勾股定理1(1)
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
1勾股定理(第1课时)(教学PPT课件(华师大版))28张
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理
勾股定理基础知识点
知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。
勾股定理1
(一)勾股定理1:勾股定理 如果直角三角形的两条直角边长分别为a 、b ,斜边长为c,那么a 2+b 2=c 2我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.要点诠释:2、勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 3:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是 ①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证4:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)5、注意:(1)勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
勾股定理(一)
34A .16B .18A .225B .22C .D .5....3.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.5米B.3米C.(5+1)米D.3米5.(2013•池州一模)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:距离为___ .A.(4+ )cm B.5cm C.35cm D.7cm2.如图,若圆柱的底面周长是30cm,高是40cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处做装饰,则这条丝线的最小长度是()A.80cm B.70cm C.60cm D.50cm3.如图,为了庆祝“五•一”,学校准备在教学大厅的圆柱体柱子上贴彩带,已知柱子的底面周长为1m ,高为3m .如果要求彩带从柱子底端的A 处均匀地绕柱子4圈后到达柱子顶端的B 处(线段AB 与地面垂直),那么应购买彩带的长度为( )A . 45mB .3mC .4mD .5mA .12cmB . 97cmC .15cmD . 21cm5.(2014•博山区模拟)如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )A .3B . 2+2C . 10D .46.(2013•荆州模拟)如图所示,有一圆柱形油罐,现要以油罐底部的一点A 环绕油罐建梯子(图中虚线),并且要正好建到A 点正上方的油罐顶部的B 点,已知油罐高AB=5米,底面的周长是的12米,则梯子最短长度为___ 米.7.(2013•盐城模拟)如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___ cm .8.(2014•西湖区一模)如图,是一个无盖玻璃容器的三视图,其中俯视图是一个正六边形,A、B两点均在容器顶部,现有一只小甲虫在容器外A点正下方距离顶部5cm处,要爬到容器内B点正下方距离底部5cm处,则这只小甲虫最短爬行的距离是___ cm.9.(2013•贵阳模拟)请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则L12=______.设路线2的长度为L2,则L22=______.所以选择路线______(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:L12=______.路线2:L22=______.所以选择路线______(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.。
第1次课《勾股定理》
第一章勾股定理一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题cba HGFEDCBAbacbac cabcab a bcc baED CBA5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅 相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理1
16 4
9 9
25 13
S正方形c
1 4 4 3 1 2
A B
图1
C
C
25
(面积单位)
A
B
图2
分割成若干个直角边为 整数的三角形
攻克难关
(1)你能用三角 形的边长表示正方 形的面积吗?
(2)你能发现直
A 42
52 32
C
B
角三角形三边长 度之间存在什么 关系吗?与同伴 进行交流。
图3-1
2 ( 13 ) A 22 32
C
B
图3-2
(3)三个正方 形A,B,C的 面积之间有什 么关系?
A B
图1
C
C A B
图2
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
猜想:
如果直角三角形的两直角边长 分别为a、b,斜边长为c,那么:
a b c
2 2
2
经过证明被确认正确的 命题叫定理. 我国古代把直角三角形 中较短的直角边称为勾,较长 的直角边称为股,斜边称为弦. 所以上命题叫勾股定理.
14.1 勾股定理
鹤壁科达国际学校 李玉山
第十四章 勾股定理
Байду номын сангаас习目标
1、正确理解勾股定理的内容 2、体验勾股定理的探索过程 3、能运用勾股定理解决直角三角形三边关系 并解决简单的生活中的问题
探究指南
1、8分钟看课本108—109页
2、108页正方形P、Q、R的面积分别为 多少平方厘米由此得出直角三角形三边 的长度之间存在什么关系?
