光栅衍射法测量光波长

合集下载

实验五 衍射光栅测定光波波长

实验五 衍射光栅测定光波波长

实验五衍射光栅测定光波波长一、实验目的1.进一步熟悉分光计的调节和使用;2、通过分光计观察光栅的衍射光谱, 理解光栅衍射基本规律, 并测定光栅常数和光波波长。

二、实验原理根据夫琅禾费衍射理论, 当一束波长为λ的平行光垂直投射到光栅平面时, 光波将在每个狭缝处发生衍射, 经过所有狭缝衍射的光波又彼此发生干涉, 这种由衍射光形成的干涉条纹是定域于无穷远处的。

若在光栅后面放置一个汇聚透镜, 则在各个方向上的衍射光经过汇聚透镜后都汇聚在它的焦平面上, 得到的衍射光的干涉条纹根据光栅衍射理论, 衍射光谱中明条纹的位置由下式决定:(k=1, 2, 3, …)(1)或上式称为光栅方程, 式中是相邻两狭缝之间的距离, 称为光栅常数, λ为入射光的波长, k为明条纹的级数, 是k级明条纹的衍射角, 在衍射角方向上的光干涉加强, 其它方向上的光干涉相消。

当入射平行光不与光栅平面垂直时, 光栅方程应写为(k=1, 2, 3, …)(2)式中i是入射光与光栅平面法线的夹角。

所以实验中一定要保证入射光垂直入射。

如果入射光不是单色光, 而是包含几种不同波长的光, 则由式(1)可以看出, 在中央明条纹处(k=0、=0), 各单色光的中央明条纹重叠在一起。

除零级条纹外, 对于其他的同级谱线, 因各单色光的波长λ不同, 其衍射角也各不相同, 于是复色入射光将被分解为单色光, 如图1所示。

因此, 在透镜焦平面上将出现按波长次序排列的单色谱线, 称为光栅的衍射光谱。

相同k值谱线组成的光谱就称为k级光谱。

由此可以看出, 光栅光谱与棱镜光谱的重要区别, 就在于光栅光谱一般有许多级, 而棱镜光谱只有一级。

若已知某单色光的波长为λ, 用分光计测出k级光谱中该色条纹的衍射角, 即可算出光栅常数d。

如果已知光栅常数d, 用分光计测出k级光谱中某一条纹的衍射角, 按(1)式即可算出该条纹所对应的单色光的波长λ;二、实验仪器JJY型分光计, 汞灯, 平面透射光栅, 平面镜三、实验内容1.调整分光计为满足平行光入射的条件及衍射角的准确测量, 分光计的调整必须满足下述要求:平行光管发出平行光, 望远镜聚焦于无穷远, 即适合于观察平行光, 并且二者的光轴都垂直于分光计的转轴(详细的调整方法参见其它实验)。

用衍射光栅测光波波长

用衍射光栅测光波波长

重复测量 值3次以上,把所得 值的平均值和波长 的值代入公式(41-1)中
,计算出光栅常数。若
,求其百分误差。
5.汞光谱还 有蓝、黄(两条)亮谱线,分别测出
它们的一级衍射d 角1 ,600用0 cm已(1测300得0 c的m) 光栅常数,求
它们的谱线波长,按误差传递公式计算波长的
标准误差。
表41-1
明条纹d的衍a 射b角。
k
k k
【实验内容】
1.点燃汞灯,调整整体分光计。 2.安放调节光栅,如图41-3所示:
3.转动望远镜,一般可以看见一级和二级光谱线,注意观察叉丝的交点是否在各条谱线
的中央位置,如果有高低变化,可对图41-3中的螺丝 (
不要再动)予以校
正。也可以调望远镜和平行光管上的高低调节螺钉。
光栅常数的测量
绿谱线 右(+1级) 左(-1级)
次数 n
546.07mm
1 4
பைடு நூலகம்
(
)
1
2
3
光栅常数 d
d k sin
表41-2 根据已测定的光栅常数d ,测定其 d他 _各__条_ 谱线波长
读数 谱线
右(+1级)
左(-1级)
衍射角
d sin k

