人教版初中数学《勾股定理》说课稿
勾股定理人教版优秀说课稿
勾股定理人教版优秀说课稿尊敬的评委老师、各位同仁:大家好!今天,我将为大家说课一节数学课,主题是“勾股定理”。
这一课程内容选自人教版初中数学教材,是学生在几何学习中的一个重要里程碑。
接下来,我将从教材分析、教学目标、教学重点与难点、教学方法、教学过程及板书设计六个方面进行详细阐述。
教材分析:勾股定理是初中数学中几何部分的核心知识点,它描述了直角三角形三边之间的关系。
在教材中,勾股定理不仅是一个独立的知识点,而且也是解决后续几何问题的基础工具。
通过对勾股定理的学习,学生能够更好地理解空间形状,培养空间想象能力和逻辑推理能力。
教学目标:1. 知识与技能目标:使学生理解并掌握勾股定理的概念和公式,能够运用定理解决直角三角形边长问题。
2. 过程与方法目标:培养学生通过观察、实验、归纳总结几何定理的能力。
3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生勇于探索和合作交流的精神。
教学重点与难点:教学重点是勾股定理的概念理解和实际应用。
教学难点在于如何引导学生从具体例子中归纳出定理,并能够灵活运用于不同的问题解决中。
教学方法:本节课将采用启发式教学法和探究式学习法,通过观察、操作、讨论等多种教学活动,引导学生主动探究和发现勾股定理,同时结合实例进行讲解和练习,以加深学生对定理的理解和应用。
教学过程:1. 导入新课- 通过回顾三角形的基本知识,引出直角三角形的特点。
- 展示生活中的直角三角形实例,激发学生兴趣。
2. 探究新知- 利用多媒体展示直角三角形的面积分割,引导学生发现勾股定理。
- 组织学生分组讨论,通过实际操作验证勾股定理。
3. 讲解勾股定理- 明确勾股定理的内容和适用范围。
- 通过例题演示,讲解定理的应用方法。
4. 巩固练习- 安排相关练习题,让学生独立完成,巩固新知识。
- 教师巡回指导,及时解答学生疑问。
5. 总结归纳- 总结勾股定理的知识点,强调其在数学学习中的重要性。
- 鼓励学生分享学习心得,进行课堂小结。
人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿
人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是中学数学中一个非常重要的定理。
勾股定理揭示了直角三角形三边之间的数量关系,即直角边的平方和等于斜边的平方。
这一定理在我国古代就已经被发现,并有详细的证明。
在本节课中,学生将通过探究和证明来理解和掌握勾股定理,并能够运用它解决实际问题。
二. 学情分析在进入本节课的学习之前,学生已经学习了平面几何的基本概念,对三角形、直角三角形等有一定的了解。
同时,他们已经学习了平方根的概念,能够进行简单的平方运算。
但是,对于勾股定理的证明和应用,他们可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导他们通过探究和思考来理解和掌握勾股定理。
三. 说教学目标1.知识与技能目标:学生能够理解勾股定理的内容,并能够进行简单的证明。
2.过程与方法目标:学生通过探究和证明,培养逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:学生体验到数学的趣味性和魅力,增强对数学学习的兴趣。
四. 说教学重难点1.教学重点:学生能够理解和掌握勾股定理的内容。
2.教学难点:学生能够进行勾股定理的证明,并能够运用它解决实际问题。
五.说教学方法与手段在本节课的教学中,我将采用探究式教学法和启发式教学法。
通过引导学生进行自主探究和思考,激发他们的学习兴趣和动力。
同时,我将运用多媒体教学手段,如PPT、几何画板等,为学生提供直观的学习材料,帮助他们更好地理解和掌握勾股定理。
六.说教学过程1.导入:通过一个实际问题,引导学生思考直角三角形三边之间的关系。
2.探究:引导学生进行小组讨论,鼓励他们用自己的方法来证明勾股定理。
3.讲解:对学生的探究结果进行点评,并给出标准的证明过程。
4.练习:为学生提供一些练习题,帮助他们巩固所学内容。
5.应用:引导学生运用勾股定理解决实际问题,如测量物体的高度等。
七.说板书设计板书设计如下:直角三角形两直角边的平方和等于斜边的平方。
人教版数学八年级下册17.1勾股定理说课稿
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设情境:通过引入生活中的实际问题,让学生感受到勾股定理在实际应用中的价值,提高他们的学习兴趣。
2.合作探究:组织学生进行小组合作,共同探讨勾股定理的证明过程,培养学生的合作精神和探究能力。
