2020最新北师大版七年级数学下第四章《变量之间的关系》单元知识总结(精)

合集下载

北师大版七年级(下册)数学知识点总结

北师大版七年级(下册)数学知识点总结

北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。

p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。

9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结

北师大版《数学》(七年级下册)知识点总结第一章整式的运算 组长检查签名 _________ 家长检查签名_________一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.⎪⎩⎪⎨⎧⎩⎨⎧其他代数式多项式单项式整式代数式二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.),()()(都为正数n m a a a mn m n n m ==.在应用时需要注意以下几点:(1) 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n(2)底数有时形式不同,但可以化成相同。

北师大版七年级数学下册-第四章变量之间的关系(同步+复习)精品课件

北师大版七年级数学下册-第四章变量之间的关系(同步+复习)精品课件

2. 3. 4.
5.
【例题】将一个长为20cm,宽为10cm的长方形
的四个角,分别剪去大小相等的正方形,若被
剪去正方形的边长为 x cm , 阴影部分的面积为
y(cm2)
2 y =200 4 x ,则 y 与 x 的关系式是 .
【练习1】
1.圆柱的底面直径是6cm,当圆柱的高 h (cm) 由大到小变化时,圆柱的体积V(cm3)随之发生变 化,则V与h之间的关系式是___________ V 9πh 2.圆锥的高为 4,底面半径为 r 那么圆锥的体积 V 可以表示为
2.
3.
在变化过程中,若有两个变量x 和y, 其中y随着x 的变化而发生 变化,我们就把x叫自变量,y 叫因变量。
自变量
主动变化的量
变 量
因变量
被动变化的量
1.自变量是在一定范围内主动变化的量。
2.因变量是随自变量变化而变化的量。
3.表格可以表示因变量随自变量变化而变化的情 况,还能帮助我们对变化趋势进行初步的预测。
y = 3x
系数为1
因变量 含自变量代数式
原料
工厂
自变量的取值要符合实际
●当底边长从12cm变化到3cm时,
2变化到____cm 36 9 2 三角形的面积从______cm
产品

1.
用关系式表示两个变量之间的关系
关系式:这里指通过自变量计算对应的因变 量的一个“公式”y=f(x).其中y表示因变量; f表示计算规则;x表示自变量。 关系式是表示变量之间的关系的另一种方法。 关系式的用途:变量互求;分类讨论-----列关系式:把变量和常量都当做已知量,找 等量关系,列方程,变为y=f(x)的形式。 优缺点:优点:全面准确反映两个变量之间 的关系;缺点:需要计算,不形象不直观。

(完整版)北师大版七年级数学下册变量之间的关系知识点汇总

(完整版)北师大版七年级数学下册变量之间的关系知识点汇总

(完整版)北师大版七年级数学下册变量之间的关系知识点汇总北师大版七年级数学下册《变量之间的关系》知识点汇总北师大版七年级数学下册《变量之间的关系》知识点汇总一、变量、自变量、因变量、常量变量:在某一变化过程中,不断变化的量叫做变量。

自变量、因变量:如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

自变量是最初变动的量,它在研究对象反应形式、特征、目的上是独立的;因变量是由于自变量变动而引起变动的量,它“依赖于”自变量的改变。

常量:一个变化过程中数值始终保持不变的量叫做常量.二、函数的三种表示方法:(一)列表法(用表格)采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。

列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

(二)解析法(关系式)关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

北师大版七年级数学下册第四章1.用表格表示变量之间的关系

北师大版七年级数学下册第四章1.用表格表示变量之间的关系
滑的时间”实验中:
支撑物的高度h和小车下滑的时间t 都在变化,它们都是变量。 其中小车下滑的时间t 随支撑物的高度h的变化 主动发生变 化的量 而变化, 支撑物的高度h是自变量, 小车下滑的时间t是因变量 。被动发生变 化的量
概念介绍:
在这一变化过程中,小车下滑的 距离(木板的长度)一直没有变化. 像这种在变化过程中数值始终不变 的量叫做常量. 始终不变 的量
随堂练习
p1 65
研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与 氮肥的施用量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是自变量? 哪个是因变量? (2)当氮肥的施用量是101千克/公顷时,土豆的产量是多 少?如果不施氮肥呢? (3)根据表格中的数据,你认为氮肥的施用量是多少时比 较适宜?说说你的理由。
x 人口/亿 y
5.42
1.30
6.72
1.35
8.07
1.68
9.75 11.07 12.59
1.32 1.52
(1)(2)X 如果用 和y x哪个是自变量 表示时间,y表示我国人口总数,那么 ?哪个是因变量? (3)从1949年起,时间每向后推移10年,我国 随着x的变化,y的变化趋势是什么? 人口是怎样的变化? X是自变量 y是因变量
练习:
• 例题1. 指出下列各题中,哪些量在发生改变?其中的自变 量与因变量各是什么?
(1) 用总长为60m的篱笆围成一个长为a, 面积为S的长方形场地.
(2) 正方形的边长为3,若边长增加x,则面 积增加y.
议一议:
我国从1949年到1999年的人口统计数据如下: (精确到0.01亿): 时间/年 1949 1959 1969 1979 1989 1999

