yAD =+ ,求,x y 的值.例3.如图,设点O 在ABC 内部,且有230OA OB OC ++=,则:A O C A B C S S =____.六、导数1.导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形. 2.几个重要函数的导数:①0'=C ,(C 为常数) ②()'1(xx αααα-=为常数)③'()ln (0x x a a a a =>且1)a ≠ ④'1(log )(0ln a x a x a=>且1)a ≠ ⑤'()x x e e = ⑥'1(ln )x x=⑦'(sin )cos x x = ⑧'(cos )sin x x =-导数的四运算法则 ①()()()()()'''f x g x f x g x ±=±②()()''Cf x Cf x =⎡⎤⎣⎦(C 为常数)③()()()()()()()'''f x g x f x g x f x g x ⋅=⋅+⋅④()()()()()()()()'''2(0)f x f x g x f x g x g x g x g x ⎡⎤⋅-⋅=≠⎢⎥⎣⎦3. 利用导数可以证明或判断函数的单调性,注意当'()0f x ≥或'()0f x ≤,带上等号.例.已知20,a b =≠ 且关于x 的函数3211()32f x x a x a bx =+⋅+⋅在R 上有极值,则a 与b的夹角的范围为4.0()0f x '=是函数f(x)在x 0处取得极值的必要非充分条件,f(x)在x 0处取得极值的充分必要条件是什么? 5.求函数极值的方法: (1)先找定义域,求导数()x f ';(2)求方程()x f'=0的根n x x x ,,,21 找出定义域的分界点;(3)列表,根据单调性求出极值.已知()f x 在0x 处的极值为A ,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值.6. 利用导数求最值的步骤:(1)求函数在给定区间上的极值;(2)比较区间端点所对的函数值与极值的大小,确定最大值与最小值. 7.含有参数的函数求最值的方法:看导数为0的点与定义域之间的关系. 8.利用导数证明不等式()()f x g x >的步骤:(1)作差()()()F x f x g x =-;(2)判断函数()F x 在定义域上的单调性并求它的最小值; (3)判断最小值0A ≥;(4)结论:()0F x A >≥,则()()f x g x >. 9.利用导数判断方程的解的情况..已知函数()f x 在1x =处的导数为1,则当0x →时(1)(1)2f x f x+-趋近于解析:由定义得当0x →时,'(1)(1)1(1)(1)11(1)2222f x f f x f f x x +-+∆-=⋅=⋅=∆易错原因:不会利用导数的定义来解题.例2.函数32()f x x ax bx c =+++,其中,,a b c R ∈,当230a b -<时,()f x 在R 上的增减性是解析:'2()32f x x ax b =++,则24(3)0a b ∆=-<在R 上'()0f x >,故是增函数. 易错原因:不善于利用导函数的""∆来判别单调性.例3.若函数3'21()(1)53f x x f x x =--⋅++,则'(1)f -= 解析:设321()53f x x ax x =-++,则'2()21f x x ax =-+.故'(1)22f a -=+.由22a a =+知2a =-.有'(1)f -=-2.易错原因:不会运用待定系数法解题.例4.3()f x x x =-,则当(0,2)x ∈时,()f x 的值域为解析:'2()31f x x =-,令'()0f x x >⇒>,()f x ∴在区间2⎤⎥⎣⎦上单调增,在区间⎡⎢⎣⎦上单调减,()f x ∴的值域为⎡⎤⎢⎥⎣⎦. 易错原因:求导之后判别单调区间时概念模糊.七.概率:1.古典概型和几何概型的区别.例如:(1)任意取实数x ∈[1,100],恰好落在[50,100] (2)任意取整数x ∈[1,100],恰好落在[50,100]2事件中有一个发生的概率,利用对立事件的概率. (1)若A 、B 互斥,则P (A+B )=P (A )+P (B ); (2)若A 、B 对立,则()1()P A P A =-.3.概率题的解题步骤: (1)记事件(2)交代总共结果数与A 事件中结果数(几何概率即D,d ) (3)计算 (4)作答例如.1、在等腰直角三角形ABC 中,(1)在斜边AB 上任取一点M ,求AM 小于AC 的概率;(2)过顶点C 在ACB ∠内任作一条射线CM ,与线段AB 交于点M ,求AM AC <的概率.2.已知在矩形ABCD 中,AB=5,AC=7,在矩形内任取一点P ,求090APB ∠>的概率.八、统计:1.抽样方法主要有简单随机抽样(抽签法、随机数表法)常常用于总体数目较少时,主要特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,主要特征是均衡分成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要使用于总体中有明显差异。
总结高中数学常见错误分析
总结高中数学常见错误分析在高中数学学习中,常常出现各种错误。
这些错误有时是由于理解不够深刻,有时则是粗心大意所致。
为了帮助同学们更好地学习数学,下面将分析一些高中数学学习中常见的错误。
一、概念混淆误解1. 混淆角度和弧度的概念:在学习三角函数时,常常会将弧度和角度混淆,不清楚二者的转换关系,导致计算结果错误。
2. 混淆数列和序列的概念:数列和序列都是数学中一系列按照一定顺序排列的数,但是它们的定义和性质有所不同。
在题目中没有明确给出是数列还是序列,容易混淆。
二、求解步骤错误1. 求解方程时漏解或重解:在解方程的过程中,容易漏解或者重解,忽略排除无解、恒等的情况,导致最后的答案错误。
2. 求导过程中没有注意到链式法则:在求导的过程中,涉及到复合函数的求导,需要使用链式法则。
但有时候学生忽略了这一步骤,导致最终结果错误。
三、计算符号错误1. 正负号运算错误:在计算过程中,常常忽略正负号带来的影响,导致最后计算结果错误。
2. 符号计算混淆:在计算过程中,容易混淆加法和乘法的分配律,导致计算错误。
四、图形绘制错误1. 图形比例绘制错误:在绘制图形时,很容易将比例计算错误,导致绘制的图形与实际有偏差。
2. 图形误差放大:在图形绘制中,如果一个小错误在放大后会导致很大的偏差,所以在绘制图形时需要尽量减小误差。
五、题目理解错误1. 题意理解错误:在解题过程中,没有正确理解题目的意思,导致使用错误的方法或得出错误的结果。
2. 符号表示理解错误:在题目中涉及到符号的表示,如从题目中给出的条件中找出合适的符号表示,容易理解错误,导致计算错误。
六、计算器使用错误1. 输入错误:使用计算器计算时,容易输入错误的数字或操作符,导致计算结果错误。
2. 操作顺序错误:对于复杂的运算,需要注意操作顺序,容易因为操作顺序错误导致计算结果错误。