2.勾股定理的证明:采用探究式教学法,引导学生通过观察、实验、分析等方法,自主探究勾股定理的证明过程。
3.勾股数的应用:结合实例,讲解如何利用勾股定理解决实际问题,如计算直角三角形的斜边长度等。
(三)巩固练习
我计划设计以下巩固练习或实践活动,以帮助学生巩固所学知识并提升应用能力:
1.课堂练习:设计勾股定理相关的习题,让学生独立完成,检验他们对勾股定理的理解程度。
为确保板书清晰、简洁,我将采取以下措施:
1.课前精心准备,明确板书内容和结构。
2.课堂上适时更新板书,避免一次性呈现过多信息。
3.使用不同颜色粉笔标出重点,提高视觉冲击力。
4.保持书写规范,确保字迹清晰可辨。
(二)教学反思
在教学过程中,我预见到以下可能出现的问题或挑战:
1.学生对勾股定理证明过程的理解可能存在困难。
二、学情分析导
(一)学生特点
本节课面向的是八年级学生,这个年龄段的学生正处于青春期,思维活跃,好奇心强,具备一定的独立思考能力。他们的认知水平逐渐从具体运算向形式运算过渡,对于抽象概念的理解能力有所提升。在学习兴趣方面,学生对新鲜事物充满兴趣,喜欢探索和发现,但学习习惯尚需进一步培养,尤其是自主学习能力和合作学习能力。
这些媒体资源在教学中的作用是:丰富教学形式,提高学生的学习兴趣;直观展示抽象概念,降低学习难度;拓展学习资源,提高学习效果。
勾股定理说课稿范文7篇
勾股定理说课稿范文7篇勾股定理说课稿范文7篇作为一位优秀的人民教师,通常会被要求编写说课稿,借助说课稿我们可以快速提升自己的教学能力。
说课稿要怎么写呢?下面是小编为大家收集的勾股定理说课稿范文7篇,仅供参考,欢迎大家阅读。
勾股定理说课稿范文7篇1各位专家领导:上午好,今天我说课的课题是《勾股定理》一、教材分析:(一)本节内容在全书和章节的地位这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。
勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:1.【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2. 【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:【教学重点】勾股定理的证明与运用【教学难点】用面积法等方法证明勾股定理【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。
人教版数学八年级下册17.1《勾股定理》说课稿1
人教版数学八年级下册17.1《勾股定理》说课稿1一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,属于几何学的范畴。
本节内容主要介绍勾股定理的发现、证明及应用。
勾股定理是数学史上重要的定理之一,对于培养学生的逻辑思维能力、空间想象能力具有重要意义。
通过学习本节内容,学生可以了解古代数学家的智慧,提高对数学的兴趣和自信心。
二. 学情分析八年级的学生已经掌握了初中阶段的基本几何知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于勾股定理的证明及应用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生进行引导和帮助,使他们在课堂上充分理解和掌握勾股定理。
三. 说教学目标1.知识与技能:使学生了解勾股定理的发现过程,掌握勾股定理的内容及证明方法,能运用勾股定理解决实际问题。
2.过程与方法:通过观察、猜想、证明等环节,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生尊重和传承古代数学文化的意识。
四. 说教学重难点1.教学重点:勾股定理的内容、证明方法及应用。
2.教学难点:勾股定理的证明方法,特别是利用几何画板等工具进行动态演示的能力。
五. 说教学方法与手段1.教学方法:采用问题驱动、启发式教学法,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、几何画板等工具,进行生动形象的展示和讲解。
六. 说教学过程1.导入:以古代数学家勾股的故事为切入点,激发学生对勾股定理的兴趣。
2.新课讲解:(1)介绍勾股定理的发现过程,让学生了解古代数学家的智慧。
(2)讲解勾股定理的内容,让学生掌握直角三角形三边之间的关系。
(3)引导学生通过观察、猜想、证明等环节,理解并掌握勾股定理的证明方法。
3.课堂练习:布置一些有关勾股定理的应用题,让学生巩固所学知识。
4.总结:对本节课的内容进行梳理,强调勾股定理的重要性和应用价值。