勾股定理
如果直角三角形的两直 角边长分别为a、b,斜边 弦 长为c,那么: c
勾股定理重难点
第十八章 勾股定理§18.1 勾股定理(一) 一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、学案(一)阅读课本第64页,并完成思考题: 1、毕达哥拉斯在地板上的发现:(1)图中线条加黑的三个小正方形围成了一个 ;(2)若设两个较小正方形边长均为a ,则它们的面积都为 , 设较大的正方形边长为c ,则它的面积为 。
(3)再次观察,可以发现两个小正方形的面积和 较大的正方形面积,即有 + = 。
(4)因为三个正方形边长恰好是围成的等腰直角三角形的三条边,由 + = 可知,等腰直角三角形的两条 边的平方 等于 边的平方。
2、由第1题知等腰三角形具有上述性质,是否一般的直角三角形也具有这样的性质呢?观察下图,尝试探究.(如图,每个小方格的面积均为1)观察图(1)正方形A 中含有____个小方格, 即A 的面积是_____个单位面积;正方形B 中 含有_____个小方格,即B 的面积是_____个单位面积;正方形C 中含有______个小方格,即 C 的面积是________个单位面积.2)正方形A 中含有____个小方格,即A 的面积是_____个单位面积;正方形B 中 含有_____个小方格,即B 的面积是_____个单 位面积;正方形C 中含有______个小方格,即 ________个单位面积.四个直角三角形的面积.)(二)归纳:直角三角形三边关系:勾股定理: ;用公式表示为 。
变式:① ② 。
直角三角形性质归纳:如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) (1)两锐角之间的关系: ;(2)若∠B=30°,则∠B 的对边和斜边: ;(3)直角三角形斜边上的 等于斜边的 。
北师大版八年级数学上册第一章《勾股定理》教案
第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。
勾股定理(1)教学课件
勾
a
弦c
股b
弦图
• 赵爽
• 东汉末至三国时代吴 国人
• 为《周髀算经》作注, 并著有《勾股圆方图 说》。
伽菲尔德证法:
a
bc
c a
b
s梯形=
1 (a+b)(a+b)=
2
1 (a2+2ab+b2)
2
= 1 a2+ab+ 1 b2
2
2
s梯形=2×
1 ab+ 1 c2=ab+ 1 c2
连结AC,在Rt△ABC中,根据勾股定理,
AC 2 AB2 BC2 12 22 5 D C
5 因此,AC=
≈2.236
2m
因为AC_大__于___木板的宽,
AB
所以木板_能___ 从门框内通过.
学以致用
例1 飞机在空中水平飞行,某一时刻刚好飞
到一个男孩头顶上方4000米处,过了20秒,飞
5 .在直角△ ABC中,a=5,c=13,则△ ABC的面积 S=_____________.
6. 在直角△ ABC中, ∠C=90°,c=20,b=15,则 a=__________.
小 结:
1.这节课你学到了什么知识?
勾股定理:如果直角三角形两直角边分别为a, b,斜边为c,那么 a2 + b2 = c2 即直角三角形 两直角边的平方和等于斜边的平方。
2
2
2
∵s梯形=s梯形 ∴ 1 a2+ab+ 1 b2=ab+ 1 c2
2
2
2
∴a2+b2=c2
学以致用 1、已知:a=3,
八年级数学勾股定理1
A B
图1-1
C
(1)你能用三角 形的边长表示正方 形的面积吗? (2)你能发现直 角三角形三边长度 之间存在什么关系 吗?与同伴进行交 流。
直角三角形两直角边的 平方和等于斜边的平方
C A B
图1-2
(3)分别以5厘米、12厘米为直角边作出一个直角 三角形,并测量斜边的长度。(2)中的规律对这 个三角形仍然成立吗?
千古第一定理
勾 股 ( 商 高 ) 定 理 毕 是第一个不定方程 达 哥 数与形的第一定理 拉 导致第一次数学危机 斯 定 数学由计算转变为证明 理
有趣的总统证法
美国第二十任总统伽菲尔德的证法在数学史上被传为佳话 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明, 就把这一证法称为“总统”证法。
课后探索
做一个长,宽,高分别为50厘米,40 厘米,30厘米的木箱,一根长为70厘米 的木棒能否放入,为什么?试用今天学 过的知识说明。
小 结:
1这节课你学到了什么知识? 2 运用“勾股定理”应注意什么问题?
3、你还有什么疑惑或没有弄懂的地方?