以上是高中数学学习中常见的错误分析。
希望同学们能够认真对待数学学习,避免这些错误,提高数学学习的效果。
高中数学易错点(附配套例题与答案)
高中数学各章节关注点1.4 否定形式命题可考虑用逆否命题来研究.例1.4 已知R b a ∈,,则条件"21≠≠b a 或"是"2≠ab "的 条件.1.5 “且”与“或”的区分.例1.5.1 判断真假:(1) 10232≠⇔≠+-x x x 或2≠x ;(2)33≥.例1.5.2 已知 013:1=+-y ax l ,01)21(:2=---ay x a l ,根据下列条件分别求a 的取值范围.(1) 21l l 与相交;(2) 21l l ⊥.2、函数2.1求函数关系式时必须包含定义域;对数问题也应注意定义域.例2.1 (1)在ABC ∆中,BC AC BC x AB ,3,4,===边上的中线长y AM =,求y 关于x 的函数关系式;(2)函数x x y ln 22-=的单调递增区间是 .2.2 函数的零点问题通常利用函数图像.例2.2 (1)若函数m x x x y -+-=4423在区间),(251-有且只有一个零点,则实数m 的取值范围是 ;(2) 若函数m x x x y -+-=4423在区间),(251-至少有一个零点,则实数m 的取值范围是 .例2.5.2 已知函数)(x f 是周期为2的周期函数,当20≤<x 时,13)(2+-=x x x f ,求当75<<x 时,函数)(x f 的表达式.2.6 关注二次函数二次项系数是否为零,注意∆、开口、对称轴与特殊值四要素.例2.6 (1)已知方程0)3(42=++-a x ax 有两个大于1的不等实根,求实数a 的取值范围; (2) 已知方程0)3(42=++-a x ax 至少有一个大于1的实根,求实数a 的取值范围.2.7 指对数的运算法则.例2.7 (1)已知02ln =+x ,求x ;(2)已知)00(02≠>=-a a a x且,求x ; (3)解不等式)10(2log <<->a x a ;(4)已知()1,12log 2log >>>b a b a ,求b a , 的大小关系.3、数列3.1 注意题中n 取值,如:⎩⎨⎧≥-==-2n ,S S 1,n ,S a 1n n1n 的公式应用.例3.1 (1)已知数列{}n a 的前n 项的和为)(+∈+-=N n n n S n 1322,求数列{}n a 的通项公式;(2) 已知数列{}n a 的前n 项的和为n S ,若),2(0321+-∈≥=+N n n a S S n n n ,又31=a ,求n a ;(3) 已知数列{}n a 的前n 项的和为n S ,若,)(31++∈=N n a S n n 又31=a ,求n a .3.2 等比数列求和注意对q=1与q ≠1的分类;等比数列证明注意首项0a 1≠的说明.例3.2 (1) 若等比数列{}n a 的前n 项和为n S ,公比1-≠q .求证:n n n n n S S S S S 232,,--也成等比;(2) 若数列{}n a 中,)(23,411++∈-==N n a a a n n .求证数列{}1-n a 是等比数列.3.3 求和:观察通项、 注意首项、 点清项数,并注意结果的验证.例3.3 求和nn S )2(8421-++-+-= .3.4 应用性问题:逐步列式,保留原始数据,便于观察规律.例3.4 小王2012年5月向银行借款100万元用于购房,年利率7.8%,2013年5月开始偿还,每年还a 万元,2032年5月全部还清,求每年还款额a (其中2078.110≈).3.5 等差数列、等比数列常用定义、公式或性质解决.例3.5.1 已知数列{}n a 的前n 项的和为n S ,42,293==S S .(1)若数列{}n a 成等差,求12S ; (2) 若数列{}n a 成等比,求12S .例3.5.2 已知等差数列{}n a 与{}n b 的前n 项的和分别为n n T S , , 若1423--=n n T S n n , 求2020b a .3.6 数列与函数的单调性、最值研究的方法“区别”.例3.6 (1) 已知数列{}n a 的通项公式是nnn C a )31(2012⋅=,求数列{}n a 的最大项;(2)已知函数xex x f 2012)(-=,求函数)(x f 在区间),0(∞+上的最大值.3.7 熟练掌握利用错位相减法或裂项法进行数列求和. 例3.7 (1) 求和:n n n S )21)(12()21(7)21(5)21(321432--++-+-+-+-= ;(2) 求和:)12(753197531753153131++++++++++++++++=n S n .(3) 求数列⎭⎬⎫⎩⎨⎧+++)23(3522n n n n 的前n 项的和n T .3.8 通常递推关系转化为“新数列”的思想运用. 例3.8 已知数列{}n a 中,311=a ,根据下列各递推公式,求数列的通项公式: (1) 131-=+n n a a ;(2)131+=+n nn a a a ;(3)()112++-=n n n n a a a a ;(4)nn n a a 331=+-.5.4 三角形问题应注意内角的判断一个或两个解.例5.4 (1) 在ABC ∆中,若32cos ,36sin ==B A , 求C sin ;(2) 在ABC ∆中,若3,31cos ,33sin ===a B A , 求边c 的长.5.5 熟练掌握正弦、余弦定理,面积公式.例5.5.1 在ABC ∆中, 面积32=S ,,6,600=+=c b A (1)求边a 的长; (2)求)(sin C B -.例5.5.2 在ABC ∆中, 三内角C B A ,,成等差数列 , 角C B A ,,所对应的边分别为c b a ,,, 外接圆半径为2 , 求22c a +的取值范围.6.5 熟练掌握不等式应用的两种题型.例6.5 (1) 已知+∈R y x ,,212=+yx ,求y x +的最小值;(2)已知c ax x f +=2)(,1)1(2≤≤-f ,4)2(0≤≤f ,求)3(f 的取值范围.7、直线和圆7.1 求直线问题注意斜率存在与不存在,掌握斜率变化与倾斜角变化的规律.例7.1 (1) 已知过点(0,1)的直线l 与圆)0()1(222>=++R R y x 交于B A ,两点,O 为坐标原点,若52<⋅<-OB OA ,求半径R 的取值范围;(2) 已知过点(-2,0)的直线l 与圆16)1(22=++y x 交于B A ,两点,O 为坐标原点,若1213-<⋅<-OB OA ,求直线l 的倾斜角取值范围.