北师大版七年级变量之间的关系

北师大版七年级变量之间的关系

北师大版七年级变量之间的关系————————————————————————————————作者:————————————————————————————————日期:变量之间的关系复习知识点总结:ﻩﻩﻩ自变量ﻩﻩ变量的概念ﻩﻩ因变量ﻩ变量之间的关系ﻩﻩﻩ表格法ﻩﻩ关系式法ﻩﻩ变量的表达方法ﻩ速度时间图象ﻩﻩﻩﻩﻩﻩ图象法ﻩﻩﻩﻩ路程时间图象三种变量之间关系的表达方法与特点:表达方法特点表格法多个变量可以同时出现在同一张表格中关系式法准确地反映了因变量与自变量的数值关系图象法直观、形象地给出了因变量随自变量的变化趋势3.1 用表格表示的变量间关系基础训练1.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是( )A.y,t和100都是变量ﻩB.100和y都是常量C.y和t是变量D.100和t都是常量2.下表是某报纸公布的世界人口数情况:年份1957 19741987 1999 2010人口数30亿40亿50亿60亿70亿上表中的变量是( )A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有3.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.份数/份 1 2 3 4…价钱/元…在这个问题中,___________是常量; __________是变量.4.王老师开车去加油站加油,发现加油表如图所示.加油时,单价其数值固定不变,表示“数量”、“金额”的量一直在变化,在数量2.45 (升)金额 16.66(元)单价6.80 (元/升)这三个量中, 是常量, 是自变量,是因变量.5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间ﻩD.热水器6.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量7.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃0 5 10 15 20声速y/(m/s) 3343上表中___________是自变量, __________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346 m/s.8.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x/kg 0 1 2 3 4 5y/cm 1010.511 11.5 12 12.5下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.在弹性限度内,物体质量每增加1 kg,弹簧长度y增加0.5 cmD.在弹性限度内,所挂物体质量为7 kg时,弹簧长度为13.5 cm9.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/kg 0.5 1 1.5 2 2.5 3 3.54烤制时间/min 4 140 160 180设烤鸭的质量为x kg,烤制时间为t min,估计当x=3.2时,t的值为( )A.140ﻩ B.138ﻩ C.148 D.16010.赵先生手中有一张记录他从出生到24岁期间的身高情况表(如下表所示):年龄x/岁 1 24身高h/cm48 1 .4对于赵先生从出生到24岁期间身高情况下列说法错误的是( )A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到21岁平均每年约增高5.8 cmD.赵先生的身高从0岁到24岁平均每年增高7.1 cm提升训练11.父亲告诉小明:“距离地面越高,气温越低.”并给小明出示了下面的表格:距离地面高度/km0 1 2 3 4 5气温/℃20 14 8 2 -4 -10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?12.在烧水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据:时间/min …温度/℃ 3 0 100 100 …(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?13.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:min)之间有如下关系(其中0≤x≤20):提出概念所2 5 7 1用时间x/min对概念的接47.8 53.5 56.3 59 59.8 59.959.8 58.3 55受能力y(注:接受能力值越大,说明学生的接受能力越强)(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10 min时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为多少时,学生的接受能力最强?(4)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?《用关系式表示的变量间关系》习题1.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n -4 B .y =4n C .y =4n +4 D .y=n 22.如图,△ABC 的底边边长BC =a ,当顶点A 沿BC 边上的高AD 向D点移动到E 点,使DE =12A E时,△A BC的面积将变为原来的( )A .12 B.13 C .14D .193.如图,△ABC 的面积是2c m2,直线l ∥BC,顶点A 在l 上,当顶点C 沿BC 所在直线向点B运动(不超过点B )时,要保持△ABC 的面积不变,则顶点A 应( )A.向直线l 的上方运动; B.向直线l 的下方运动; C.在直线l上运动; D .以上三种情形都可能发生. 4.当一个圆锥的底面半径为原来的2倍,高变为原来的13时,它的体积变为原来的( ) A.23 B.29 C.43 D.495.如图,△ABC 中,过顶点A 的直线与边B C相交于点D,当顶点A 沿直线AD 向点D 运动,且越过点D 后逐渐远离点D,在这一运动过程中,△A BC 的面积的变化情况是( )A.由大变小B.由小变大D CBAlCB AC.先由大变小,后又由小变大 D.先由小变大,后又由大变小6.如图,圆柱的高是3cm,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;ﻫ (2)当底面半径由1cm变化到10cm时,圆柱的体积增加了______cm3.7.一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:时间t(s)1234…距离s(m)281832…写出用t表示s的关系式:________.8.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x分钟后水壶的水温为y℃,当水开时就不再烧了.(1)y与x的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.9.设梯形的上底长为xcm,下底比上底多2cm,高与上底相等,面积为2cm2,则根据题意可列方程为_____.10.用一根长50cm的细绳围成一个矩形.设矩形的一边长为xcm,面积为ycm2.求y与x的函数关系式;11.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:运输工具途中速度(km/h) 途中费用(元/km) 装卸费用(元)装卸时间飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km (1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小?12.一个梯形,它的下底比上底长2cm,它的高为3cm,设它的上底长为xcm,它的面积为ycm2.(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x由5变7时,y如何变化?(3)用表格表示当x从3变到10时(每次增加1),y的相应值.(4)当x每增加1时,y如何变化?说明你的理由.13.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?14.一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所示:行驶时间t(h)01234…油箱中剩余5446.53931.524…油量Q(L)请你根据表格,解答下列问题:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?15.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为x cm,它的面积为ycm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少《用图象表示的变量间关系》习题1.洗衣机在洗涤衣服时,每洗涤一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与洗涤一遍的时间x(分)之间关系的图象大致为( )2.如图,图象记录了某地一月份某天的温度随时间变化的情况,请你仔细观察图象,根据图中提供的信息,判断不符合图象描述的说法是()A.20时的温度约为-1℃ B.温度是2℃的时刻是12时C.最暖和的时刻是14时 D.在-3℃以下的时间约为8小时3.如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的图象,根据图象信息,下列说法正确的是( )A.张大爷去时所用的时间少于回家所用的时间 B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢4.在体育测试女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s(米)与所用时间t(秒)之间的图象分别为线段OA和折线OBCD.下列说法正确的是( )A.小莹的速度随时间的增大而增大 B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50 秒时,小梅在小莹的前面5.一辆行驶中的汽车在某一分钟内速度的变化情况如下图,下列说法正确的是( ) A.在这一分钟内,汽车先提速,然后保持一定的速度行驶B.在这一分钟内,汽车先提速,然后又减速,最后又不断提速C.在这一分钟内,汽车经过了两次提速和两次减速D.在这一分钟内,前40s速度不断变化,后20s速度基本保持不变6.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如上图,下面的说法正确的是( )A.每相隔1s,苹果下落的路程是相同的; B.每秒钟下落的路程越来越大C.经过3s,苹果下落了一半的高度; D.最后2s,苹果下落了一半的高度7.一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2.(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).8.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯_______元.9.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,根据图象回答:这是一次____米赛跑;先到达终点的是____;乙的速度是________.10.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是______(只需填序号).11.美国自1982~1987年已经减少了25 875 000英亩农田,农场平均面积增加33英亩,但却有200000多家农场关闭了,下面的图(一)、(二)分别刻画了农场平均面积增加情况和农场个数减少情况.根据这两幅图提供的信息回答:(1)1985年农场数是多少个?农场平均面积是多少英亩?全美国有农场多少英亩?(2)在1982年,全美国共有农场多少英亩?到1987年呢?12.根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?13. 下面是一位病人的体温记录图,看图回答下列问题:(1)护士每隔几小时给病人量一次体温?(2)这位病人的最高体温是多少摄氏度?最低体温是多少摄氏度?(3)他在4月8日12时的体温是多少摄氏度?(4)图中的横线表示什么?(5)从图中看,这位病人的病情是恶化还是好转?14.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行.三人步行速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系用如图三个图象表示.根据图象回答下列问题:(1)三个图象中哪个对应小明、爸爸、爷爷?(2)家距离目的地多远?(3)小明与爷爷骑自行车的速度是多少?爸爸步行的速度是多少?15.如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?第三章变量之间的关系达标检测卷一、选择题(每题3分,共24分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( ) A.沙漠 B.体温ﻩC.时间D.骆驼2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而( )高度x/km 0 1 2 3 4 5 6 78气温y/℃28 2216 104-2 -8-14 -20A.升高B.降低ﻩC.不变ﻩD.以上答案都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x的关系式可以写为( )A.y=x2ﻩB.y=(12-x)2C.y=(12-x)·xﻩD.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是( )A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为( )A.y=8xﻩB.y=1.8xﻩC.y=8+1.8xD.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1B.2C.3ﻩD.4二、填空题(每题5分,共30分)x+32.如果某一温度的9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=95摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.14.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.三、解答题(15题10分,16题12分,17,18题每题14分,19题16分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.82.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2016年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9cm时,剩下部分的面积由变化到 .19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5 (1)当所挂物体的质量为3 kg时,弹簧的长度是___________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?。

