沪科版勾股定理说课稿共23页

合集下载

(精品教案)沪科版《勾股定理》讲课稿(精选6篇)

(精品教案)沪科版《勾股定理》讲课稿(精选6篇)

(精品教案)沪科版《勾股定理》讲课稿(精选6篇)帮大伙儿整理的沪科版《勾股定理》讲课稿(精选6篇),欢迎大伙儿借鉴与参考,希翼对大伙儿有所帮助。

勾股定理是学生在差不多掌握了直角三角形的有关性质的基础上举行学习的,它是直角三角形的一条很重要的性质,是几何中最重要的定理之一,它揭示了一具三角形三条边之间的数量关系,它能够解决直角三角形中的计算咨询题,是解直角三角形的要紧依照之一,在实际日子中用途非常大。

教材在编写时注意培养学生的动手操作能力和分析咨询题的能力,经过实际分析、拼图等活动,使学生获得较为直观的印象;经过联系和比较,明白勾股定理,以利于正确的举行运用。

据此,制定教学目标如下:1、明白并掌握勾股定理及其证明。

2、可以灵便地运用勾股定理及其计算。

3、培养学生观看、比较、分析、推理的能力。

4、经过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

教法和学法是体如今整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学日子动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生经过观看、分析、讨论、操作、归纳,明白定理,提高学生动手操作能力,以及分析咨询题和解决咨询题的能力。

3、经过演示实物,引导学生观看、操作、分析、证明,使学生得到获得新知的成功感觉,从而激发学生钻研新知的欲望。

本节内容的教学要紧体如今学生动手、动脑方面,依照学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公讲,把一根直尺折成直角,两端连接得到一具直角三角形。

假如勾是3,股是4,这么弦等于5。

如此引起学生学习兴趣,激发学生求知欲。

2、是别是所有的直角三角形都有那个性质呢?教师要善于激疑,使学生进入乐学状态。

沪科版《勾股定理》说课稿课件

沪科版《勾股定理》说课稿课件

检测题的设计与安排
基础题
设计一些关于勾股定理的基本概 念和简单应用的题目,如选择题 和填空题,以检测学生对基础知
识的掌握情况。
进阶题
设计一些稍有难度的题目,如计算 题和应用题,以检测学生对知识的 应用和解决问题的能力。
挑战题
设计一些高难度的题目,如探究题 和拓展题,以激发学生的思维和挑 战精神,同时也能检测学生的创新 能力和批判性思维。
05
教学过程设计
导入新课的设计
1 2
3
故事导入
以毕达哥拉斯发现勾股定理的传说故事作为导入,引起学生 的兴趣和好奇心。
复习导入
通过复习之前学过的三角形性质等知识,引导学生思考与勾 股定理的相关问题。
直接导入
直接介绍本节课的主题和目标,让学生明确学习任务。
新课教学的组织
探究式学习
通过引导学生进行自主探究、小组讨论等方式,深入理解勾股定理的证明和应用。
学生善于通过自主探索和合作交流学习新知识
03
教学目标设计
知识与技能目标
01
了解勾股定理的背景和 概念
02
掌握勾股定理的证明方 法
03
能够应用勾股定理解决 实际问题
过程与方法目标
通过观察、猜想、验证等方法,培养学生的数学思维能力
通过勾股定理的应用,培养学生的数学应用能力和解决问题的能力
情感态度与价值观目标
拓展练习
设计一些与实际生活相关 的题目,培养学生解决实 际问题的能力。
归纳小结的方式与内容
总结内容
回顾本节课所学的重要概念、定理和证 明方法,强调勾股定理在数学中的重要 地位。
VS
总结方法
引导学生总结探究式学习、讲解式教学、 互动式教学等方法在本节课中的应用,提 高学生的总结能力。

关于勾股定理说课稿模板集合6篇

关于勾股定理说课稿模板集合6篇

关于勾股定理说课稿模板集合6篇勾股定理说课稿篇1一、教材分析勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、教法和学法教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。

如果勾是3,股是4,那么弦等于5。

这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)作为一名教职工,通常需要用到说课稿来辅助教学,说课稿有利于教学水平的提高,有助于教研活动的开展。