高中数学各章节关注点答案3.1解:(1) ⎩⎨⎧≥== 2.n ,5-4n ,1n ,0a n (2) ,0)(3211=-+--n n n n S S S S 32111=--n n S S , 数列⎭⎬⎫⎩⎨⎧n S 1是首项为31,公差为32的等差数列,所以3121-=n S n ,即123-=n S n ,从而得⎪⎩⎪⎨⎧≥---==.2,)32)(12(61,3n n n n a n , (3) ,43111n n n n n n S S S S a S =⇒-==+++数列{}n S 是公比为4 , 首相为3的等比数列 ,所以143-⋅=n n S , 从而⎩⎨⎧≥⋅==-.2,49,1,32n n a n n 3.2解:(1)当公比1=q 时,,,,0123121na S S na S S na S n n n n n =-=-≠=结论成立;当公比1≠q 时,222212131123)1()1()1)1(1)1((1)1()(q q q a q q a q q a q q a S S S nn n n n n n n --=-----⋅--=-, 22221212122)1()1(1)1(1)1()(q q q a q q a q q a S S n n n n n n--=⎥⎦⎤⎢⎣⎡-----=-, 1,0,01±≠≠≠q q a ,0)()(2322≠-=-∴n n n n n S S S S S ,结论成立.(2),)1(311-=-+n n a a 又0311≠=-a ,所以数列{}1-n a 是以3为首项,以3为公比的等比数列.3.3解: []11)2(131)2(1)2(1++--=----=n n n S . 3.4解:201819%)8.71(100%)8.71(%)8.71(%)8.71(+=+++++++a a a a ,2020%)8.71(100%)8.71(1%)8.71(1+=+-+-⋅a , 4.103078.0400=⨯≈a (万元).3.5.1解:(1)由91269363,,,S S S S S S S ---成等差,得,)42(2)2(266S S -+=-166=S ,所以38912=-S S ,8012=∴S .(2) 由91269363,,,S S S S S S S ---成等比,得,)42(2)2(626S S -=-86-=S 或106=S ,从而128912=-S S 或250912-=-S S ,所以17012=S 或20812-=S .3.5.2解:利用等差数列求和公式n n a n S )12(12-=-得312315511539392020===T S b a . 3.6解:(1)1)1(3201231!)2011(!)1(!2012!)2012(!!2012312012120121≥+-=⋅-+-=⋅=++n nn n n n C C a a n n n n ,得25.502≤n ,即12502503a a a a >>>> , >>>505504503a a a ,所以数列{}n a 的最大项为5035032012503)31(C a =.(2)2013,02013)('==-=x exx f x得,函数↑∞+↑),(,),)在((201320130x f . 所以函数)(x f 在区间),0(∞+上的最大值是2013)2013-=ef (.3.7解:(1) 运用错位相减法,15432)21)(12()21)(32()21(7)21(5)21(3)21(21+--+--++-+-+-+-=-n n n n n S15432)21)(12(])21()21()21()21()21[(22123+----++-+-+-+-+-=n n n n S 1111)(12()21(13121)21)(12()21(1)21(141221+-+---⎥⎦⎤⎢⎣⎡--+-=---⎥⎦⎤⎢⎣⎡----⋅+-=n n n n n n n n )21(61661-++-=, nn n S )21(91691-++-=∴.(2) )211(21)2(1)12(7531+-=+=+++++n n n n n,⎥⎦⎤⎢⎣⎡+-++--++-+-+-+-=∴)211()1111()6141()5131()4121()311(21n n n n S n )2)(1(23243211121121+++-=⎥⎦⎤⎢⎣⎡+-+-+=n n n n n . (3) )2(31)1(31)23(35212+-+=+++-n n n n n n n n,))2(31)1(31()531431()431331()33121(1322+-+++⨯-⨯+⨯-⨯+⨯-=∴-n n T n n n)2(3121+-=n n .4.9解:y x y x 32cos 2sin -=+,22)32()2(1y y -≥+,031252≤+-y y ,52165216+≤≤-y , ∴值域为⎥⎦⎤⎢⎣⎡+-5216,5216. 4.10解:321sin 121,21sin 23,1sin 21,326<+≤≤+<≤<∴≤<x x x x ππ, 所以1sin 43+-=x y 的值域为⎥⎦⎤ ⎝⎛1,31.4.11解: 2tan 11tan )4tan(=-+=+x x x π, 得31tan =x . (1)原式671tan 32tan =++=x x .(2)原式7201tan tan )1(tan 2)cos (sin cos sin )cos (sin 2222222-=--+=+-+=x x x x x x x x x . 5.1 (1)51- 解析:CB AB AC AB CB BC AB CB AM ⋅-+=⋅+=⋅)](32[)32( 51)2716236(31231)()2(3122-=--=⎥⎦⎤⎢⎣⎡⋅+-=-⋅+=AC AB AC AB AC AB AC AB .(2)42- 解析:以A 为原点,分别以AB ,AC 所在直线为x ,y 轴,建立直角坐标系,A (0,0),B (6,0),C (0,9),M (2,6),425412),9,6(,)6,2(-=-=⋅-==CB AM CB AM .5.2解:(1)213,0372)2(1)1)(23(2-=-==++⇒-⋅=++x x x x x x x 或得. (2) 26,03201)23()1)(2(2±==-⇒=⋅+++-x x x x x 得. 5.3解:(1)错 解析:0应该为0.(2)错 解析:c b a )(⋅与向量c 共线 , )(c b a ⋅与向量a 共线. (3)错 解析:正确形式为AC BC AB =+;(4) 错 解析:正确形式为CB AC AB =-.5.4解:(1),,sin 35sin A B A B <∴<=33cos ±=∴A , B A B A B A C sin cos cos sin )(sin sin +=+= 9156235)33(3236±=±+⋅=. (2) 36cos ,,sin 322sin =∴>∴>=A A AB A B ,必为锐角角 ,935322363133sin cos cos sin )(sin sin =+⋅=+=+=B A B A B A C ; 由正弦定理得539353sin sin =⋅⋅==A C a c .5.5.1解:(1) 83260sin 210=⇒==bc bc S , 又,或22,4,6===∴=+b c b c b 4=c ,32,12cos 2222==-+=a A bc c b a . (2) 当4,2==c b 时,由正弦定理,C B sin 4sin 260sin 320==,得1sin ,21sin ==C B ,23)sin(,90,3000-=-==C B C B ,同理当2,4==c b 时,23)sin(=-C B . 