黄1
黄2
计算光波波长
转动望进镜一般可以看见一级和二级光谱线注意观察叉丝的交点是否在各条谱线的中央位置如果有高低变化可对图413中的螺丝不要再动予以校正
实验41 用衍射光栅测光波波长
【实验目的】 1.观察光栅的衍射光谱,理解光栅衍射的基本规律。 2.学会测定光栅常数以及原子光谱的波长。 3.进一步熟悉分光计的调节与使用。
【实验仪器】 分光计,全息透射光栅,平行光管,低压汞灯。

使用光栅测量光的波长的技巧与原理

使用光栅测量光的波长的技巧与原理

使用光栅测量光的波长的技巧与原理光是一种电磁波,具有波长和频率的特性。

在科学研究和工程应用中,准确测量光的波长是非常重要的。

光栅是一种常用的光学元件,可以通过光的干涉和衍射现象来测量光的波长。

本文将介绍使用光栅测量光的波长的技巧与原理。

光栅是一种具有规则周期性结构的透明或不透明介质,通常由许多平行的凸起或凹陷构成。

当入射光通过光栅时,会发生干涉和衍射现象。

光栅的周期性结构使得入射光发生干涉,形成一系列明暗相间的光条纹。

这些光条纹的间距与光栅的周期以及入射光的波长有关,因此可以通过测量光条纹的间距来确定光的波长。

在实际测量中,通常使用一个光源和一个光栅来进行测量。

光源可以是一束单色光或者是一束白光。

当使用单色光时,测量的结果更加准确,因为单色光只有一个特定的波长。

而当使用白光时,由于白光包含了多个波长的光,测量结果会有一定的误差。

测量光的波长的方法有很多种,其中一种常用的方法是通过测量光栅的衍射角度来计算光的波长。

当入射光通过光栅时,会发生衍射现象,形成一系列衍射角度。

这些衍射角度可以通过测量光条纹的位置来确定。

根据衍射理论,可以得到光的波长与衍射角度之间的关系。

通过测量光栅的衍射角度,可以计算出光的波长。

另一种常用的方法是通过测量光栅的衍射级数来计算光的波长。

光栅的衍射级数是指光栅上的某一条纹所对应的衍射级别。

光栅的衍射级数与光的波长和光栅的周期有关。

通过测量光栅的衍射级数,可以计算出光的波长。

除了以上两种方法,还有一种常用的方法是通过测量光栅的光谱条纹来计算光的波长。

光栅的光谱条纹是指光栅上的一系列明暗相间的光条纹。

这些光条纹的间距与光的波长和光栅的周期有关。

通过测量光栅的光谱条纹,可以计算出光的波长。

在实际测量中,需要使用一些光学仪器来进行测量。

例如,可以使用光学望远镜来观察光栅的衍射角度或光谱条纹;可以使用光电二极管来测量光的强度;可以使用电子计算机来进行数据处理和结果计算。

总之,使用光栅测量光的波长是一种常用的方法,通过测量光栅的干涉和衍射现象,可以准确测量光的波长。

光栅衍射测光的波长步骤

光栅衍射测光的波长步骤

光栅衍射测光的波长步骤
光栅衍射是一种测量光的波长的方法。

以下是光栅衍射测光的波长的步骤:
1. 准备实验装置:需要一个光源、一个光栅、一个屏幕和一个测量器具(例如尺子或显微镜)。

2. 将光源置于一定距离外,并确保光线垂直射向光栅。

3. 将光栅置于光线路径上,并确保光线通过光栅时是平行的。

4. 将屏幕放置在光栅后方,以接收通过光栅的光线。

5. 调整屏幕的位置,使得通过光栅的光线在屏幕上形成清晰的衍射条纹。

6. 使用测量器具测量衍射条纹之间的距离,即光栅条纹的间距。

7. 使用衍射公式计算光的波长。

光栅的衍射公式为:d·sinθ= m·λ,其中d为光栅的间距,θ为衍射角度,m为整数,λ为波长。

8. 将测得的衍射角度代入衍射公式,计算波长。

注意事项:
- 在实验过程中,确保光线的方向和光栅的位置是准确的,以获得准确的结果。

- 尽量使用单色光源,以便获得清晰的衍射条纹。

- 重复实验多次,取平均值以增加测量的准确性。

光栅衍射与光波波长的测定实验报告

光栅衍射与光波波长的测定实验报告

光栅衍射与光波波长的测定实验报告目录一、实验目的 (2)1. 理解光栅的基本原理和作用 (2)2. 学会使用光栅光谱仪进行光栅衍射实验 (3)3. 测定入射光和衍射光的波长 (4)二、实验原理 (5)1. 光栅方程 (6)2. 惠更斯-菲涅耳原理 (7)3. 菲涅耳衍射 (7)4. 夫琅禾费衍射 (8)5. 光波波长测定 (10)三、实验仪器与材料 (11)1. 光栅光谱仪 (11)2. 可调谐激光器 (12)3. 高精度光杠杆 (14)4. 微倾螺旋 (15)5. 滤光片 (16)四、实验步骤 (17)五、实验数据与结果分析 (19)1. 记录实验过程中的所有数据,包括衍射图谱、波长计算值等 (20)2. 对比实验数据与理论预期,分析光栅性能和波长测定结果的准确性213. 编写实验报告,总结实验过程、结果与讨论 (22)六、实验误差分析与改进措施 (22)1. 分析实验误差来源,如仪器误差、操作误差等 (24)2. 提出改进措施,如优化仪器设置、提高操作技能等 (25)3. 对实验结果进行修正,以提高测量精度 (26)七、实验结论 (27)一、实验目的本实验旨在通过光栅衍射与光波波长的测定,深入理解光栅的基本原理及其在光学信息处理、通信和显示技术等领域的应用。