勾股定理优秀说课稿
勾股定理优秀说课稿尊敬的各位评委老师:大家好!今天我说课的内容是勾股定理。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析勾股定理是初中数学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。
本节课是在学生已经学习了直角三角形的相关性质的基础上进行的,为后续学习解直角三角形以及三角函数等知识奠定了基础。
本节课的教材内容编排注重从实际问题引入,通过观察、猜想、验证等活动,引导学生逐步发现勾股定理。
同时,教材还配备了丰富的例题和练习,帮助学生巩固所学知识,提高应用能力。
二、学情分析在学习本节课之前,学生已经掌握了直角三角形的一些基本性质,如直角三角形的两个锐角互余等。
同时,学生也具备了一定的观察、分析和推理能力。
但是,对于勾股定理的证明和应用,学生可能会存在一定的困难。
因此,在教学过程中,要注重引导学生通过自主探究和合作交流来理解和掌握勾股定理。
三、教学目标1、知识与技能目标(1)理解勾股定理的内容,能够用数学语言表达勾股定理。
(2)掌握勾股定理的证明方法,能够运用勾股定理解决简单的数学问题。
2、过程与方法目标(1)通过观察、猜想、验证等活动,培养学生的观察能力、分析能力和推理能力。
(2)通过自主探究和合作交流,培养学生的创新意识和合作精神。
3、情感态度与价值观目标(1)让学生在探索勾股定理的过程中,体验数学的乐趣,激发学生学习数学的兴趣。
(2)通过介绍勾股定理的历史,培养学生的民族自豪感和爱国主义精神。
四、教学重难点1、教学重点勾股定理的内容及其证明。
2、教学难点勾股定理的证明。
五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式教学法、探究式教学法和讲练结合法。
通过创设问题情境,引导学生观察、思考、猜想、验证,从而理解和掌握勾股定理。
2、学法在教学过程中,我将注重引导学生采用自主探究法、合作交流法和归纳总结法。
让学生在自主探究和合作交流中,发现问题、解决问题,从而提高学生的学习能力和创新能力。
《勾股定理》说课稿(通用6篇)精选全文
可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。
今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。
”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
初中数学《勾股定理》说课稿5篇
初中数学《勾股定理》说课稿5篇初中数学《勾股定理》说课稿1一、教材分析^p :〔一〕、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有非常广泛的应用,同时在应用中浸透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
课标要求学生必须掌握。
〔二〕、教学目的:根据数学课标的要求和教材的详细内容,结合学生实际我确定了本节课的教学目的。
知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理断定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探究,经历知识的发生、开展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联络,感受定理与逆定理之间的和谐及辩证统一的关系2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,浸透与别人交流、合作的意识和探究精神〔三〕、学情分析^p :尽管已到初二下学期学生知识增多,才能增强,但思维的局限性还很大,才能也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探究二、教学过程:本节课的设计原那么是:使学生在动手操作的根底上和合作交流的良好气氛中,通过巧妙而自然地在学生的认识构造与几何知识构造之间筑了一个信息流通渠道,进而到达完善学生的数学认识构造的目的。
勾股定理说课稿人教版
勾股定理说课稿人教版勾股定理可是咱数学世界里的大明星!它出现在人教版八年级下册第十七章。
这定理揭示了直角三角形三边之间的神秘关系,那就是两条直角边的平方和等于斜边的平方。
学会它,不仅能解决好多几何问题,还能让咱感受到数学的神奇魅力。
说学情咱大学生那可是充满好奇和探索精神的!之前已经学过三角形的一些基础知识,这就为理解勾股定理打下了小基础。