怎么样才能写出优秀的说课稿呢?为了让您对于勾股定理说课稿的写作了解的更为全面,下面作者给大家分享了5篇《勾股定理》说课稿,希望可以给予您一定的参考与启发。

《勾股定理》说课稿篇一教材分析《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。

它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。

勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。

能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历观察-猜想-归纳-验证的数学过程,并从中体会数形结合及从特殊到一般的数学思想。

培养学生观察、比较、分析、推理的能力。

情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。

(三)本节课的重点:是勾股定理的发现、验证和应用。

难点:是用拼图方法、面积法证明勾股定理教法和学法教法指导:数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

使学生得到获得新知的成功感受,从而激发学生钻研新知。

勾股定理说课稿

勾股定理说课稿

《勾股定理》说课稿明光市管店中学谢凯各位评委老师大家好:我是管店中学谢凯,我今天说课的内容是沪科版八年级数学第十八章勾股定理的第一课时。

下面我主要从以下几个方面加以说明。

一、说教材(一)教材所处的地位勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

会初步运用勾股定理进行简单的计算和实际运用。

2、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

3、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:用不同方法来证明勾股定理。

教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念新课改的精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

(四)教学准备准备多媒体,学生方格纸三、教学过程设计(一)提出问题——引入新课通过欣赏2002年我国北京召开的国际数学家大会的会徽图案,引出赵爽弦图,让学生了解我国古代辉煌的数学成就,引入课题。

接下来创设一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是 2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。

《勾股定理》说课稿(优秀7篇)

《勾股定理》说课稿(优秀7篇)

《勾股定理》说课稿(优秀7篇)一、教材分析:(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一、课标要求学生必须掌握。

(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用情感态度:2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探索二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(二)、创设问题情境(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

《勾股定理》优秀说课稿(精选12篇)

《勾股定理》优秀说课稿(精选12篇)

《勾股定理》优秀说课稿(精选12篇)《勾股定理》优秀说课稿篇1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。

"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

第一、情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

第二、追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

从上面低起点的问题入手,有利于学生参与探索。

学生很容易发现,在等腰三角形中存在如下关系。

沪科版《勾股定理》说课稿课件

沪科版《勾股定理》说课稿课件
领域。
课程目标
01
02
03
知识与技能
学生能够理解勾股定理的 证明过程,掌握勾股定理 的应用方法。
过程与方法
通过观察、猜想、验证等 过程,培养学生的数学思 维能力和解决问题的能力 。
情感态度价值观
培养学生对数学的兴趣和 热爱,让学生感受到数学 的美和价值。
02
教学内容
勾股定理的起源和历史背景
起源
学生参与度
反思学生在课堂上的参与情况, 是否积极回答问题,是否主动参 与讨论,是否能够跟上课堂节奏

目标达成度
评估教学目标是否达成,是否有效 提高了学生对勾股定理的理解和应 用能力。
课堂氛围
反思课堂氛围是否活跃,师生关系 是否融洽,学生是否感受到学习的 乐趣。
教学内容的反思
知识准确性
回顾教学内容,确保传授的知识准确 无误,没有出现科学性错误。
节是否得当。
技术手段的运用
思考课件制作和教学技术的运用 是否恰当,是否有助于提高教学
效果。
THANK YOU
勾股定理起源于古代中国、古希 腊和古埃及等文明古国,是数学 史上的重要里程碑。
历史背景
勾股定理在各个历史时期都有所 发展和证明,如古希腊数学家欧 几里德在其著作《几何原本》中 给出了勾股定理的证明。
勾股定理的证明方法
毕达哥拉斯证明法
利用勾股定理,通过构造直角三角形 并应用三角函数来证明勾股定理。
欧几里德证明法
个性化教学与合作学习相结合
个性化教学
根据学生的特点和需求,采用个性化 的教学方法,满足不同学生的学习需 求。
合作学习
组织学生进行小组讨论、合作探究等 活动,促进他们之间的交流与合作, 提高学性评价与终结性评价相结合

勾股定理说课稿范文三篇

勾股定理说课稿范文三篇

勾股定理说课稿范文三篇勾股定理说课稿篇1一、教材分析勾股定理是同学在已经把握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条特别重要的性质,是几何中最重要的定理之一。