初中数学北师大七年级下册第四章变量之间的关系变量的关系复习PPT

初中数学北师大七年级下册第四章变量之间的关系变量的关系复习PPT

(1) 请完成下表 :
汽车行驶时间 t(小时) 0 油箱的剩余油量 Q (升) 60
12 54 48
46 36 24
汽车行驶的时间 t(小时) 0
1
油箱的剩余油量 Q (升) 60 54
(2)若汽车行驶中油箱剩余油量为12升, 则汽车行驶了_____8____小时
(3)贮满60升汽油的汽车, 最多行驶______1_0___小时
比一比:
1、下列各情景分别可以用哪一幅图来近似的刻画
(1)汽车紧急刹车(速度与时间的关系)
( D)
(2)人的身高变化(身高与年龄的关系)
(B)
(3)跳高运动员跳跃横杆(高度与时间的关系) ( C )
(4)一面冉冉上升的红旗(高度与时间的关系) ( A )
(A)
(B)
(C)
(D)
感谢各位同学的 合作,谢谢!
S(千米)
215
170 130
7:00 8:30 9:30 10:00
17:00
t(时) 19:30
看图你能回答这些问题吗?
(1)小强到达南充是什么时候?他们用了多少时间?
S(千米)
上午10︰00左右,
用了3个小时
215
170
(2)去南充的途中 , 130 可能由于前方路堵,汽
车减速慢行,你知道汽
215÷2.5=86千米/时。
17:00
t(时) 19:30
下图是反映变量之间的关系图,请你想象一下适合 它的实际情景,并指出横轴和纵轴分别表示什么?
试一试:
小明的父母出去散步,从家走(匀速)了20分钟到了一 个离家900米的报亭,母亲因有事即按原速、原路返回。 父亲看了10分钟报纸后,用了15分钟返回家。下图中哪 一个是表示父亲离家的时间与距离之间的关系的图象? 哪一个表示母亲离家的时间与距离之间关系的图象?

北师大版七年级下册数学第四章变量之间的关系(学生、家长、教师必备)

北师大版七年级下册数学第四章变量之间的关系(学生、家长、教师必备)

第四章变量之间的关系■通关口诀:变化过程是前提;变与不变两量分。

自变因变要弄清;两个变量关系明。

两量关系表式图;三法优劣要弄通。

变量互求需关系;一设一表要初懂。

列出关系方程法;此为函数基础篇。

■正奇数学学堂【知识点一】变量与常量。

1.变量:在某一变化过程中,可以取不同数值的量叫做变量。

如果两个变量,当其中一个变量在一定范围内取一个数值时,另一个变量有唯一确定的数值与其对应,那么通常前一个变量叫做自变量,后一个变量叫做自变量的因变量。

2.常量:某一变化过程中,数值始终保持不变的量叫做常量。

一个变化过程中有一个或几个常量。

3.表现形式:变量只能是字母或含有字母的代数式;常量可以是数,也可以是字母。

4.两种变量的辨识:关键看谁主动,谁被动。

一个变化过程中:一定要有变量,且不可能只有一个变量。

〖母题示例〗在某一变化过程中不断变化的量,叫做;如果一个变量y随另一个变量x 的变化而变化,则把x叫做,y叫做。

即先发生变化的量叫做,后发生变化或者随自变量的变化而变化的量叫做。

2.常量:。

【知识点二】表格法表示两个变量之间的关系。

1.表格法:借助常用的表格,可以表示因变量随自变量变化而变化的情况(含规律)。

表格中,一般第一栏表示自变量;第二栏表示因变量。

2.学会看表:查对应值;看变化趋势;看增减情况;找变化规律;预测“未来”。

3.优缺点:优点:一目了然、方便快捷;缺点:不全面,变化规律也不易看出。

〖母题示例〗1.某年某地前半年大米的平均价格如下表表示:(1)表中列出的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地哪一段时间大米平均价格在上涨?哪一段时间大米平均价格在下落?(4)从表中可以得到该地大米平均价格变化方面的哪些信息?平均比年初降低了,还是涨价?2.小强通过卖报存够了钱,买了一辆新的自行车,小强马上告诉了两个朋友,10min后,他们又各自告诉了另外两个朋友,再过10min,这些朋友又各自告诉了两个朋友,如果消息按这样的速度传下去,80min•后将有多少人知道小强买了一辆新自行车的消息?3.某电影院地面的一部分是扇形,座位按下列方式设置:月份 1 2 3 4 5 6平均价格(元/kg)2.3 2.4 2.4 2.5 2.4 2.272686460座位数4321排数(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由。

2020最新北师大版七年级数学下第四章《变量之间的关系》单元知识总结(精)

2020最新北师大版七年级数学下第四章《变量之间的关系》单元知识总结(精)