不过呢,要真正掌握这定理的证明和应用,还得下点功夫,发挥咱们的逻辑思维和空间想象力。
说教学目标1. 知识与技能目标得让大家理解并掌握勾股定理的内容,会用它来计算直角三角形的边长。
2. 过程与方法目标通过探索勾股定理的过程,培养咱们的观察、猜想、归纳和验证能力。
3. 情感态度与价值观目标感受数学的严谨性和科学性,激发对数学的热爱,体会数学在生活中的应用价值。
说教学重难点1. 重点勾股定理的内容和应用,这可是必须拿下的硬骨头!2. 难点勾股定理的证明,这可得好好琢磨琢磨。
说教法我打算用启发式教学法,引导大家自己去思考、探索。
再结合多媒体演示,让抽象的知识变得更直观。
说学法大家得主动参与,小组合作交流,大胆猜想,小心求证。
说教学过程1. 导入先给大家讲个小故事,比如古代的木匠是怎么用勾股定理来测量直角的,引起大家的兴趣。
2. 探究给出几个直角三角形,让大家测量三边的长度,然后算一算,猜猜三边之间有啥关系。
3. 证明一起探讨几种证明勾股定理的方法,比如赵爽弦图。
4. 应用通过例题和练习,让大家学会用勾股定理解决实际问题,比如求旗杆的高度。
5. 总结回顾勾股定理的内容、证明和应用,强调重点。
6. 作业布置一些有针对性的作业,巩固所学知识。
说教学反思上完课得好好想想,教学方法是不是有效,大家有没有真的掌握,哪里还需要改进,争取下次教得更好!。
《勾股定理》优秀说课稿
《勾股定理》优秀说课稿《勾股定理》优秀说课稿篇一一、教学目标(一)知识点1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。
2、会利用勾股定理解释生活中的简单现象。
(二)能力训练要求1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。
2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。
(三)情感与价值观要求1、培养学生积极参与、合作交流的意识。
2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的`勇气。
二、教学重、难点重点:探索和验证勾股定理。
难点:在方格纸上通过计算面积的方法探索勾股定理。
三、教学方法交流探索猜想。
在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。
四、教具准备1、学生每人课前准备若干张方格纸。
2、投影片三张:第一张:填空(记作1.1.1 A);第二张:问题串(记作1.1.1 B);第三张:做一做(记作1.1.1 C)。
五。
教学过程Ⅰ。
创设问题情境,引入新课出示投影片(1.1.1 A)(1)三角形按角分类,可分为_________、_________、_________。
(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?《勾股定理》说课稿篇二一、说教材分析1.教材的地位和作用华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。
因此他的教育教学价值就具体体现在如下三维目标中:知识与技能:1、经历勾股定理的探索过程,体会数形结合思想。
人教版八年级数学勾股定理说课稿范文(精选5篇)
人教版八年级数学勾股定理说课稿范文(精选5篇)人教版八年级数学《勾股定理》说课稿范文(精选5篇)作为一名专为他人授业解惑的人民教师,通常会被要求编写说课稿,是说课取得成功的前提。
那么优秀的说课稿是什么样的呢?以下是小编整理的人教版八年级数学《勾股定理》说课稿范文,仅供参考,希望能够帮助到大家。
八年级数学《勾股定理》说课稿1(一)教材分析⒈教材的地位和作用《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。
它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
⒈教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,能够灵活地运用勾股定理及其计算。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。
培养学生观察、比较、分析、推理的能力。
情感态度与价值观:通过介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,在探索问题的过程中,培养学生的合作交流意识和探索精神。
3.重点和难点勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。