; https:// 在线配资 ;
勾股定理
y=0
受台风麦莎影响,一棵树在离地面4米处断裂,树的 顶部落在离树跟底部3米处,这棵树折断前有多高?
4米
3米
(1)观察图1-1
正方形A中含有 16 个 小方格,即A的面积是 16 个单位面积。 正方形B的面积是 B
图1-1
A
C
9 个单位面积。
正方形C的面积是
25 个单位面积。
(图中每个小方格代表一个单位面积)
应用知识回归生活 y=0
1、如图,受台风麦莎影响,一棵树在离地面4米处断裂, 树的顶部落在离树跟底部3米处,这棵树折断前有多高?
2022年八年级数学上册第十七章特殊三角形17.3勾股定理1教案新版冀教版
17.3勾股定理(1)教学目标【知识与能力】1.经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想.2.会初步应用勾股定理解决实际问题.【过程与方法】1.经历“测量——猜想——总结——验证”等一系列过程,体会数学定理发现的过程.2.在观察、猜想、归纳、验证等过程中培养语言表达能力和初步的逻辑推理能力.3.在探索的过程中,体会数形结合、由特殊到一般及化归等数学思想方法.【情感态度价值观】通过让学生参加探索与创造,获得参加数学活动成功的经验.教学重难点【教学重点】勾股定理的探索过程.【教学难点】勾股定理的应用.课前准备多媒体课件教学过程一:新课导入:导入一:【课件1】下图是三国时期数学家赵爽用来证明勾股定理的图形和希腊政府为纪念希腊历史上著名的数学家毕达哥拉斯而发行的一张邮票,观察这两个图形,你有什么感想?教师引导学生思考,各抒己见,发表自己的见解.[设计意图]从现实生活中提出的“赵爽弦图”和“希腊邮票”,为学生能够积极主动地投入到探索活动中创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.导入二:【课件2】如图所示,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?师:在直角三角形中,任意两条边确定了,另一边确定吗?为什么?在直角三角形中,任意两条边确定了,另一边也随之确定了,事实上,古人发现,直角三角形三边长度的平方存在着一个特殊的数量关系.让我们一起去探索吧![设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入三:【课件3】相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客.在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家地面所铺的瓷砖发起呆来.原来,朋友家的地面是用一块块直角三角形形状的瓷砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑着回家去了.原来,他发现了瓷砖上的三个正方形存在着某种数学关系.[设计意图]学生对故事中的问题很感兴趣,激发了学生探究知识的欲望,从而自然地引入本节课要探究的问题.二:新知构建:活动:探究勾股定理思路一探究1:测量计算——初步感知【课件4】学生活动:1.画一个直角三角形,使直角边分别为3cm和4cm,测量一下斜边是多少?2.画一个直角边分别是6cm和8cm的直角三角形,测量一下斜边是多少?3.画一个直角边分别是5cm和12cm的直角三角形,测量一下斜边是多少?问题:你能总结出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探索欲望.思路二【课件5】任意画几个直角三角形,分别度量三条边,把长度标在图形中,计算三边的平方,师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很精确,他用了很接近这个词,非常棒,有哪些数据符合a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13;1.2,1.6,2……师:哪些数据不符合a2+b2=c2?生:2,4,4.5;5,8,9.5……师:怎样验证直角三角形三边之间的平方关系呢?探究2:面积推理勾股定理活动1:探索边长为3,4,5的直角三角形的情况【课件6】如图所示,每个小正方形都是边长为1的小正方形,在所围成的ΔABC中,∠ACB=90°.图中以AC,BC,AB为边的正方形的面积分别是多少?这三个正方形的面积之间具有怎样的关系?问题:(1)以AC为边的正方形的面积是;(2)以BC为边的正方形的面积是;(3)从AB为边的正方形的面积是;(4)三个正方形的面积之间关系是+=.活动2:探索直角边长为1的等腰直角三角形刚才我们接触到的是一般的直角三角形,那么对于等腰直角三角形是否也存在这个关系呢? 思路一【课件7】如图所示的是用大小相同的两种颜色的正方形地砖铺成的地面示意图,∠ACB=90°.分别以AC,BC,AB为边的三个正方形(粗线标出)的面积之间有怎样的关系?学生观察发现:以AC,BC为边的正方形的面积都是1.说明:对于以AB为边的正方形的面积,教师可让学生通过数格子的方法求出其面积,也可以将其分成四个等腰直角三角形的面积来求.