变量之间的关系单元知识总结及典型例题1.在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体的质量x的一组对应值:所挂重量x(kg)012345弹簧长度y(cm)202224262830(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为4kg时,弹簧多长?不挂重物呢?⑶假设所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗分析抓住表格中的对应数据,找出变量之间的规律.解(1)弹簧长度y,物体重量x是变量,物体重量是自变量,弹簧长度是因变量; (2)当所挂重物为4kg时,弹簧长度为28cm,不挂重物时弓t簧长度为20cm;⑶当所挂重物为6kg时,弹簧长度为32cm.2.如图6—1所示,梯形上底的长是x,下底的长是15,高是8.图6.1(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到20时(每次增加1), y的相应值;⑶当x每增加1时,y如何变化?说说你的理由;(4)当x=0时,y等于什么?此时它表示的是什么?分析(1)根据梯形面积公式可推出y与x的关系式;(2)通过计算列表说明;(3)由表格中的数据可以观察出;(4)当上底为零时(即成为一个点),成为三角形.〜 1解(1) y — x 15 8,2即y=4x+60 ;(2)x IO11121314151617181920y100104108112116120124128132136140(3)当x每增加1时,y的值随之增加4;(4)当x=0时,y=60,此时梯形成为了三角形.3.地壳的厚度约为8到40km.在地表以下不太深的地方,温度可按y=35x+t计算,其中x是深度(km) , t是地球外表温度(C) , y是所达深度的温度(C ).(1)在这个变化过程中,自变量、因变量各是什么?(2)分别计算当x为lkm, 5km, 10km,20km时地壳的温度(地表温度为2C).解(1)自变量是深度,因变量是温度;(2)当x=1km时,y=35x+t=35x X 1+2=37( C);当x=5km 时,y=35x+t=35 X 5+2=177( C );当 x=10km 时,y=35x+t=35 X 10+2=352( C); 当 x=20km 时,y=35x+t=35 X 20+2=702( C).说明 初步体会自变量和因变量的数值对应关系,能由自变量的值求得因变量的值. 题型发散发散1选择题 把正确答案的代号填入题中的括号内.(1)下面的图表列出了一项试验的统计数据,表示将皮球从高处 d 落下时,弹跳高度 b 与下落高度d 的关系.试问,下面的哪个式子能表示这种关系 (单位:cm)()d50 80 100 150 b254050752____d _ _(A) b d (B)b=2d (C) b —(D)b=d+252(2)某地一天的气温随时间的变化如图 6— 2,根据图象可知:在这一天中最高气温与到达最高气温的时刻分别是 ()因上述数字完全与表格中的数字符合. 故此题应选(C). (2)用直接法.由图6 —2知一天到达最高气温 12c 的时间是14时. 故此题应选(C). 发散2填空题如图6—3, △ ABC 是等腰三角形,周长是 60cm,腰为xcm,底为ycm.(A)14C; 12h (B)4 解(1)用验证法. d 当 d=50 时,b — 2 d当 d=80 时,b d2d 当 d=100 时,b —2 一 d 当 d=150 时,b d 2C; 50 280 21002150 22h25406 2(C)12 C; 14h (D)2 C; 4h50 ;75.2 4 6 R 12 崎 16 Ifl 30 22 24 Hh)141210 g6A(1)写出用含x的关系式来表示y;(2)当腰由20cm变化到25cm时,底边长由cm变化到cm;(3)腰为20cm时,是什么形状的三角形?假设腰为30cm时,行吗?分析三角形的周长是三条边长的和.解:(1)y=60-2x ;(2)底边由20cm变化到10cm;(3)当腰为20cm时,是等边三角形,假设腰为30cm,那么无法形成三角形.纵横发散发散1南京市在某一天的地表气温是38C,据测量每升高1km,气温下降6C,那么在hkm的高空,温度t是多少?并计算当h的值是6km. 10km 12km时的气温.讨论一下民用飞机在一万米高空飞行时,机舱为什么要与机外空气隔绝?分析用含h的代数式来表示气温.解:t=38-6h .当h=6 时,t=2 C;当h=10 时,t=-22 C;当h=12 时,t=-34 C.原因有很多,其中一点是机舱外温度非常低.发散2婴儿在6个月、一周岁、2周岁时体重分别大约是出生时的2倍、3倍、4倍,6周岁、10周岁时体重分别约是1周岁时的2倍、3倍.(1)上述哪些量在发生变化?自变量和因变量各是什么?(2)某婴儿在出生时的体重是 3.5kg,请把他在发育过程中的体重情况填入: 年龄刚出生6个月1周岁2周岁6周岁10周岁体重(kg)⑶根据表格中的数据,说一说儿童从出生到10周岁之间体重是怎样随年龄增长而变化的解:(1)年龄和体重都在变化;年龄是自变量,体重是因变量;(2)年龄刚出生6个月1周岁2周岁6周岁10周岁体重(kg) 3.57.010.014.521.531.5转化发散发散1图6 — 4是某地一天的气温随时间变化的图象.根据图象答复,在这一天中:(1)什么时间气温最高?什么时间气温最低?最高气温和最低气温各是多少?(2)20时的气温是多少?(3)什么时间的气温为 6C? (4)哪段时间内气温不断下降 ? (5)哪段时间内气温持续不变?图63解:(1)凌晨4时,气温最低,气温是 -4C; 16时气温最高,气温是 10C; (2)20时的气温是8C;(3)10时和22时的气温都是6C ;(4)0时到4时和16时到24时这两段时间内气温不断下降; (5)12时到14时这两个小时内气温保持 8c 的温度不变.解法指导(1)气温最低、最高反映在图象上就是找最低点和最高点;(2)20时的气温是多少,实质上是求当t=20时,T=?(3)什么时间的气温为 6C,实质上是求当 T=6C 时,t=?直线T=6与图象交于两点,因此 t=10或t=22 ;(4)图中共有两段时间气温不断下降,不可遗漏;(5)气温保持不变,指的是 T 值保持不变,图中只有 t 在12h 到14h 这两个小时满足条件. 发散2为了增强公民的节水和用水意识,合理利用水资源,各地采用价风格控等手段到达节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过 6m 3时,水费按每立方米 a 元收费; 超过6m 3时,不超过的局部每立方米仍按 a 元收费,超过的局部每立方米按 c 元收费.该市某户今年 3、4月份的用水量和水费如下表所示:月份 用水量(m3)水费(元) 35 7.5 4927设某户该月用水量为x m 3 ,应交水费为y (元). (1)求a 、c 的值,并写出用水不超过 6m 3和超过6m 3时,y 与x 之间的关系式;(2)假设该户5月份的用水量为8m 3,求该户5月份的水费是多少元 ?解:(1)依题意,有: 当 x w 6 时,y=ax; 当 x>6 时,y=6a+c(x-6). 1.5 6y=1.5x(x < 6),y=9+6(x-6)=6x-27(x>6) (2)将 x=8 代人 y=6x-27(x>6), y=6X 8-27=21(元). 答:t ^户5月份的水费是21元.发散3如图6—5所示的曲线表示某人骑一辆自行车时离家的距离与时间的关系.骑车者九点离 开家,十五点回家.根据这个曲线图,答复以下问题:由,得7.5 5a 27 6a 3c 解得■距寓(km)期6-5(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00至IJ 10:00和10:00至IJ 10:30的平均速度是多少?(6)他在何时至何时停止前进并休息用午餐?(7)他在停止前进后返回,骑了多少千米?返回时的平均速度是多少?解(1)到达离家最远的地方的时间是12时,离家30km;(2)10.5 时开始第一次休息,休息了0.5h ;⑶第一次休息时离家17.5km;(4)11:00 到12:00 ,他骑了12.5km;(5)9:00 到10:00的平均速度是lOkm/h, 10:00到10:30的平均速度是15km/h;(6)从12:00到13:00间停止前进,并休息用午餐较为符合实际情况;(7)他在停止前进后返回,骑了30km,共用了2h,故返回时的平均速度是15km/h.知识整合网络【学习方法指导】量与量之间存在着相互影响的关系,本章通过丰富的现实情境引入变量对变量之间关系的讨论, 使学生体验探索和表示变量之间关系的过程,获得对表格、关系式、图象等多种方法的熟悉,能读懂表格、关系式、图象所表示的信息,能用自己的语的描述表格、关系式和图象所表示的关系,并能预测.关系式是表示变量之间关系的另一种方法.利用关系式,可以依据任何一个自变量的值求出相应的因变量的值.也可以依据因变量的值求出相应的自变量的值^由学习常量问题转入学习变量问题,这是数学思维的一种跃升,引导我们前进的是一种崭新的思 维方式. 【中考信息传递】近年来全国各省、市中考题中涉及本章内容的题型多为选择题、填空题,也有局部的应用题及因 变量关于自变量的关系式的中档题,应该充分重视.【中考名题赏析】 题型发散 发散1填空题(1)观察以下图形(图6—24),假设第①个图形中阴影局部的面积为 1,第②个图形中阴影局部的面• 3 一 . ..... ............. . - 9— . .......... ... • 27 一 … .一. 积为3,第③个图形中阴影局部的面积为第④个图形中阴影局部的面积为 27 ,…那么第n 个图形416 64中阴影局部的面积为 (用字母n 表示)(2002年潍坊市中测试题第2块图形的面积为第3块图形的面积为第4块图形的面积为 第n 块图形的面积为 (2)如图6—25,观察以下三角形图案,每行圆点的个数有什么规律 代数式表示这两个三角形图案中圆点的总数,为(2002年广西壮族自治区中测试题图 6-25解第1行圆点个数为1+n, 第2行圆点个数为2+(n-1)=1+n ,C 3 1394 164 1327 4 64n 134?设每个三角形有n 行,用n 的 解由于第1块图形的面积为1,2 1第3行圆点个数为3+(n-2)=1+n ,第n行圆点的个数为n+1.以上共有n行,故这两个三角形图案中圆点的总数为n(n+1)个.发散2解做题如图6—26表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象为正比例函数和一次函数).两地间的距离是80km.请你根据图象答复或解决下面的问题:SI 6-26(1)谁出发的较早?早多长时间徘到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按以下条件列出关于时间x的方程或不等式(不要化简,也不要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.解(1)由图可以看出:自行车出发较早,早3h;摩托车到达乙地较早,早3h.(2)对自行车而言:彳T驶的距离是80km,耗时8h,所以其速度是:80+8=10(km/h);对摩托车而言:行驶的距离是80km,耗时2h,所以其速度是:80+2=40(km/h).(3)设表示自行车行驶过程的函数解析式为:. x=8 时,y=80,.•-80=8k,解得k=10,・♦・表示自行车行驶过程的函数解析式为设表示摩托车行驶过程的函数解析式为. x=3 时,y=0,而且x=5 时,y=80;0 3ab a 40.•,解得80 5ab b 120••表示摩托车行驶过程的函数解析式为(4)在3Vx<5时间段内两车均行驶在途中①自行车在摩托车前面:10x>40x-120,②两车相遇:10x=40x-120,③自行车在摩托车后面:10x<40x-120. y=40x-120 .(分别h)(不要求写出自变量的取值范围);y=kx,y=10x;y=ax+b,。