本节课主要是对勾股定理的探索和勾股定理的证明。
勾股定理的证明方法很多,本节课介绍的是等积法。
通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。
因此本节课的重点:是勾股定理的发现、验证和应用。
八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。
勾股定理说课稿
勾股定理说课稿一、教学内容本节课的教学内容选自人教版初中数学九年级上册第二章《直角三角形》的第三节《勾股定理》。
本节课的主要内容是让学生掌握勾股定理的证明过程,理解并熟练运用勾股定理解决实际问题。
二、教学目标1. 理解勾股定理的内容,掌握勾股定理的证明过程。
2. 能够运用勾股定理解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。
三、教学难点与重点重点:勾股定理的证明过程,勾股定理的应用。
难点:勾股定理的证明过程的理解,勾股定理在实际问题中的应用。
四、教具与学具准备教具:黑板、粉笔、直尺、三角板、多媒体设备。
学具:笔记本、直尺、三角板、练习题。
五、教学过程1. 实践情景引入:让学生观察教室里的直角三角形,如三角板、门框等,引导学生思考直角三角形之间的关系。
2. 知识讲解:讲解勾股定理的证明过程,引导学生理解并掌握勾股定理。
3. 例题讲解:讲解运用勾股定理解决问题的例子,让学生随堂练习。
4. 练习巩固:布置一些运用勾股定理解决问题的练习题,让学生独立完成,及时给予反馈和讲解。
6. 课后作业:布置一些运用勾股定理解决问题的作业题,让学生巩固所学知识。
六、板书设计板书设计如下:1. 勾股定理的定义直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的证明过程(此处展示勾股定理的证明过程,如赵爽弦图等)3. 勾股定理的应用(此处展示运用勾股定理解决问题的例子)七、作业设计(1)直角边分别为3cm和4cm的直角三角形,求斜边的长度。
(2)直角边分别为5m和12m的直角三角形,求斜边的长度。
答案:(1)斜边长度为5cm。
(2)斜边长度为13m。
一座灯塔位于海边,离海岸线有3km远,人与灯塔之间的最短距离是4km。
问此人距离海岸线的最远距离是多少?答案:此人距离海岸线的最远距离是5km。
八、课后反思及拓展延伸本节课通过观察实际问题,引导学生思考直角三角形之间的关系,进而讲解勾股定理的证明过程,让学生理解并掌握勾股定理。
《勾股定理》说课稿(优秀5篇)
《勾股定理》说课稿(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《勾股定理》说课稿(优秀5篇)作为一名无私奉献的老师,总不可避免地需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。
人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿
3.教师评价:针对学生的表现,给予积极的反馈和鼓励,指出学生的不足之处,并提出改进建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一定数量的基础习题,让学生巩固勾股定理的计算方法。
2.提高作业:设计一些拓展性题目,让学生运用勾股定理解决实际问题,提高学生的应用能力。
1.主要内容:左侧包括勾股定理的定义、勾股数;中间部分展示勾股定理的证明过程、例题及解题步骤;右侧部分呈现本节课的总结和勾股定理应用时的注意事项。
2.风格:板书采用简洁明了的字体,用不同颜色粉笔区分重点、难点和关键步骤,以增强视觉效果。
3.作用:板书在教学过程中的作用是引导学生关注教学重点,帮助学生理清知识结构,便于复习和回顾。
3.技术工具:电子白板、几何画板等,方便学生直观地观察和操作几何图形,提高课堂互动性。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂提问环节,教师引导学生思考问题,学生回答问题,教师给予反馈和指导。
2.生生互动:将学生分成小组,进行合作探究、讨论。在小组内,学生共同分析问题、解决问题,相互交流想法,达成共识。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的团队协作能力和解决问题的能力。
3.实践活动:让学生分组测量学校周围建筑物中的直角三角形,计算其边长,并验证勾股定理。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生回顾本节课的学习内容,进行自我评价,总结自己在学习过程中的收获和不足。