思路二【课件8】如图所示,直角三角形三边的平方分别是多少?它们满足猜想的数量关系吗?你是如何计算的?师:在这幅图中,边长的平方是如何刻画的?我们的猜想如何实现?生:用正方形A,B,C刻画的,就是证明A+B=C.师:准确地说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流正方形C的面积的求法,教师巡视点评.)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算.)生3:分成四个全等的直角三角形.(学生板演,口述面积求法.)师:方法不错,你们很善于动脑筋,我们用数格子、分割图形的方法得到正方形C的面积,还有什么方法可以得到呢?活动3:类比发现,形成结论【课件9】如图所示,在ΔABC中,∠ACB=90°,请你猜想:分别以AC,BC,AB为边的三个正方形的面积之间是否也具有上述我们探究的面积之间的关系?若具有这种关系,请用图中的Rt ΔABC的边把这种关系表示出来.学生思考、交流,教师请学生口答,并板书.教师总结:在直角三角形中,两条直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.探究3:推理验证勾股定理与小组同学交流、讨论,拿出设计方案,并给出合理的解释.组1:我们的设计方案是:准备四块直角边分别为a,b,斜边为c的直角三角形的纸板,拼出如下图形:我们发现外部是一个大正方形,边长为c,内部是一个小正方形,其边长是a-b,四个直角三角形的面积+小正方形的面积=大正方形的面积.1ab×4+(a-b)2=c2,2化简后为:a2+b2=c2.组2:我们也准备了四个直角三角形,两条直角边分别为a,b,斜边为c.我们是这样拼的,如图所示.外部是一个边长是a+b的正方形,内部是一边长为c的小正方形.四个直角三角形的面积+小正方形的面积=大正方形的面积.1ab×4+c2=(a+b)2,2化简后为:a2+b2=c2.师:两个组的设计都非常精彩,你们利用了我们比较熟悉的面积的有关知识,还有其他方案吗?组3:我们准备了两个直角三角形,两条直角边为a,b,斜边为c.我们是这样拼的,如图所示.我们发现:两个直角三角形这样摆放,若连接A,B两点,就构成了一个直角梯形.直角梯形的上底为b ,下底为a ,高为a +b.直角梯形是由两个直角三角形和一个直角边为c 的等腰直角三角形构成的.直角梯形的面积=两个直角三角形的面积+等腰直角三角形的面积.12(a +b )(a +b )=12ab ×2+12c 2, 化简后为:a 2+b 2=c 2.师:以上三个小组的设计方案,实质上都渗透了数学的转化思想,将复杂问题转化、分解为简单问题,或将陌生的问题转化为熟悉的问题来解决.方法都是“拼凑法”,先拼出一个图形,再利用两种不同的方法求出面积的表达式.由于一个图形的面积不变,因此将两种面积的表达式用等号连接起来,再化简,就可能得出我们要探究的结论.说明:我们古代把直角三角形较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”.因此,直角三角形三边之间的关系称为勾股定理.勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2=c 2. 思考:(1)运用此定理的前提条件是什么?(2)公式a 2+b 2=c 2有哪些变形公式?(3)由(2)知在直角三角形中,只要知道 条边,就可以利用 求出 . 指导学生完成教材第151页“做一做”.[知识拓展] (1)由勾股定理的基本形式a 2+b 2=c 2可以得到一些变形关系式,如a 2=c 2-b 2=(c +b )(c-b );b 2=c 2-a 2=(c +a )(c-a ).(2)在钝角三角形中,三角形三边长分别为a ,b ,c ,若c 为最大边长,则有a 2+b 2<c 2,在锐角三角形中,三角形三边长分别为a ,b ,c ,若c 为最大边长,则有a 2+b 2>c 2.[设计意图] 通过探索活动,调动学生的积极性,给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的意见,感受合作的重要性. 让学生经历“独立思考——小组讨论——合作交流”的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情. 三:课堂小结: 1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方.2.勾股定理的变形公式a =√c 2-b 2;b =√c 2-a 2;c =√a 2+b 2. 要求直角三角形中某一边的长度,就要知道其他两边的长度.。
勾股定理1(1)
1、判断以下列各数为边长的三角形形状
(1) a=9, b=5,c=7 5 3 (2) a , b 1, c 4 4
(3) a=11, b=8,c=4
锐角△
直角△ 钝角△
2、若△ABC中,AB=7,BC=24, AC=25,则S△ABC= 84 。
【问题探究】
1、勾股方向航行,能知道“海天”
号 沿哪个方向航行吗?