实验过程中,我们将观察并分析光栅产生的衍射图样,测量光波波长,并探究光栅常数与衍射效率之间的关系。

通过实验操作,培养学生的动手能力和科学实验素养,提高其解决实际问题的能力。

1. 理解光栅的基本原理和作用本实验旨在探究光栅衍射现象与光波波长的关系,为了更好地理解实验内容,我们首先需深入理解光栅的基本原理和作用。

光栅是一种具有周期性结构的光学元件,其表面由一系列等宽等间距的狭窄透光条和遮挡条组成。

当光束入射到光栅上时,由于光栅的周期性结构,会发生衍射现象。

衍射是波(如光波)在遇到障碍物或穿过小孔时产生的一种物理现象,光波会被分散成不同的方向,形成明暗相间的条纹。

光栅测定光波波长实验要求

光栅测定光波波长实验要求

光栅测定光波波长实验要求
光栅测定光波波长实验要求如下:
1. 实验原理:使用光栅原理来测定光波的波长。

光栅是一种有大量平行光栅线的透明介质,当光通过光栅时,会发生衍射现象,形成多个亮度不同的衍射光束。

根据衍射现象和光栅的特性,可以通过测量衍射光束的角度和光栅线数来计算光波的波长。

2. 实验仪器:光源、准直镜、透镜、光栅、平行光管、光电管、测量仪器等。

3. 实验步骤:
- 构建实验装置:将光源放置在准直镜前方,通过透镜将光线准直,使光线平行射向光栅。

将光栅安装在平行光管内,并调整角度使得光线垂直射向光栅。

- 对光栅进行调节:调整光栅的位置和角度,使得衍射的一级亮点清晰可见。

- 测量衍射角度:使用测量仪器测量衍射光束的角度。

可以通过测量衍射光束与水平方向的夹角来确定衍射角度。

- 计算波长:根据光栅的特性和测得的衍射角度,使用光栅公式进行计算,得到光波的波长。

4. 实验注意事项:
- 实验环境应保持暗室或低光强环境,以减少背景杂散光的干扰。

- 光栅和光源应调整到适当的位置和角度,使得衍射亮点清晰可见。

- 测量时应尽量避免手触摸光栅,以免对实验结果产生影响。

- 在测量角度时,应尽量减小误差,可以采取多次测量、平均值等方法来提高精度。

5. 实验结果分析:对测得的光波波长进行统计和分析,比较实验结果与理论值的差异,评价实验方法的准确性和可靠性。

实验40 光栅衍射法测定光波长

实验40 光栅衍射法测定光波长

大学物理实验教案实验名称:光栅衍射法测定光波长 1 实验目的1)熟练分光计的调节。

2)理解光栅衍射现象;3)学习用光栅衍射法测定光的波长。

2 实验器材分光计、平面透射光栅、汞灯、平面反射镜3 实验原理3.1 实验原理光栅和棱镜一样,是重要的分光光学元件,已广泛应用在光栅光谱仪、光栅单色仪等。

光栅是一组数目极多的等宽、等距和平行排列的狭缝。