5.5.2解:三角C B A ,,成等差060=⇔B , 由正弦定理42sin sin ===R CcA a , 所以[][])2240cos(2cos 28)120(sin sin 1602222A A A A c a ---=-+=+)602cos(8160+-=A , 由于001200<<A , 00030060260<+<A ,所以21)602cos(10<+≤-A , 从而241222≤+<c a . 5.6.1 解: (1)真. (2)假.(3)假. 解析:正确的应是等腰三角形或直角三角形. 例5.6.2 (1) 若角A 为锐角, 则A A cos sin +的取值范围是 ; (2)若角A 为钝角, 则A A cos sin +的取值范围是 .5.6.2 (1)(]2,1 解析:)45sin(2cos sin +=+A A A ,A 为锐角,900<<∴A , 1354545<+<∴A ,1)45sin(22≤+<∴A ,即有2cos sin 1≤+<A A .. (2)()1,1- 解析: A 为钝角,即18090<<A ,22545135<+<∴A ,22)45sin(22<+<-∴ A ,即有1cos sin 1<+<-A A . 6.1解:(1)027322132≥--=---x x x x x , 由此得解集[)⎪⎭⎫⎢⎣⎡∞+,372,0 .6.4 1024或 解析:)52()(1+=-⋅x x x ,得0=x 或3-=x ,44224)42(222++=++=-x x x x ,40=-=x ;1023=--=x .6.5 解:(1))223(21)2(321)12)((21+≥⎥⎦⎤⎢⎣⎡++=++=+y x x y y x y x y x , 即y x +的最小值为)223(21+. (2))1(35)2(389)3(,4)2(,)1(f f c a f c a f c a f -=+=+=+=;332)2(380≤≤f ,310)1(3535≤-≤-f ,14)3(35≤≤-∴f .则当1=t 时,1=k ,当1≠t 时,0)3)(1(44,0)3(2)1(2≥---=∆=-+--t t t k k t ,得;2222+≤≤-t ,所以24322-<<-R .综上所述,半径R 的取值范围是⎪⎭⎫ ⎝⎛-24,0.(2) 当x l ⊥轴时,)15,2(-A ,)15,2(--B ,11-=⋅OB OA ,不合, 当l 与x 轴不垂直时,设直线)2(:+=x k y l 代入圆方程,得0154)12(2)1(2222=-++++k x k x k ,由韦达定理,222122211154,1)12(2kk x x k k x x +-=++-=+, 2212212212214)(2)1()2)(2(k x x k x x k x x k x x OB OA ++++=+++=⋅)12,13(1151141)12(41542222222--∈++-=+++--=kk k k k k k ,得312<<k , 13-<<-k 或31<<k ,所以直线l 倾斜角的范围是⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛43,323,4ππππ .7.2解:圆心(-1,0)到直线的距离53=d ,所以5109235322=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=R . 8.1.1解:(1)513解析:因为02=+FQ PF ,所以点Q 为线段PF 的中点, O 为原点,椭圆另一焦点为'F ,则OQ PF //', 4'=PF , 由椭圆定义:42-=a PF ,'PF PF PF OQ ⊥⇒⊥,由勾股定理;52)42(162=-+a , 得5=a , 所以椭圆的离心率513=e . (2) 228- 解析:如图,椭圆左焦点)0,2(-F , 右焦点即为B ,如图,由椭圆的定义得2288)(8-=-≥--=+AF PA PF PB PA .8.1.2解: (1) 1622=+y x 解析:不妨设点P 在双曲线的右支上,设直线1与2PF 交于点Q ,O 为坐标原点,4221)(21)(21212122==⋅=-=-==a a PF PF PF PQ Q F OM , 所以点M 的轨迹方程是1622=+y x .(2) 2 解析:抛物线的焦点()1,0F ,准线1:-=y l ,连AF 、BF ,设A 、B 、M 到准线l 的距离分别为1d 、2d 、d 则322221=≥+=+=AB BF AF d d d , ∴点M 到x 轴的最近距离为2.8.2解:(1)9或964解析:当焦点在x轴上时,3181=-m ,得9=m ;当焦点在y轴上时,3181=-m ,得964=m . (2) 3171--或 解析:当焦点在x 轴上时,7)28(2=+++n n ,得1-=n ;当焦点在y 轴上时,7)2()82(=--+--n n ,得317-=n .(3) )161,0(a 解析:抛物线方程的标准式为y ax 412=.8.3解:(1)(基本轨迹法) 设)0,5(,)0,5(21F F -,动圆半径为R ,则31+=R PF ,12+=R PF ,221=-PF PF ,由双曲线定义,点P 的轨迹是以1F 、2F 为焦点的双曲线的一支,1=a ,24,52==b c ,它的轨迹方程是)1(12422≥=-y x y . (2) (转移法) 设),(),,(00y x C y x G ,则3,300yy x x ==,即y y x x 3,300==,代入椭圆得1144)3(324)3(22=+y x ,又三角形中三点不共线,0≠∴x , 所以重心G 的轨迹方程是)0(1163622≠=+x y x .8.4 解: )0,2()0,2(21F F -,当x PQ ⊥轴时, )3,2(,)3,2(-Q P ,12=S ; 当AB 与x 轴不垂直时, 设直线)0)(2(:≠-=k x k y PQ ,代入椭圆方程得0481616)43(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则22212221434816,4316kk x x k k x x +-=+=+, 2222243)1(24431241k k k k k PQ ++=+++= , 点1F 到直线PQ 的距离 214kk d +=,由此得222222)43()1(484314821k k k k k k d PQ S ++=++== , 设t k =+243,其中3>t ,则232112t t S --=随t 的增大而增大,120<<S , 所以PQ F 1∆面积S 的取值范围是(]12,0.