它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一。

在实际生活中用途很大,教材在编写时留意培育同学的动手操作力量和分析问题的力量,通过实际分析、拼图等活动,让同学获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并把握勾股定理及其证明。

2、能够敏捷地运用勾股定理及其计算。

3、培育同学观看、比较、分析、推理的力量。

4、通过介绍中国古代勾股方面的成就,激发同学喜爱祖国与喜爱祖国悠久文化的思想感情,培育他们的民族骄傲感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、教法和学法教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥老师的主导作用;运用各种手段激发同学学习欲望和爱好,组织同学活动,让同学主动参加学习全过程。

2、切实体现同学的主体地位,让同学通过观看、分析、争论、操作、归纳,理解定理。

提高同学动手操作力量,以及分析问题和解决问题的力量。

3、通过演示实物,引导同学观看、操作、分析、证明,使同学得到获得新知的胜利感受,从而激发同学钻研新知的欲望。

三、教学程序本节内容的教学主要体现在同学动手、动脑方面,依据同学的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,假如勾是3,股是4,那么弦等于5。

这样引起同学学习爱好,激发同学求知欲。

2、是不是全部的直角三角形都有这共性质呢?老师要擅长激疑,使同学进入乐学状态。

3、板书课题,出示学习目标。

(二)初步感知理解教材老师指导同学自学教材,通过自学感悟理解新知,体现了同学的自主学习意识,熬炼同学主动探究学问,养成良好的自学习惯。

勾股定理说课稿7篇

勾股定理说课稿7篇

Don't worry about the result, first ask yourself if you are qualified enough, and the effort must be worthy of the result. When the time is in place, the result will naturally come out.勤学乐施积极进取(页眉可删)勾股定理说课稿7篇勾股定理说课稿篇1尊敬的各位评委:您们好!我来自明光市张八岭中学。

今天我说课的课题是《勾股定理》。

本课选自九年义务教育沪科版八年级下册初中数学第十九章第一节的第一课时。

下面我从教学背景分析、教材处理、教学策略、教学流程方面对本课的设计进行说明。

一、教学背景分析1、教材分析本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过一枚1955年由希腊发行的邮票上图案的故事,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。

学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,同时在实际生活中用途也很大。

勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。

2、学情分析学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。

也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。

在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。

让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。

3、教学目标:根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

勾股定理创新说课稿

勾股定理创新说课稿

19.1 勾股定理(说课稿)尊敬的各位评委:您们好!我来自明光市张八岭中学。

今天我说课的课题是《勾股定理》。

本课选自九年义务教育沪科版八年级下册初中数学第十九章第一节的第一课时。

下面我从教学背景分析、教材处理、教学策略、教学流程方面对本课的设计进行说明。

一、教学背景分析1、教材分析本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过一枚1955年由希腊发行的邮票上图案的故事,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。

学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,同时在实际生活中用途也很大。

勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。

2、学情分析学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,三角形全等的判定等。

也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。

在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。

让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展。

3、教学目标:根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

情感态度价值观:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。

4、教学重点、难点通过研究分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。

沪科版八年级数学下册《【说课稿】 认识勾股定理》

沪科版八年级数学下册《【说课稿】 认识勾股定理》

沪科版八年级数学下册说课稿勾股定理各位评委老师大家好:今天我说课的课题是《勾股定理》,下面就教材分析、教学方法选择、学法指导、教学程序设计等四个方面,谈谈我对本课题的理解和认识。

一、教材分析(一)、教材地位作用这节课是沪科版八年级下册第十八章第一节第一课时。

勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三条边之间的数量关系,为以后学习解直角三角形奠定基础,在实际生活中用途很大。

(二)、教学目标(八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。

因此,我制定如下教学目标) 1、知识与技能目标(1)理解并掌握勾股定理的内容和证明,能够运用勾股定理进行简单计算和运用;(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2、过程与方法目标在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。

3、情感态度与价值观目标(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源突出介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(3)培养数形结合的思想。

(三)、教学重点及难点【教学重点】勾股定理的证明与运用【教学难点】用面积法和拼图法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难二、教学方法及教学手段的选择针对八年级学生的认知结构和心理特征,本节课选择“引导探索法”,由浅到深,由特殊到一般的提出问题,引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。