它分为透射光栅和反射光栅两种。

应用透射光工作的称为透射光栅,应用反射光工作的称为反射光栅。

现代制造光栅主要有刻划光栅、复制光栅和全息光栅等形式。

本实验用的是平面透射光栅。

描述光栅特征的物理量是光栅常数d ,其大小等于狭缝宽度a 与狭缝间不透光部分的宽度b 之和,即b a d +=,习惯上用单位毫米里的狭缝数目N 来描述光栅特性。

光栅常数d 与N 的关系为N d 1=(1)根据夫琅禾费衍射理论,波长为λ的平行光束垂直入射到光栅平面上时,透射光将形成衍射现象,即在一些方向上由于光的相互加强后光强度特别大,而其他的方向上由于光的相消后光强度很弱就几乎看不到光。

图40-1给出了形成光栅衍射的光路图。

如果入射光源为线光源,经过光栅后衍射图样为一些相距较大的锐利的色彩斑斓的明亮条纹组成。

而这些亮条纹1、光源2、狭缝3、凸透镜4、平面透射光栅5、光栅衍射光谱图40—1 实验原理示意图图40—2 汞灯的部分光栅衍射光谱示意图所在的方位由光栅方程所确定,方程为λφk d =sin ( 2,1,0±±=k ) (2)其中,d 为光栅常数,k 为衍射级别,λ为光波长,φ为衍射角它是光栅法线与衍射方位角之间的夹角。

由(2)式可见,同一级的衍射条纹,如果波长不同其衍射角不同,所以光栅具有分光功能。

图40-2为汞灯的部分光栅衍射光谱示意图。

光栅衍射现象是很容易观察到的,如果手头有一块光栅,可直接透过光栅观察某一光源就可看到衍射现象。

实验室中经常在分光计上利用光栅衍射现象来进行光波长或光栅常数的测量。

光栅衍射法测光波波长实验报告

光栅衍射法测光波波长实验报告

光栅衍射法测光波波长实验报告目录一、实验目的与要求 (2)1. 实验目的 (2)2. 实验要求 (3)二、实验原理 (3)1. 光栅基本原理 (4)2. 衍射原理简介 (5)3. 光波波长测量方法 (6)三、实验仪器与材料 (7)1. 主要仪器 (8)双缝干涉仪 (8)读取装置 (9)2. 实验材料 (11)光波源 (11)透明介质 (13)测量尺 (14)四、实验步骤 (15)1. 光路搭建 (16)2. 数据采集 (18)3. 数据处理 (19)4. 结果分析 (20)五、实验结果与讨论 (20)1. 实验数据记录 (21)2. 数据处理与分析 (22)3. 结果讨论 (23)实验误差分析 (24)结果合理性探讨 (25)六、实验结论与展望 (26)1. 实验结论 (27)2. 实验不足与改进 (28)3. 未来研究方向 (30)一、实验目的与要求本次实验的目的是通过光栅衍射法测量光波的波长,光栅衍射作为一种重要的光学现象,在研究光的波动性和干涉性方面具有重要的应用价值。