巩固练习
A、B、C三地的两两距离分别为AB=12km,
BC=5km,AC=13km,A地在B地的正东方向,
C地在B地的什么方向?
C 5km B 13km
12km
A
2、如图,点A是一个半径为 400 m的圆形森 林公园的中心,在森林公园附近有 B、C 两 个村庄,现要在 B、C两村庄之间修一条长为 1000 m 的笔直公路将两村连通,经测得 ∠B=60°,∠C=30°,问此公路是否会穿过 该森林公园?请通过计算说明.
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆 定理, 其中一个叫做另一个的逆定理.
例题教学
1、写出下列命题的逆命题并判断它们是否正确: (1) 对顶角相等 (2)等腰三角形的两底角相等 (3)两直线平行,同位角相等 (4)三内角之比为1:2:3的三角形为直角三角形 (5)三角形的三内角之比为1:1:2,则三角 形为等 腰直角三角形
且m>n,那么△ABC是直角三角形吗?为什么?
5、如图,在正方形ABDC中,E是CD的中点,
F为BD上一点,且BF=3FD,求证:∠AEF=90º.
A C E B F D
6.在Rt△ABC中,∠C=90°,CD 是高,AB=1, 则 2 CD2 + AD2 +BD2 =____; 7.三角形的三边长 a, b, c 满足 a2 +b2 +c2 +338 = 10a + 24b +26c, 此三角形为_____三角形.
1.1勾股定理_1PPT课件(沪科版)
2.勾股定理的适用条件: 直角三角形,它反应了直角三角形三边的关系,
即已知直角三角形两边长可求第三边长.对于非直 角三角形问题,可根据图形特征构造直角三角形.
3.由勾股定理的基本关系式: a2+b2=c2可得到一些变形关系式: c2=a2+b2=(a+b)2-2ab= (a-b)2 + 2ab ; a2=c2-b2=(c+b)(c-b)等.
3和4,则第三边长为( D )
A.5
B. 7 C. 5 D.5或 7
知识点 2 勾股定理与图形面积
知2-讲
1.命题:如果直角三角形的两条直角边长分别为a, b,斜边长为c,那么a2+b2=c2.
2.常用证法:利用拼图法,通过求面积来验证;这 种方法以数形转换为指点思想、图形拼补为手段, 以各部分面积之间的关系为根据而到达目的.
知2-讲
(1)如图①,△DEF为直角三角形,正方形 P的
面积为9,正方形Q的面积为15,则正方形
M的面积为________;
知2-讲
(2)如图②,分别以直角三角形ABC的三边长为直径 向三角形外作三个半圆,则这三个半圆形的面积 之间的关系式是________; (用图中字母表示)
知2-讲
(3)如图③,如果直角三角形两直角边的长分别为3 和4,分别以直角三角形的三边长为直径作半圆, 请你利用(2)中得出的结论求阴影部分的面积.
知1-导
探究 在行距、列
距都是1的方格网
中,任意作出几
个 以格点为顶点
的直角三角形,
分别以三角形的各边为正方形的一边,向形外作正方形,
如图.并以 S1, S2与S3分别表示几个正方形的面积.
视察图(1),并填写:
视察图(2),并填写:
知1-导
勾股定理1(1)
D
b
c
c
C
a
Aa
b
B
S梯形ABCD
1 2
(a
b)(a
b)
1 ab 2 1 c2
2
2
∴a²+b²=c²
练习: 1、求下列图中字母所表示的正方形的面积
A 225
400
81
B 225
议一议: •(1)你能用三角形的边长表示
正方形的面积吗?