(2)设直线2)1(:+-=x k y l , 代入双曲线方程4422=-y x 得[]01)2(4)2(8)41(222=+-----k x k k x k ,[]0)543(161)2()41(16)2(6422222=+--=+--+-=∆k k k k k k ,得3192±-=k , 双曲线的渐近线斜率为21±,如图,可知直线l 的斜率范围是)21,3192(---. 8.6解:)0,2(-F ,当x l ⊥轴时,)214,1(P ,)214,1(-Q ,不合. 设直线)1(:-=x k y l ,代入椭圆得0824)21(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则 ,2142221kk x x +=+22212182k k x x +-=, 2212212212214))(1()1()1)(2()2)(2(k x x k x x k x x k x x FQ FP +++-++=--+++=⋅=2222222421)2(421)82)(1(k k k k k k k +++-++-+=02141122=+-k k ,得112±=k , 所以直线的方程为)1(112-±=x y .9.1解:(1) 373)4242(433122=⋅⨯++=V . (2)表面积ππππ425)41(4122=⋅++⋅+⋅=S ,体积ππ284)4161(31=⋅++=V . 9.2解:(1)取AB 中点O ,连OC ,则AB PO ⊥,ABC PAB 面面⊥ ,ABC PO 面⊥∴, ABC PC PCO 与面就是∠∴所成的角,103010232tan 10232==∠==PCO OC PO ,,, 所以所求角的正切值为1030.。
(完整版)高中数学易错重点知识点梳理
高中数学知识易错点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。
已知集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N ;与集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x∈R}求M ∩N 的区别。
3. 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集B A ⊆时是否忘记∅. 例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了a =2的情况了吗?4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。
},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. (C U A)∩( C U B) = C U (A ∪B) (C U A)∪( C U B) = C U (A ∩B);B B A = A B ⊆⇒; 8、可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”. p 、q 形式的复合命题的真值表:9、否 原命题与逆否命题同真同假;逆命题与否命题同真同假.10、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,哪几种对应能够成映射? 11、函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称.③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗?函数y=2)3lg()4(--x x x 的定义域是 ;复合函数的定义域弄清了吗?函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域. 函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域14、含参的二次函数的值域、最值要记得讨论。
高中数学易混易错知识点大全
高中数学易错、易混、易忘备忘录1.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况2.求解与函数有关的问题易忽略定义域优先的原则 3 根据定义证明函数的奇偶性时,易忽略检验函数定义域是否关于原点对称 4 求反函数时,易忽略求反函数的定义域 5 单调区间不能用集合或不等式表示. 6 用基本不等式求最值时,易忽略验证“一正二定三等”这一条件7 你知道函数(0,0)b y ax a b x=+>>的单调区间吗?(该函数在(,)-∞+∞和上单调递增;在[和(0上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数) 是奇函数,图像关于原点对称. 8 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀 9 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0 尤其是直线与圆锥曲线相交时更易忽略 10 等差数列中的重要性质:若m+n=p+q ,则m n p q a a a a +=+;(反之不成立)等比数列中的重要性质:若m+n=p+q,则m n p a a a a = (反之不成立) 11 用等比数列求和公式求和时,易忽略公比q=1的情况12 已知n S 求n a 时, 易忽略n =1的情况13 等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是:2n S an bn =+(a, b 为常数)其公差是2a14 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n 项的和) 15 你还记得裂项求和吗?(如111(1)1n n n n =-++) 16 在解三角问题时,你注意到正切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?17 你还记得三角化简的通性通法吗?( 异角化同角,异名化同名,高次化低次)18 你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 19 在三角中,你知道1等于什么吗?(这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用20 0与实数0有区别,0的模为数0,它不是没有方向,而是方向不定 0可以看成与任意向量平行,但与任意向量都不垂直 21 0a =,则0a b ⋅=,但0a b ⋅=不能得到0a =或b = a b ⊥有0a b ⋅= 22 a b =时,有a c b c ⋅=⋅ 反之a c b c ⋅=⋅不能推出a b = 23一般地()()a b c a b c ⋅⋅≠⋅⋅ 24 使用正弦定理时易忘比值还等于2R ::sin :sin :sin a b c A B C = 25 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b ⇒<,a<b<o1a b ⇒> 26 分式不等式的一般解题思路是什么?