新北师大版数学七年级下册第四章《变量之间的关系》复习课件

新北师大版数学七年级下册第四章《变量之间的关系》复习课件

(3)请你列出果子落下的高度h(米)与
初时中数间学课件t(秒)之间的式 .
.
3.某种油箱容量为60升的汽车,加满汽油后, 汽车行驶时油箱的油量Q(升)随汽车行驶时间 t(时)变化的关系式如下:Q=60-6t (1) 请完成下表
汽车行驶时间 0
1
2.5
4
t/小时
油箱的油量Q/ 60
(升2)汽车行驶5小时后,油箱中油量是 升?
初中数学课件
例题4:一辆汽车以每小时50千米的速度 行驶了t小时,行驶的路程为s千米. (1)这个情境中,有哪些变量?其中自变
量是什么?因变量是什么? (2)你能用哪种方式表示路程与时间之
间的关系?具体做一做 。
(3)该汽车行驶2.5小时的路程是多少千 米?
(4)一段公路全长350千米,这辆汽车 行驶完全程需要多少小时?
初中数学课件
例5.分析下面反映变量之间关系的 图像,想象一个适合它的实际情境.
((14))可可以以把把x和x和y分y分别别代代表表时时间间和和距高离度,,那那 ((么2么3))这可这可个以个以图把图把可x就x和和以可yy描分以分述别描别为代述代:表为表小时:时华间一间骑和架和车速飞蓄从度机水学,从量校那一, 回定么那家的这么,飞个这一行图个段高可图时度以可间慢描以后慢述描,下为述停降:为下一一:来个辆一修高汽个车度车水,,,池然然减先后后速放 又在行水开这驶,始一一一往高段段家度时时走飞间间,行后后直了,,到一匀停回段速止家时行,;间驶随后了后,一,快段又到时接机间着, 初中数场学然放课件时后水,逐直开渐到始减放降速完落,. ,到最了后目降的落地在停机下场来..
初中数学课件
2.果子成熟从树上落到地面,它落下 的高度与经过的时间有如下的关系:

完整版北师大版七年级数学下册变量之间的关系知识点汇总

完整版北师大版七年级数学下册变量之间的关系知识点汇总

完整版北师大版七年级数学下册变量之间的关系知识点汇总在数学学习中,变量是一个非常重要的概念。

变量之间的关系更是数学中的基础知识之一。

本文将对北师大版七年级数学下册关于变量之间的关系的知识点进行汇总和总结。

一、平方和平方根的关系在数学中,平方和平方根是常见的两个概念。

平方是指一个数与自己相乘的运算,可以用 x²表示。

而平方根则是指一个数的平方的逆运算,用√x 表示。

对于两个正数 a 和 b,它们满足以下关系:a² + b² = (a + b)² - 2ab√(a + b) = √a + √b二、正比例和反比例的关系正比例和反比例是描述两个变量之间关系的常用术语。

正比例是指当一个变量增大时,另一个变量也相应增大的关系。

而反比例则是指当一个变量增大时,另一个变量相应减小的关系。

在数学中,可用如下公式表示:正比例关系:y = kx (k为常数,y和x为变量)反比例关系:y = k/x (k为常数,y和x为变量)三、函数的关系函数是描述两个变量之间关系的数学工具,它描述了每个自变量(输入)对应唯一的因变量(输出)的关系。