正方形A的面积+正方形B的面积=正方形C的面积
•(2)你能发现直角三角形三边的长度
这个图案是我国汉代数学 家赵爽在证明勾股定理时用到 的,被称为“赵爽弦图”.
你听说过勾股定理吗?
17、1 探索勾股定理
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右 图中的地面,看看有 什么发现?
数学家毕达哥拉斯的发现:
a
c
之间存在什么关系吗?
b
小结
勾股定理
如果直角三角形的两直角边分别为a,
b ,斜边为c,那么 a2 b2 c2
做一做:
1、分别以3厘米,4厘米为直角边作出一个 直角三角形,并测量斜边的长度.看上面规 律对这个三角形仍然成立吗?
1.判断题:
(1).如果三角形的三边长分别为a,b,c,则
a2 b2 c2
A
B
C
A、B、C的面积有关系 SA+SB=SC
直角三角形三边有关系 两直边的平方和等于斜边的平方
研讨:如图所示,每个小方格代表一个单位面积。
观察图(1):正方形A、B、C的面积各是多少? 观察图(2):正方形A、B、C的面积各是多少? 你能得到什么推断?
3-3勾股定理(1)
学法
自主学习、合作学习、探究学习。
教学
准备
ppt
教
学
过
程
教学环节
教师活动
学生活动
设计意图
1、口算练习
2、引入
3、探索新知
指导学生的口算
出示ppt:介绍国际数学大会的会徽,我国在古代就发现并证明了勾股定理及毕达哥拉斯图。
(1)再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
倾听学生小结,随机点评。
指定内容:教材P28习题17.1 1、2题
独立完成,点名板演
自行完成后小组讨论
举手发言,小结本课所学及收获。
完成老师指定的练习
练习巩固
学培养学生自主意识。
巩固所学
板书设计
17.1勾股定理(1)
勾股定理
如果直角三角形的两条直角边长分别为a,b,例1
激发学生的爱国热情,促其勤奋学习。
培养自学
合作学习
规范书写
教
学
过
程
教学环节
教师活动
学生活动
设计意图
3、巩固练习
4、应用拓展
5、小结
6、布置作业
教材P24练习1、2.
出示ppt:
例3、已知:如图,在△ABC中,AB=AC,D在CB的延长线上。
求证:
⑴AD2-AB2=BD·CD
⑵若D在CB上,结论如何,试证明你的结论。
对于任意的直角三角形也有这个性质吗?(2)例题解析例1例2证明勾股定理ppt演示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.在Rt△ABC中,∠C=90°,CD 是高,AB=1, 则 2 CD2 + AD2 +BD2 =____;
7.三角形的三边长 a, b, c 满足 a2 +b2 +c2 +338 = 10a + 24b +26c, 此三角形为_____三角形.
互逆定理:
如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆 定理, 其中一个叫做另一个的逆定理.
例题教学
1、写出下列命题的逆命题并判断它们是否正确: (1) 对顶角相等 (2)等腰三角形的两底角相等
(3)两直线平行,同位角相等 (4)三内角之比为1:2:3的三角形为直角三角形
18.2 勾股定理 的逆定理(2)
学习目标
理解并掌握勾股定理及 逆定理并利用定理解决几 何问题。
勾股 如果直角三角形的两直角边为a 、b , 定理 斜边为 c ,那么a2+ b2=c2
勾股定 理的逆 定理
如果三角形的三边长a、b、c 满足a2+b2=c2,那么这个三角 形是直角三角形; 较大边c 所 对的角是直角.
;万用表 电池测试仪 功率计 测振仪 水分测试仪 光电传感器 电力测量仪器 电能质量分析仪 安规测试仪 安全标准测量仪表;
【问题探究】
1、勾股定理:如果直角三角形的两直角边为
a 、b , 斜边为 c ,那么a2+ b2=c2
2、勾股定理的逆定理:如果三角形的三边长
a、b、c满足a2+b2=c2,那么这个三角形是直角三形 。
思考:
勾股定理与勾股定理的逆定理的题设
和结论有何关系?