勾股定理说课稿

勾股定理说课稿

勾股定理说课稿 The latest revision on November 22, 2020文稿说课题目《勾股定理》教师姓名:;学校名称:蚌埠尊敬的各位评委老师,您们好,我是经开区。

今天我说课的课题是《勾股定理》,它选自沪科版数学八年级下册第十八章第一节。

下面,我将从教材、学情、教法与学法、教学过程设计、教学反思与自我评价,这五个方面来阐述我对本节课的理解与设计。

一、说教材(一)教材的地位本节课为沪科版八年级数学下册第十八章第一节,勾股定理是人类数学最伟大的发现之一,也是几何学中最重要最基本的定理之一,它揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,它又把形的特征转化成数量关系,架起了几何与代数之间的桥梁。

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

(二)教学目标1.在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会实验探究、由特殊到一般的思想方法。

2.会初步使用勾股定理进行计算和实际运用。

3.通过引导学生阅读中国古代对勾股定理的研究,激发他们的爱国热情,激励学生奋发学习。

(三) 教学重难点教学重点: 勾股定理的探索过程及应用。

教学难点: 面积法证明勾股定理二、说学情学情分析:八年级学生已经学过直角三角形以及三角形的三边关系,根据已有的知识储备,他们有能力利用面积法直观、形象的证明勾股定理。

思维特点上,八年级学生已经具有一定的几何图形观察能力、抽象思维能力、逻辑推理能力。

他们更希望老师可以创设问题情境,引发他们思考、引导他们实验操作,给他们发表自己见解和展示能力的机会,这也符合了中学生的心理特点。

三、说教法与学法教法:为了使学生经历观察、思考、交流等实践活动,教学过程中,我使用多媒体辅助教学法、探究式教学法,由浅入深,由特殊到一般,形成勾股定理的猜想,再用面积法证明勾股定理。

学法:根据新课标的理念以及本节课的特点,以问题的提出、解决为主线,倡导学生积极参与、自主、合作、探究学习,在师生互动中,让学习过程成为主动认知过程,提升学生的参与度、拓展思维的深度及广度。

《勾股定理》说课稿(8篇)

《勾股定理》说课稿(8篇)

《勾股定理》说课稿(8篇)《勾股定理》说课稿篇1一、教材分析:〔一〕本节内容在全书和章节的地位这节课是九年制义务教育课程标准试验教科书〔华东版〕,八班级第十九章其次节“勾股定理”第一课时,勾股定理是同学在已经把握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条特别重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要根据之一,在实际生活中用处很大。

教材在编写时留意培育同学的动手操作力量和观看分析问题的力量;通过实际分析,拼图等活动,使同学获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

〔二〕三维教学目标:1、【学问与力量目标】⒈理解并把握勾股定理的内容和证明,能够敏捷运用勾股定理及其计算;⒉通过观看分析,大胆猜测,并探究勾股定理,培育同学动手操作、合作沟通、规律推理的力量。

2、【过程与方法目标】在探究勾股定理的过程中,让同学经受“观看—猜测—归纳—验证”的数学思想,并体会数形结合和从特别到一般的思想方法。

3、【情感看法与价值观】通过介绍中国古代勾股方面的成就,激发同学喜爱祖国和喜爱祖国悠久文化的思想感情,培育同学的民族骄傲感和钻研精神。

〔三〕教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要同学通过动手操作,在观看的基础上,大胆猜测数学结论,而这需要同学具备肯定的分析、归纳的思维方法和运用数学的思想意识,但同学在这一方面的可预见性和耐挫折力量并不是很成熟,从而形成困难。

【突破措施】:⒈创设情景,激发思维:创设生动、启发性的问题情景,激发同学的问题冲突,让同学在感到“好玩”、“有意思”的状态下进入学习过程;⒉自主探究,敢于猜测:充分让自己动手操作,大胆猜测数学问题的结论,老师是整个活动的组织者,更是一位参入者,同学之间互相沟通、协作,从而形成生动的课堂环境;⒊张扬独特,展现风采:实行“小组合作制”,各小组中自己推举一人担当“发言人”,一人担当“书记员”,在商量结束后,由小组的“发言人”汇报本小组的商量结果,并可上台利用“多媒体视频展现台”展现本组的优秀作品,其他小组赐予评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档