函数可以用一个公式表示,形如 y = f(x)。

其中 x 是自变量,y 是因变量,f(x) 是函数关系。

函数也可以用函数图像表示,这样更直观地反映了变量之间的关系。

四、等式的关系等式是指两个表达式通过等号连接的关系。

等式表示两个值相等,可用 x = y 表示。

在等式中,可以进行加减乘除等运算,从而实现变量之间的关系。

五、不等式的关系不等式是指两个表达式通过不等号连接的关系。

不等式描述了大小关系,可用 x < y、x > y、x ≤ y、x ≥ y 等形式表示。

不等式表示一组值的范围,更适用于解决实际问题中变量之间的关系。

六、递推关系递推关系是指通过已知的一些值,推导出其他值的关系。

递推关系中通常会涉及到一个初始值和一个递推公式。

通过递推公式,可以计算出后续的值,从而揭示变量之间的关系。

北师大数学七年级下册第四章-变量之间的关系

北师大数学七年级下册第四章-变量之间的关系

第01讲_变量之间的关系知识图谱变量之间的关系(北师版)知识精讲变量在一个变化过程中,我们称数值发生变化的量为变量常量在一个变化过程中,有些量的数值是始终不变的,我们称它们为常量关系一般地,在一个变化过程中,如果有两个变量x与y,并且y随着x的变化而变化,x是自变量,y是因变量二.变量关系的三种表示方法表格法;关系式法;图像法.步骤列表表中给出一些自变量的值及其对应的因变量的值描点在直角坐标系中,以自变量的值为横坐标,因变量为纵坐标,描出表格中数值对应的各点连线按照横坐标由小道大的顺序把所描出的各点用平滑曲线连接起来注意事项1.表示两个变量的对应关系的点有无数个.但是实际上我们只能描出其中有限个点,同时想象出其他点的位置2.用实心点表示在曲线的点,用空心圈表示不在曲线的点四.易错点1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.3.不能认为式子中出现的字母都是变量,如π不是变量而是常量.三点剖析一.考点:1.用表格表示的变量间关系; 2.用关系式表示的变量间关系; 3.用图象表示的变量间关系.二.重难点:用图象表示的变量之间的关系三.易错点:1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.用表格表示的变量间关系例题1、 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: 下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 根据给出的表格中数据分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.例题2、 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当易拉罐底面半径为2.4cm 时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4)粗略说一说易拉罐底面半径对所需铝质量的影响.【答案】 (1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量; (2)当底面半径为2.4cm 时,易拉罐的用铝量为356.cm .(3)易拉罐底面半径为2.8cm 时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm 变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.【解析】 本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情况是关键. 例题3、 某校组织学生到距学校6km 的光明科技馆参观,准备乘出租车去科技馆,出租车的收费标准如表:则收费y (元)与出租车行驶里程数x (km )(x ≥3)之间的关系式为( )x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5底面 半径 1.6 2.0 2.4 2.8 3.2 3.6 4.0 用铝量 6.96.05.65.55.76.06.5里程数收费/元 3km 以下(含3km ) 8.00 3km 以上每增加1km1.80A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x【答案】 D【解析】 由题意得,所付车费为:y=1.8(x ﹣3)+8=1.8x+2.6(x ≥3). 故选:D .随练1、 心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:(其中030x ≤≤)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟后,学生的接受能力最强;(4)从表中可知,当时间x 在什么范围内,学生的接受能力逐步增强?当时间x 在什么范围内,学生的接受能力逐步降低?【答案】 见解析【解析】 (1)提出概念所用的时间x 和对概念接受能力y 两个变量; (2)当10x =时,59y =,所以时间是10分钟时,学生的接受能力是59;(3)当13x =时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强; (4)由表中数据可知:当213x <<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <<时,y 值逐渐减下,学生的接受能力逐步降低.用关系式表示的变量间关系例题1、 写出下列各问题中的关系式,指出其中的常量、自变量、因变量及自变量取值范围. (1)直角三角形中一锐角的度数y 与另一锐角的度数x 之间的函数关系.(2)如果水的流速量是a m/min (一个定量),那么每分钟的进水量3Q()m 与所选择的水管直径D (m )之间的函数关系. 【答案】 (1)90y x =-,90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)24aD Q π=,常量为4aπ,自变量为D ,Q 为因变量,自变量0D >【解析】 (1)直角三角形两锐角互余,所以90y x =-,其中90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)由水管直径为D 可知,水管的截面积为24D π,所以24aD Q π=,其中常量为4aπ,自变量为D ,Q 为因变量,自变量0D >;例题2、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为_________. 【答案】 y=8﹣12x (0<x <8) 【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm . ∴x+2y=16, ∴y=8﹣12x (0<x <8). 例题3、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为 .【答案】 y=8﹣12x (0<x <8).【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm .提出概念所用时间(x ) 257101213141720对概念的接受能力(y )47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55∴x+2y=16,∴y=8﹣12x(0<x<8).故答案为:y=8﹣12x(0<x<8).随练1、等腰三角形的周长为30,则腰长y关于底边长x的函数关系式为__________,其中自变量x的取值范围是__________.【答案】1152y x=-+;015x<<【解析】230y x+=,整理得,1152y x=-+,根据三角形三边关系定理,02x y<<,∴102152x x⎛⎫<<-+⎪⎝⎭,∴015x<<.随练2、以直角三角形中的一个锐角的度数为自变量x,另一个锐角的度数y为因变量,则它们的关系式是.【答案】y=90°﹣x.【解析】根据题意得y=90°﹣x.故答案为y=90°﹣x.用图象表示的变量间关系例题1、小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油,设油箱中所剩汽油量为V升,时间为t(分钟),则V与t的大致图象是()A.AB.BC.CD.D【答案】D【解析】A、从图象可知最后纵坐标为0,即油箱是空的,与题意不符,故本选项错误;B、图象没有显示油箱内的汽油恰剩一半时又加满了油的过程,与题意不符,故本选项错误;C、图象显示油箱的油用完以后又加满,与题意不符,故本选项错误;D、当t为0时,大巴油箱是满的,然后匀速减少至一半,又加满,到目的地是油箱中还剩有13箱汽油,故本选项正确.故选D.例题2、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相同D.在4到8秒内甲的速度都大于乙的速度【答案】C【解析】A、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加32 8=4米秒/,故B正确;C 、由于甲的图象是过原点的直线,斜率为4,所以可得v=4t (v 、t 分别表示速度、时间),将v=12m/s 代入v=4t 得t=3s ,则t=3s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D 、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确.随练1、 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过_____分钟,容器中的水恰好放完.【答案】 8【解析】 由04-分钟的函数图象可知进水管的速度,根据412-分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.进水管的速度为:2045÷=(升/分),出水管的速度为:()()53020124 3.75--÷-=(升/分),∴关停进水管后,出水经过的时间为:30 3.758÷=分钟.随练2、 上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A. B. C. D.【答案】 B【解析】 根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B 符合题意随练3、 在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_______个.【答案】 1【解析】 在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误由图可得,两人在1小时时相遇,行程均为10km ,故②正确;甲的图象的解析式为y=10x ,乙AB 段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.拓展1、 如图所示,某计算装置有一个数据输入口A 和一个运算结果输入口B ,下表给出的是小红输入的数字及所得的运算结果(1)若小红输入的数为x ,输出的结果为y ,你能用x 表示y 么?请写出来.(不需要写出x 的取值范围)(2)若输出结果为8,求小红输入的数字 【答案】 (1)1y x =-(2)81【解析】 (1)由表中数据可观察到,每个B 中数据都是在A 中数据开方后减一所得,101-=-,011=-,141=-,∴可得到函数1y x =-.(2)当8y =时,()211y x x y =-⇒=+,∴2981x ==.2、 弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 弹簧不挂重物时的长度为10cm3、 在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )A.22v m =-B.21v m =-C.33v m =-D.1v m =+【答案】 B【解析】 分别代入当4m =时,算出v 即可.4、 购买单价为每支1.2元的铅笔,总金额y (元)与铅笔数n (支)的关系式可表示为y =__________,其中,__________是常量,__________是变量. 【答案】 1.2n ,单价,铅笔数【解析】 总金额等于每支铅笔的价格乘以铅笔的支数,故 1.2y n =,铅笔的单价是常量,铅笔数是变量. 5、 乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__________元;若一次乘坐这种出租车付费20元,则乘车路程是__________千米. 【答案】 12,8【解析】 本题考查函数的应用。

新北师大版数学七年级下,变量之间的关系

新北师大版数学七年级下,变量之间的关系

新北师大版七年级数学下第四单元变量之间的关系用表格表示的变量间关系常量:在一个变化过程中数值可以保持不变的量叫做常量变量:在一个变化过程中数值可以取不同数值的量叫做变量.自变量:如果一个量随着另外一个量的变化而变化,那么把这个量叫做自变量,因变量:另一个量叫做因变量自变量和因变量的区别与联系联系:两个都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以相互转化,比如路程一定,时间随速度的变化而变化,这时速度为自变量,时间为因变量;而当速度一定时,路程随时间的变化而变化,知识时间是自变量,路程是因变量。

区别:因变量随自变量的变化而变化练习题:判断下列哪些是自变量,哪些是因变量(根据变化中的主动性和被动性来区分)1、圆柱的高h为10cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中()是自变量,()是因变量2、小明给北京的爷爷打电话时,电话费随时间的变化而变化,这个过程中()是自变量,()是因变量3、一杯开水10分钟后冷却下来,在这个变化过程中,自变量是_________,因变量是________。

表格法表示变量的常见应用题型1、果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果果子经过2秒落到地上,那么请估计这果子开始落下时离地面的高度是多少米?2、在课堂45分钟内,什么时候学生的接受能力最强?心理学家发现,学生对概念的接受能力与老师提出概念所在的时间(单位:分钟)之间,有如下关系:时间(分钟) 0 2 10 12 13 14 16 24 26接受能力43 47.8 59 59.8 59.9 59.8 59 47.8 43(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2) 根据表中的数据,你认为老师在第_________分钟提出概念比较适宜?说说你的理由。