在课程体系中,勾股定理的学习是在学生已经掌握了直角三角形的基本概念、三角形面积计算以及相似三角形的基础上展开的。通过本节课的学习,学生将对直角三角形有更深入的理解,为后续学习平面几何中与直角三角形相关的内容奠定基础。
勾股定理说课稿(优秀7篇)
勾股定理说课稿(优秀7篇)一、教材分析(一)教材地位与作用勾股定理它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发爱国热情,体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。
另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。
把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、教学过程设计1、创设情境,提出问题2、实验操作,模型构建3、回归生活,应用新知4、知识拓展,巩固深化5、感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
勾股定理说课稿3 人教版(精品篇)
《勾股定理》说课稿一、说教材:1、教材的地位和作用今天我所说的课题是人教版八年级下册《勾股定理》的第一课时。
《勾股定理》和《三角形内角和定理》被誉为初等几何中的两大基本定理,它在已经学习的三角形有关概念、全等的基础上,又进一步的刻画了直角三角形的三边关系。
它对研究直角三角形、四边形、多边形、圆中都有着极为重要的意义,因此《勾股定理》为初等几何的后续学习奠定了基础。
本节课很大程度上提供了培养学生的数学思维、发展空间观念和提高实践探究能力的机会;同时勾股定理在生产生活领域中也有着很大的实用价值,通过对生活中实际问题的解决,突出人人学有价值数学的思想。
2、教学目标本节课的三维目标是:知识目标:了解勾股定理的文化背景,体验勾股定理的探索过程,能用勾股定理解决一些简单的实际问题。
能力目标:在勾股定理的探索过程中,发展合情推理能力;发展由特殊到一般的数学归纳思想;掌握面积法在几何问题中的运用;体会数形结合思想,发展空间观念。
情感目标:通过对勾股定理历史的了解,感受数学文化、激发学习热情,在探究过程中培养学生的探究能力和合作交流意识。
3、教学重点、难点由于学生数形结合思想薄弱,面积法解决问题的能力欠缺,所以勾股定理的探究过程即是本节课的重点,又是难点。
二、说教法因此,根据教材特点和学生的认知规律,在教法设计上,我提供了生动有趣的活动情景,激发学生的学习兴趣。
采用实践探究式教学方法,把学生的探究与验证活动放在首位,一方面要求学生在教师的引导下,自主探索、合作交流、挖掘内在潜能;另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的。
三、说学法“学习任何东西,最好的途径是自己去发现”,在勾股定理的探索过程中以学生的动手实践、自主探索、合作交流为主要的学习方式,学生通过独立操作、观察、计算、探讨、交流发现勾股定理,并提出猜想。
在拼图过程中验证勾股定理,感受知识构建的过程,发展空间观念和数学思维能力。
勾股定理优秀说课稿
勾股定理优秀说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是勾股定理。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析勾股定理是初中数学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。
本节课是在学生已经学习了直角三角形的相关性质和三角形全等的基础上进行的,为后续学习解直角三角形以及三角函数等知识奠定了基础。
在教材的编排上,通过让学生观察、猜想、验证等活动,引导学生自主探究勾股定理,培养学生的动手能力和逻辑推理能力。
同时,教材还注重了数学文化的渗透,介绍了勾股定理的历史背景和相关数学史,激发学生的学习兴趣和民族自豪感。
二、学情分析八年级的学生已经具备了一定的观察、分析和推理能力,但对于抽象的数学定理的理解和应用还存在一定的困难。
在学习过程中,学生可能会出现对定理的证明过程理解不透彻、在实际问题中不会运用定理等问题。
因此,在教学中要注重引导学生通过动手操作、小组合作等方式,帮助学生理解和掌握勾股定理。
三、教学目标1、知识与技能目标理解勾股定理的内容,能够运用勾股定理解决简单的直角三角形问题。
2、过程与方法目标通过观察、猜想、验证等活动,培养学生的动手能力、逻辑推理能力和数学探究能力。
3、情感态度与价值观目标感受数学文化的魅力,激发学生的学习兴趣和民族自豪感,培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点勾股定理的内容及证明。