(移项通分、零点分段) 27 解指对数不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零 ) 28 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…… 29常用放缩技巧:211111111(1)(1)1n n n n n n n n n-=<<=-++-- k k k k k k k k k +-=+-<<++=-+1112111130用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况31直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,2πππ 32 函数的图象的平移、方程的平移以及点的平移公式易混:33sin sin()3x x x y x y x πππ→-=−−−−−−→=-沿轴向右平移① 22sin 2sin ,sin 2y y y y x y x y x →-=−−−−−→-==+沿轴向上平移②即 212sin sin 2x x x y x y x →=−−−−−−−→=沿轴缩短到原来的③ 1221sin sin 2x x x y x y x →=−−−−−−−→=沿轴伸长到原来的倍④ 2121sin 2sin ,sin 2y y y y x y x y x →=−−−−−−−→==沿轴缩短到原来的⑤即 1221sin sin ,2sin 2y y y y x y x y x →=−−−−−−−→==沿轴伸长到原来的倍⑥即 33 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清) 34 直线在坐标轴上的截距可正,可负,也可为0 35 处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式 一般来说,前者更简捷 36处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系 37 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形 38 还记得圆锥曲线方程中的a,b,c,p ,ca a c 2,的意义吗? 39 离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?40 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制 (求交点,弦长,中点,斜率,对称,存在性问题都在下进行) 41 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形 (a ,b ,c ) 42 通径是抛物线的所有焦点弦中最短的弦 (通径是过焦点,且垂直于x 轴的弦) 43 你知道椭圆、双曲线标准方程中a ,b ,c 之间关系的差异吗?45作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见 46 求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法) 47 求多面体体积的常规方法是什么?(割补法、等积变换法) 48 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o ≤α≤90°二面角的平面角的取值范围:0°≤α≤180° 49 二项式()na b +展开式的通项公式中a与b的顺序不变 50 二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为rn C 51 二项式系数最大项与展开式中系数最大项易混 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r 52 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合 53 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好 54 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项)事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-其中k=0,1,2,3,…,n,且0<p<1,p+q=1 55 常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= x x )'(ln = xx a a log 1)'(log = x x e e =)'( a a a x x ln )'(= 2();u u v uv uv u v uv v v '''-⎛⎫'''=+= ⎪⎝⎭,(())u x f u x f u '''=⋅高中数学重要基础知识记忆检查一、幂函数、指数函数和对数函数1、由n 个元素组成的集合,其非空真子集个数为 。
高中数学80个易错题汇总
高中数学易错点梳理一、集合与简易逻辑易错点1 对集合表示方法理解存在偏差【问题】1: 已知A = {x | x > 0}, B = {y y > 1},求A B 。
错解:A B =Φ剖析:概念模糊,未能真正理解集合的本质。
正确结果:A B =B【问题】2: 已知A = {y | y =x + 2}, B = {(x, y) | x 2 +y 2 = 4} ,求A B 。
错解: A B = {(0, 2), (-2, 0)}正确答案:A B =Φ剖析:审题不慎,忽视代表元素,误认为A 为点集。
反思:对集合表示法部分学生只从形式上“掌握”,对其本质的理解存在误区,常见的错误是不理解集合的表示法,忽视集合的代表元素。
易错点2 在解含参数集合问题时忽视空集【问题】: 已知A = {x | 2a <x <a 2}, B = {x | -2 <x < 1} ,且A ⊆B ,求a 的取值范围。
错解:[-1,0)剖析:忽视A =∅的情况。
正确答案:[-1,2]反思:由于空集是一个特殊的集合,它是任何集合的子集,因此对于集合A ⊆B 就有可能忽视了A =∅,导致解题结果错误。
尤其是在解含参数的集合问题时,更应注意到当参数在某个范围内取值时,所给的集合可能是空集的情况。
考生由于思维定式的原因,往往会在解题中遗忘了这个集合,导致答案错误或答案不全面。
易错点3 在解含参数问题时忽视元素的互异性【问题】: 已知1∈{ a + 2 , (a +1)2 , a2 + 3a +3 },求实数a 的值。