完整版北师大版七年级数学下册变量之间关系专题总结复习

完整版北师大版七年级数学下册变量之间关系专题总结复习

变量之间的关系一、基础知识回顾:1、表示两个变量之间关系的方法有()、()、().2.图象法表示两个变量之间关系的特点是()3.用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)上的点表示(),用竖直方向的数轴(纵轴)上的点表示().专题一、速度随时间的变化1、汽车速度与行驶时间之间的关系可以用图象来表示,下图中 A 、B、C、D 四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢。

()(2)在某段时间里,汽车速度始终保持不变。

()(3)在某段时间里,汽车速度越来越快。

()(4)在某段时间里,汽车速度越来越慢。

()速度速度速度速度oo时间时间Ao时间BC Do2、描述一名跳水运动员从起跳到落水这一运动过程中,速度 v 与时间 t 之间关系的图象大致是()V VVVOOtO ttO3、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用 s 表示李明离家的距离, t 为时间.在下面给出的表示 s 与 t 的关系图 6—41 中,符合上述情况的是 ( )14、一辆轿车在公路上行驶,不时遇到各种情况,速度随之改变,先加速,再匀速又遇到情况而减速,过后再加速然后匀速,下公路、上小路,到达目的地.图6— 43 哪幅图象可近似描述上面情况 ( )5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。