互逆命题:
两个命题中, 如果第一个命题的题设是第二个 命题的结论, 而第一个命题的结论又是第二个 命题的题设,那么这两个命题叫做互逆命题. 如果把其中一个叫做原命题, 那么另一个叫做 它的逆命题.
1、判断以下列各数为边长的三角形形状
(1) a=9, b=5,c=7
(2) a 5 , b 1, c 3
4
4
(3) a=11, b=8,c=4
锐角△ 直角△ 钝角△
2、若△ABC中,AB=7,BC=24, AC=25,则S△ABC= 84 。
壮扭公主的摇动,盆地木牙猩状的纸篓像筷子一样在肚子上狂野地整出飘飘光云……紧接着壮扭公主又发出六声墨紫色的恐怖神哼,只见她明朗奔放极像菊黄色连体降 落伞一样的胸罩中,酷酷地飞出七片颤舞着¤天虹娃娃笔→的玉兔状的小溪砂心鹅,随着壮扭公主的扭动,玉兔状的小溪砂心鹅像雄狮一样,朝着女经理U.赫泰娆嘉 妖女突兀的浓黑色土堆样的脖子疯颤过去……紧跟着壮扭公主也旋耍着法宝像菜丝般的怪影一样朝女经理U.赫泰娆嘉妖女疯滚过去随着两条怪异光影的猛烈碰撞,半 空顿时出现一道紫红色的闪光,地面变成了粉红色、景物变成了淡蓝色、天空变成了亮青色、四周发出了梦幻的巨响!壮扭公主圆圆的极像紫金色铜墩般的脖子受到震 颤,但精神感觉很爽!再看女经理U.赫泰娆嘉妖女平常的酷似短棍模样的脚,此时正惨碎成龟蛋样的纯红色飞烟,加速射向远方女经理U.赫泰娆嘉妖女怒哮着音速 般地跳出界外,狂速将平常的酷似短棍模样的脚复原,但元气已受损伤转壮扭公主:“哈哈!这位官家的技术空前温柔哦!相当有隐私性呢!”女经理U.赫泰娆嘉妖 女:“哇咻!我要让你们知道什么是灿烂派!什么是苍茫流!什么是潇洒温柔风格!”壮扭公主:“哈哈!小老样,有什么创意都弄出来瞧瞧!”女经理U.赫泰娆嘉 妖女:“哇咻!我让你享受一下『白金瀑祖彩蛋理论』的厉害!”女经理U.赫泰娆嘉妖女突然像紫玫瑰色的悬腿丛林狐一样猛啐了一声,突然玩了一个独腿振颤的特 技神功,身上眨眼间生出了八只很像腰带一样的一套,波体鱼摇腾空翻 七百二十度外加飞转三周的壮观招式!紧接着颤动瘦小的手臂一喊,露出一副秀丽的神色,接着摇动凸凹的脑袋,像淡紫色的亿鼻牧场鲸般的一吼,寒酸的凹露的眉毛 顿时伸长了七倍,虔诚的火橙色面具形态的陀螺飘帘靴也猛然膨胀了八倍……最后颤起突兀的浓黑色土堆样的脖子一摆,变态地从里面抖出一道神光,她抓住神光沧桑 地一扭,一件黑森森、灰叽叽的咒符『白金瀑祖彩蛋理论』便显露出来,只见这个这件东西儿,一边抽动,一边发出“啾啾”的幽响…………猛然间女经理U.赫泰娆 嘉妖女快速地让自己深黄色奶酪一样的胸部奇闪出湖青色的毛笔声,只见她凹露的眉毛中,萧洒地涌出五道耳朵状的馄饨,随着女经理U.赫泰娆嘉妖女的晃动,耳朵 状的馄饨像棉被一样在额头上深邃地创作出团团光甲……紧接着女经理U.赫泰娆嘉妖女又转起金橙色烤鸭一般的脸,只见她凸凹的脑袋中,快速窜出五团小路状的粉 末,随着女