错解:a =-2, -1, 0剖析:忽视元素的互异性,其实当a =-2 时,(a +1)2 = a2 + 3a + 3 =1;当a =-1时,a + 2 = a2 + 3a + 3 =1;均不符合题意。
正确答案:a = 0反思:集合中的元素具有确定性、互异性、无序性,集合元素的三性中的互异性对解题的影响最大,特别是含参数的集合,实际上就隐含着对字母参数的一些要求。
高中数学常用结论,常见易错点,重要公式(原创)
一、常用结论1. A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U2、含n 个元素的集合的子集个数为2n ,真子集个数为2n-1;3、如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数;若都有()()x b f x a f +=-,那么函数()x f y =的图象关于直线2ba x +=对称 4、f(x)是偶函数⇔f(-x)=f(x)=f(|x|),定义域含零的奇函数过原点(f(0)=0)5、函数()0,0>>+=b a xb ax y 函数在]a ab -∞-,(或),[+∞aab上单调递增;在)0,[aab -或]0a ab,(上单调递减6、二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.7、(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 8、如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.9、若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.10、对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).11、设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.12、若()y f x =图像有两条对称轴,()x a x b a b ==≠,则()y f x =必是周期函数,且一周期为2||T a b =-;若()y f x =图像有两个对称中心(,0),(,0)()A a B b a b ≠,则()y f x =是周期函数,且一周期为2||T a b =-;如果函数()y f x =的图像有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且一周期为 4||T a b =-;13、反比例函数:)0x (xc y ≠=平移⇒b x ca y -+=(中心为(b,a))14、关于对称的结论(1)函数()x f y =关于原点的对称曲线方程()x f y --=;(2)曲线(,)0f x y =关于直线y x a =±+的对称曲线的方程为((),)0f y a x a ±-±+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学高中数学易错、易混、易忘问题备忘录(留着)1.在应用条件A∪B=B <=> A∩B=A <=> A B时,易忽略A是空集Φ的情况,并且要时刻注意集合的三要素中的互异性和无序性2.求解与函数有关的问题易忽略定义域优先的原则.3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.4.根据定义证明函数的单调性时,规范格式是什么?(任取, 作差, 判正负.)5.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”6.单调区间不能用集合或不等式表示.两个单调区间之间要用逗号相连7.用均值定理求最值(或值域)时,易忽略验证“一正二定三等”这一条件.8.函数(其在第一象限的图像就象“√”,特命名为:对号函数,对号函数是奇函数,图像关于原点对称)在上单调递增;在上单调递减)9.函数的单调区间:在上单调递增;是奇函数,图像关于原点对称.10.对数函数真数与底数的限制条件:真数大于零,底数大于零且不等于1,字母底数需要讨论11.用换元法解题时,易忽略换元前后的等价性,也就是换元之后的自变量的取值范围12.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0. 尤其是直线与圆锥曲线相交时更易忽略.13.等差数列中的重要性质:若m+n=p+q,则;(反之不成立)14.等比数列中的重要性质:若m+n=p+q,则. (反之不成立)15. 用等比数列求和公式求和时,易忽略公比q=1的情况.16.已知求时, 易忽略n=1的情况.17.等差数列的一个性质:设是数列{}的前n项和, {}为等差数列的充要条件是:(a, b为常数)其公差是2a.18.数列求和之“错位相减”法——若其中{}是等差数列,{}是等比数列,求{}的前n项的和19.数列求和之“裂项求和”(如)20.在解三角问题时,注意到正切函数、余切函数的定义域,注意到正弦函数、余弦函数的有界性了,并且在求解三角函数的题目时,要时刻注意角范围21.三角化简的通性通法(切化弦、降幂扩角、用三角公式转化出现特殊角. 异角化同角,异名化同名)22.在弧度制下弧长公式和扇形面积公式吗?——)23.在三角函数中的“1”代换这些统称为1的代换) 常数“1”的种种代换有着广泛的应用.24.与实数0有区别,的模为数0,它不是没有方向,而是方向不定. 可以看成与任意向量平行,但与任意向量都不垂直.25.,则,但不能得到或. 有.26.时,有. 反之不能推出27.一般地,即向量运算中不存在分配率28.在中,29.使用正弦定理时易忘比值还等于2R.齐次代换30.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.31.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号取倒数”即A>B>o,A<B<o.32.分式不等式的一般解题思路是移项通分、零点分段33.解指对不等式应该注意指数函数与对数函数的单调性, 对数的真数大于零. 因此指对不等式不宜平方解34.在解含有参数的不等式时,一定要进行讨论,特别是指数和对数的底或,35.讨论完之后,要写出:综上所述,原不等式的解是……. 这一条用于所有数学大题36.常用放缩技巧:37.解析几何的主要思想:用代数的方法研究图形的性质.主要方法:坐标法.38.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况.39. 直线的倾斜角、到的角、与的夹角的取值范围依次是.40. 函数的图象的平移、方程的平移以及点的平移公式易混:41.对不重合的两条直线,,有;.(在解题时,讨论后利用斜率和截距)42.直线在坐标轴上的截距可正,可负,也可为0.43.