通过本实验,我们希望能够加深对光栅衍射现象的理解,并准确地测量出光波的波长,进一步探究光波的特性。

本实验旨在通过光栅衍射法测量光波波长,加深对光栅衍射现象的理解,掌握相关实验技能和技术,为今后的学习和研究打下坚实的基础。

1. 实验目的理论联系实际:将所学的光学理论应用于实际问题解决中,通过实验手段验证理论的正确性。

掌握光栅衍射的基本原理:通过实验观察并分析光栅衍射现象,理解光栅对光的散射作用以及衍射图样的形成机制。

学习使用光栅仪器:熟练掌握光栅测长仪的使用方法,能够准确测量光栅常数。

提高实验技能:通过实际操作,提高动手能力、分析问题和解决问题的能力,培养科学严谨的实验态度。

拓展知识面:了解现代光学技术在其他领域的应用,如光谱分析、光学计量等,激发对光学技术的兴趣和探索欲望。

2. 实验要求准备实验器材,包括光源、光栅、透镜、光学仪器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光栅衍射法测量光波长数据处理参考
1.数据记录
表一 汞灯绿光衍射角的测量
次序 k θ
'k θ
k -θ
'k -θ
1 230°3’ 50°0’ 268°27’ 88°25’
2 230°2’ 49°59’ 268°28’ 88°24’
3 230°2’ 50°0’ 268°26’ 88°23’
4 230°2’ 49°59’ 268°28’ 88°24’
5 230°3’ 49°58’ 268°27’ 88°24’
6 230°2’ 49°59’ 268°28’ 88°25’
7 230°2’ 49°59’ 268°27’ 88°25’ 8
230°3’
49°59’
268°28’
88°23’
注:极限误差0.017,2,1/300()m k d mm ∆=︒==
2、实验数据处理(数据计算要有过程,即计算公式、数值代入,有效数字的保留要正确)
A 、对
k θ进行数据处理:
根据肖维涅准则,对以
k θ测量量进行检查,无坏值出现。

8
1
1230.048k ki i θθ===︒∑ 0.0031k
S θ=
=︒
vp t =1.08
1.080.00310.0034k A vp u t S θ==⨯=
0.0098B u =
==
0.010k u ===︒
B 、对
'k θ进行数据处理:
根据肖维涅准则,对以
'k θ
测量量进行检查,无坏值出现。

8
''1
149.988k k i i θθ===︒∑ '
0.0038k S θ=
=

vp t
=1.08
' 1.080.00380.0041k A vp u t S θ==⨯=
0.0098B u =
==
'0.010k u ===︒
C 、对
k -进行数据处理:
根据肖维涅准则,对以
k θ-测量量进行检查,无坏值出现。

8
1
1
268.468k ki i θθ--==
=︒∑
0.0045k S θ-==︒
vp t =1.08
1.080.00450.0048k A vp u t S θ-==⨯=
0.0098B u =
==
0.011k u -===︒
D 、对
'k -进行数据处理:
根据肖维涅准则,对以
'k θ-测量量进行检查,无坏值出现。

8
''1
1
88.408k k i i θ--==
=︒∑
'0.0050k S θ-==︒
vp t =1.08
' 1.080.00500.0054k A vp u t S θ-==⨯=
0.0098B u =
==
'0.011k u ===︒ E 、θ的数据处理:
θ平均值:
''
11[][230.04268.4649.9888.40]19.2144
k k k k
θθθθ--=-+-=︒-︒+︒-︒=︒ 不确
定度:
0.005u θ=
=
=︒ 总结:
3sin 1/30010sin19.21548.42k d nm
k θλ-⨯⨯︒===
321/30010cos19.210.005cos 3600.140.22
k
k d u u nm k
θ
λπ
θ-⨯⨯︒⨯︒⨯︒=
=
=≈
0.2
100%0.04%548.4
u E λ
λλ
=
=
⨯=
测量结果:
548.40.2u nm λλλ=±=±
(p=0.683)
0.04%E λ=
3、讨论:
A 、谈谈你对本实验的理解。

B 、平行光管的狭缝过宽对测量结果有何影响?
C 、如何在未知光栅常数的情况下,利用本实验装置测量未知光波长? 答:(略)
注:数据处理软件里的“实验项目->分光计”可以把分自动转化为度。

相关文档
最新文档