当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点⋯⋯ .用 S1、S2 分别表示乌龟和兔子所行的路程, t为时间,则下列图象中与故事情节相吻合的是()s S1s S1 s S1s S1S2S2 S2 S2 tA B t tC D t6、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离 s(米)与散步所用的时间t (分)之间的关系,依据图象下面描述符合小红散步情景的是()A. 从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了 .B. 从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了 .C. 从家里出发,一直散步(没有停留),然后回家了 D.从家里出发,散了一会儿步,就找同学去了, 18 分钟后才开始返回 .7、A、B 两地相距 500 千米,一辆汽车以 50 千米 /时的速度由 A 地驶向 B 地. 汽车距 B 地的距离 y( 千米 ) 与行驶时间t( 之间) 的关系式为. 在这个变化过程中,自变量是,因变量是 .8、下表是春汛期间某条河流在一天中涨水情况记录表格:时间/时0 4 8 12 16 20 24超警戒水位 /米⑴时间从 0时变化到 24时,超警戒水位从上升到 ;⑵借助表格可知,时间从到水位上升最快2某机动车辆出发前油箱中有油 42 升,行驶若干小时后,在途中加油站加油若干 .油箱中余油量 Q(升)与行驶时间 t(时) 之间的关系如图,请根据图像填空:⑴机动车辆行驶了小时后加油 .⑻中途·42·36·30·24Q/升·18·12·6 ·········1 2 3 4 5 6 7 8 9··10 11t/时加油升.⑵加油后油箱中的油最多可行驶小时 .⑶如果加油站距目的地还有 230 公里,机动车每小时走 40 公里,油箱中的油能否使机动车到达目的地?答:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量之间的关系单元知识总结及典型例题1.在一次实验中,小强把—根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体的质量x 的一组对应值: 所挂重量x(kg) 0 1 2 3 4 5 弹簧长度y(cm)202224262830(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当所挂重物为4kg 时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内),你能说出此时弹簧的长度吗? 分析 抓住表格中的对应数据,找出变量之间的规律.解 (1)弹簧长度y,物体重量x 是变量,物体重量是自变量,弹簧长度是因变量; (2)当所挂重物为4kg 时,弹簧长度为28cm ,不挂重物时弹簧长度为20cm ; (3)当所挂重物为6kg 时,弹簧长度为32cm .2.如图6—1所示,梯形上底的长是x ,下底的长是15,高是8.(1)梯形面积y 与上底长x 之间的关系式是什么?(2)用表格表示当x 从10变到20时(每次增加1),y 的相应值; (3)当x 每增加1时,y 如何变化?说说你的理由; (4)当x=0时,y 等于什么?此时它表示的是什么?分析 (1)根据梯形面积公式可推出y 与x 的关系式; (2)通过计算列表说明;(3)由表格中的数据可以观察出;(4)当上底为零时(即成为一个点),成为三角形. 解 (1)()81521⨯+=x y , 即y=4x+60; (2) x 10 11 12 13 14 15 16 17 18 19 20 y100104108112116120124128132136140(3)当x 每增加1时,y 的值随之增加4;(4)当x=0时,y=60,此时梯形成为了三角形.3.地壳的厚度约为8到40km .在地表以下不太深的地方,温度可按y=35x+t 计算,其中x 是深度(km),t 是地球表面温度(℃),y 是所达深度的温度(℃). (1)在这个变化过程中,自变量、因变量各是什么?(2)分别计算当x 为lkm ,5km ,10km,20km 时地壳的温度(地表温度为2℃). 解 (1)自变量是深度,因变量是温度;(2)当x=1km 时,y=35x+t=35x ×1+2=37(℃); 当x=5km 时,y=35x+t=35×5+2=177(℃);当x=10km 时,y=35x+t=35×10+2=352(℃); 当x=20km 时,y=35x+t=35×20+2=702(℃).说明 初步体会自变量和因变量的数值对应关系,能由自变量的值求得因变量的值. 题型发散发散1 选择题 把正确答案的代号填入题中的括号内.(1)下面的图表列出了—项试验的统计数据,表示将皮球从高处d 落下时,弹跳高度b 与下落高度d 的关系.试问,下面的哪个式子能表示这种关系(单位:cm) ( )d 50 80 100 150 b25405075(A)2d b = (B)b=2d (C)2db =(D)b=d+25 (2)某地一天的气温随时间的变化如图6—2,根据图象可知:在这一天中最高气温与达到最高气温的时刻分别是 ( )(A)14℃;12h (B)4℃;2h (C)12℃;14h (D)2℃;4h 解 (1)用验证法.当d=50时,252502===d b ; 当d=80时,402802===d b ;当d=100时,5021002===d b ;当d=150时,7521502===d b .因上述数字完全与表格中的数字符合.故本题应选(C).(2)用直接法.由图6—2知一天达到最高气温12℃的时间是14时. 故本题应选(C). 发散2 填空题如图6—3,△ABC 是等腰三角形,周长是60cm ,腰为xcm ,底为ycm .(1)写出用含x的关系式来表示y;(2)当腰由20cm变化到25cm时,底边长由_______cm变化到________cm;(3)腰为20cm时,是什么形状的三角形?若腰为30cm时,行吗?分析三角形的周长是三条边长的和.解: (1)y=60-2x;(2)底边由20cm变化到10cm;(3)当腰为20cm时,是等边三角形,若腰为30cm,则无法形成三角形.纵横发散发散1南京市在某一天的地表气温是38℃,据测量每升高1km,气温下降6℃,那么在hkm的高空,温度t是多少?并计算当h的值是6km、10km、12km时的气温.讨论一下民用飞机在一万米高空飞行时,机舱为什么要与机外空气隔绝?分析用含h的代数式来表示气温.解: t=38-6h.当h=6时,t=2℃;当h=10时,t=-22℃;当h=12时,t=-34℃.原因有很多,其中一点是机舱外温度非常低.发散2婴儿在6个月、一周岁、2周岁时体重分别大约是出生时的2倍、3倍、4倍,6周岁、10周岁时体重分别约是1周岁时的2倍、3倍.(1)上述哪些量在发生变化?自变量和因变量各是什么?(2)某婴儿在出生时的体重是3.5kg,请把他在发育过程中的体重情况填入下表:年龄刚出生6个月1周岁2周岁6周岁10周岁体重(kg)(3)根据表格中的数据,说一说儿童从出生到10周岁之间体重是怎样随年龄增长而变化的?解: (1)年龄和体重都在变化;年龄是自变量,体重是因变量;(2)年龄刚出生6个月1周岁2周岁6周岁10周岁体重(kg) 3.5 7.0 10.0 14.5 21.5 31.5(3)儿童从出生到10周岁之间,随着年龄的增长体重在增加.转化发散发散1 图6—4是某地一天的气温随时间变化的图象.根据图象回答,在这一天中:(1)什么时间气温最高?什么时间气温最低?最高气温和最低气温各是多少?(2)20时的气温是多少?(3)什么时间的气温为6℃? (4)哪段时间内气温不断下降? (5)哪段时间内气温持续不变?解: (1)凌晨4时,气温最低,气温是-4℃;16时气温最高,气温是10℃; (2)20时的气温是8℃;(3)10时和22时的气温都是6℃;(4)0时到4时和16时到24时这两段时间内气温不断下降; (5)12时到14时这两个小时内气温保持8℃的温度不变.解法指导 (1)气温最低、最高反映在图象上就是找最低点和最高点; (2)20时的气温是多少,实质上是求当t=20时,T=?(3)什么时间的气温为6℃,实质上是求当T=6℃时,t=?直线T=6与图象交于两点,因此t=10或t=22;(4)图中共有两段时间气温不断下降,不可遗漏; (5)气温保持不变,指的是T 值保持不变,图中只有t 在12h 到14h 这两个小时满足条件.发散2 为了加强公民的节水和用水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过36m 时,水费按每立方米a 元收费;超过36m 时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按c 元收费.该市某户今年3、4月份的用水量和水费如下表所示:月份 用水量(3m )水费(元)3 5 7.5 4927设某户该月用水量为x 3m ,应交水费为y(元).(1)求a 、c 的值,并写出用水不超过36m 和超过36m 时,y 与x 之间的关系式; (2)若该户5月份的用水量为38m ,求该户5月份的水费是多少元? 解: (1)依题意,有: 当x ≤6时,y=ax ;当x>6时,y=6a+c(x-6). 由已知,得⎩⎨⎧+==c a a362755.7解得⎩⎨⎧==65.1c ay=1.5x(x ≤6),y=9+6(x-6)=6x-27(x>6). (2)将x=8代人y=6x-27(x>6), y=6×8-27=21(元).答:该户5月份的水费是21元.发散3如图6—5所示的曲线表示某人骑一辆自行车时离家的距离与时间的关系.骑车者九点离开家,十五点回家.根据这个曲线图,回答下列问题:(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00到10:00和10:00到10:30的平均速度是多少?(6)他在何时至何时停止前进并休息用午餐?(7)他在停止前进后返回,骑了多少千米?返回时的平均速度是多少?解 (1)到达离家最远的地方的时间是12时,离家30km;(2)10.5时开始第一次休息,休息了0.5h;(3)第一次休息时离家17.5km;(4)11:00到12:00,他骑了12.5km;(5)9:00到10:00的平均速度是lOkm/h,10:00到10:30的平均速度是15km/h;(6)从12:00到13:00间停止前进,并休息用午餐较为符合实际情况;(7)他在停止前进后返回,骑了30km,共用了2h,故返回时的平均速度是15km/h.知识整合网络【学习方法指导】量与量之间存在着相互影响的关系,本章通过丰富的现实情境引入变量对变量之间关系的讨论,使学生体验探索和表示变量之间关系的过程,获得对表格、关系式、图象等多种方法的认识,能读懂表格、关系式、图象所表示的信息,能用自己的语的描述表格、关系式和图象所表示的关系,并能预测.关系式是表示变量之间关系的另一种方法.利用关系式,可以依据任何一个自变量的值求出相应的因变量的值.也可以依据因变量的值求出相应的自变量的值.由学习常量问题转入学习变量问题,这是数学思维的一种跃升,引导我们前进的是一种崭新的思维方式.【中考信息传递】近年来全国各省、市中考题中涉及本章内容的题型多为选择题、填空题,也有部分的应用题及因变量关于自变量的关系式的中档题,应该充分重视.【中考名题赏析】 题型发散发散1填空题(1)观察下列图形(图6—24),若第①个图形中阴影部分的面积为1,第②个图形中阴影部分的面积为43,第③个图形中阴影部分的面积为169,第④个图形中阴影部分的面积为6427,…则第n 个图形中阴影部分的面积为________(用字母n 表示)(2002年潍坊市中考试题)解 因为第1块图形的面积为1,第2块图形的面积为434312=⎪⎭⎫ ⎝⎛-; 第3块图形的面积为1694313=⎪⎭⎫⎝⎛-; 第4块图形的面积为64274314=⎪⎭⎫⎝⎛-; 第n 块图形的面积为143-⎪⎭⎫⎝⎛n .(2)如图6—25,观察下列三角形图案,每行圆点的个数有什么规律?设每个三角形有n 行,用n 的代数式表示这两个三角形图案中圆点的总数,为________(2002年广西壮族自治区中考试题)解 第1行圆点个数为1+n , 第2行圆点个数为2+(n-1)=1+n ,第3行圆点个数为3+(n-2)=1+n , 第n 行圆点的个数为n+1.以上共有n 行,故这两个三角形图案中圆点的总数为n(n+1)个. 发散2解答题如图6—26表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80km .请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间? (2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围); (4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x 的方程或不等式(不要化简,也不要求解): ①自行车行驶在摩托车前面; ②自行车与摩托车相遇; ③自行车行驶在摩托车后面. 解 (1)由图可以看出:自行车出发较早,早3h ;摩托车到达乙地较早,早3h .(2)对自行车而言:行驶的距离是80km ,耗时8h ,所以其速度是:80÷8=10(km /h);对摩托车而言:行驶的距离是80km,耗时2h,所以其速度是:80÷2=40(km /h). (3)设表示自行车行驶过程的函数解析式为:y=kx , ∵x=8时,y=80, ∴80=8k ,解得k=10,∴表示自行车行驶过程的函数解析式为y=10x ; 设表示摩托车行驶过程的函数解析式为y=ax+b , ∵x=3时,y=0,而且x=5时,y=80;∴⎩⎨⎧+=+=b a b a 58030,解得⎩⎨⎧-==12040b a∴表示摩托车行驶过程的函数解析式为y=40x-120. (4)在3<x<5时间段内两车均行驶在途中. ①自行车在摩托车前面:10x>40x-120, ②两车相遇:10x=40x-120,③自行车在摩托车后面:10x<40x-120.。

相关文档
最新文档