处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式. 一般来说,前者更简捷.44.处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系.45.在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形.46.圆锥曲线方程中的a,b,c,p,,,的意义47.离心率的大小与曲线的形状的关系(圆扁程度,张口大小)等轴双曲线的离心率是根号248.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零,判别式的限制. (求交点,弦长,中点,斜率,对称,存在性问题都在下进行).49.椭圆中,注意焦点、中心、短轴端点所组成的直角三角形.(a,b,c)50.通径是抛物线的所有焦点弦中最短的弦. (想一想在双曲线中的结论?)51.椭圆、双曲线标准方程中a,b,c之间关系的差异52.如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点. 此时两个方程联立,消元后为一次方程.53.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.54.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大.55. 作出二面角的平面角主要方法是定义法、三垂线法、垂面法三垂线法:一定平面,二作垂线,三作斜线,射影可见.56.求点到面的距离的常规方法是直接法、等体积法、换点法、向量法57.求多面体体积的常规方法是割补法、等积法58.两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°59. 二项式展开式的通项公式中A与B的顺序不变.60. 二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为.61. 二项式系数最大项与展开式中系数最大项易混. 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组来确定r.62. 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.63. 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好.64. 二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率与二项分布的分布列三者易记混.通项公式:(它是第r+1项而不是第r项).事件A发生k次的概率:.其中k=0,1,2,3,…,n,且0<p<1,p+q=1.65. 常见函数的导数公式:;;;.. . . .,高考数学常见陷阱大搜索在高考中,为了考查考生思维的严谨性和深刻性,常常需要设计一些具有陷阱的试题,以期扩大考试梯度、提高信度。
由于高考时间非常紧迫,来不及对问题深思熟虑,如果学生对知识和方法的掌握有缺陷,那么将毫无意识地纷纷落入陷阱,等到考试后,脑子清醒下来又会恍然大悟,影响情绪,打击信心。
为了解决这个问题,现将常见的陷阱进行暴光,防止解题失误,提升高考数学成绩.1.集合A、B,时,必须注意到“极端”情况:或;必须注意到。
例如:已知,A= .求实数a的范围。
由条件知道,必须讨论a 时的的情况。
2.函数的两个性质:(1)如果函数对于一切,都有,那么函数的图象关于直线对称.(2)函数与函数的图象关于直线对称.这两感个问题是有本质区别的,(1)是研究一个函数的图象性质,(2)是研究两个函数的图象性质3.求一个函数的解析式和一个函数的反函数时,必须注意函数的定义域。
例如:求函数f(x)=x -1(x )的反函数。
正确答案为。
4.原函数在区间上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:函数y= 存在反函数,此函数不具备单调性.5.函数的定义域关于原点对称是这个函数具有奇偶性的必要非充分条件。
例如:函数y= ,当x= 时函数值为1,当x=- 时函数没有意义,所以不具备奇偶性,没有必要进行化简。
6.在处理与正(余)切、正(余)割有关的问题时,必须考虑他们本身的定义域。
例如:求函数y= 的定义域。
必须考虑2x k .7.三角函数求值时,要注意范围的压缩,否则容易产生增解。
例如:已知sin +cos = , ,求ctg 的值。
两边平方后用万能公式,可以得到ctg =- 或者- ,把范围压缩到,就知道解为- 。
8.对数函数有关的问题,必须注意真数与底数的限制条件,真数大于零,底数大于零且不等于1,字母底数还需要讨论。
例如:求函数f(x)=log (x -5x-6)单调区间。
必须在定义域内进行,正确答案为(6,+ )9.“实系数一元二次方程有实数解”转化为“ ”,必须注意;当a=0时,“方程有解”不能转化为.若原题中没有指出是“二次”方程、函数或不等式,需要考虑到二次项系数可能为零的情形。
例如:函数f(x)=(a -1)x +2(a-1)x+1的图象恒在x轴的上方,必须考虑a=1的情形。
10.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,必须注意到它们各自的取值范围。
①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是 .②直线的倾斜角、到的角、与的夹角的取值范围依次是.③向量的夹角的取值范围是[0,π]11.在立体几何的图形分析时,要考虑各种方位所带来的各种可能的情形。
例如:与四面体四个顶点距离相等的平面有几个?应该考虑平面的一旁1个点另外一旁3个点,以及两旁都是两个点的情况,所以共有7个平面。
12.现在研究一元二次方程时,应该分清系数是实数还是虚数,即使是系数是实数还应该分是实根还是虚根,因为两者的处理方法不同。
例如:若为方程x +4x+m=0(m R)的两个根,并且=2,求m的值得。
本题应该分为实根还是虚根两种情况分别解决,正确答案为m=3或5。
13.对于一个与无理方程、分式方程、对数方程或者不等式有关的问题,必须进行结论的检验。
例如:已知向量。
容易求出14.换元和消元时必须注意参数的取值范围,保证变化前后的等价性。
例如:若关于x的方程有实根,求实数m的取值范围。
通常是用换元法,令t= 。
命题等价变化为:方程在内有实根。
而不是新方程有实根。
15.用重要不等式以及变式等求函数的最值时,要注意到a,b (或a ,b非负),且“等号成立”时的条件,积ab或和a+b其中之一应是定值。
例如:求y=sin x+ 的最小值。
有这样一种做法,这是不可能成立的。
正确的方法应该是令t= sin x ,这样y=t+ ,t ,然后利用奈克函数的性质可以求出y的最小值为5。
16.利用数形结合解题时,必须注意变量的范围对图形的影响。