2、教学难点勾股定理的证明及应用。
五、教法与学法1、教法为了突出重点、突破难点,我将采用启发式教学法、探究式教学法和直观演示法相结合的教学方法。
通过创设问题情境,引导学生自主探究、合作交流,让学生在实践中体验知识的形成过程。
2、学法在学法指导上,我将引导学生采用自主学习、合作学习和探究学习相结合的学习方式。
让学生在动手操作、观察思考、讨论交流中,提高学生的学习能力和思维能力。
六、教学过程(一)创设情境,引入新课首先,我通过多媒体展示一个直角三角形的图片,并提出问题:“如果已知直角三角形的两条直角边的长度,如何求出斜边的长度呢?”引发学生的思考,从而引出本节课的课题——勾股定理。
人教版数学八年级下册17.1第1课时《勾股定理》说课稿
人教版数学八年级下册17.1第1课时《勾股定理》说课稿一. 教材分析《勾股定理》是人教版数学八年级下册17.1第1课时的重要内容。
这部分内容主要让学生了解并证明勾股定理,理解勾股定理在几何学中的重要性。
教材通过引入直角三角形和斜边的关系,引导学生探究并证明勾股定理。
二. 学情分析学生在学习本课时,已经掌握了实数、方程、不等式等基础知识,具备一定的逻辑思维和探究能力。
但对于证明勾股定理,可能需要一定的时间去理解和消化。
因此,在教学过程中,需要关注学生的学习情况,适时给予引导和帮助。
三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,学会用勾股定理解决实际问题。
2.过程与方法:通过探究、证明勾股定理,培养学生的逻辑思维和探究能力。
3.情感态度与价值观:激发学生对数学的兴趣,感受数学在生活中的应用。
四. 说教学重难点1.教学重点:掌握勾股定理的内容及其应用。
2.教学难点:理解并证明勾股定理。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、讲解法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过一个实际问题,引出直角三角形和斜边的关系,激发学生的兴趣。
2.探究:引导学生分组讨论,探究勾股定理的证明方法。
3.讲解:讲解勾股定理的证明过程,解释勾股定理的意义和应用。
4.练习:让学生通过练习题,巩固对勾股定理的理解。
5.总结:对本节课的内容进行总结,强调勾股定理的重要性。
七. 说板书设计板书设计要简洁明了,突出勾股定理的关键信息。
主要包括:1.勾股定理的定义2.勾股定理的证明过程3.勾股定理的应用示例八. 说教学评价教学评价主要通过以下几个方面进行:1.学生对勾股定理的理解程度。
2.学生能否运用勾股定理解决实际问题。
3.学生在课堂中的参与程度和合作能力。
九. 说教学反思在教学过程中,要关注学生的学习情况,适时调整教学方法和节奏。
对于学生的反馈,要及时给予指导和鼓励。
在课后,要反思教学效果,查找不足,不断提高教学质量。
勾股定理的说课稿
勾股定理的说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是勾股定理。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计以及教学反思这几个方面来展开我的说课。
一、教材分析勾股定理是数学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。
本节课是在学生已经学习了直角三角形的相关性质和三角形全等的基础上进行的,为后续学习解直角三角形以及利用勾股定理解决实际问题奠定了基础。
在教材的编排上,通过让学生观察直角三角形的三边关系,引导学生进行猜想和验证,逐步得出勾股定理的内容。
教材注重培养学生的探究能力和逻辑推理能力,体现了数学知识的形成过程。
二、学情分析八年级的学生已经具备了一定的观察、分析和归纳能力,但他们的抽象思维能力和逻辑推理能力还相对较弱。
在学习勾股定理之前,学生已经掌握了直角三角形的基本性质和三角形全等的知识,这为学习勾股定理提供了知识储备。
然而,对于勾股定理的证明和应用,学生可能会存在一定的困难,需要教师进行适当的引导和启发。
三、教学目标1、知识与技能目标(1)理解勾股定理的内容,会用面积法证明勾股定理。
(2)能够运用勾股定理进行简单的计算和实际应用。
2、过程与方法目标(1)经历勾股定理的探索过程,培养学生的观察、猜想、归纳和验证能力。
(2)通过对勾股定理的证明,体会数学中的数形结合思想和转化思想。
3、情感态度与价值观目标(1)通过对勾股定理的探索,培养学生的学习兴趣和勇于探索的精神。
(2)让学生感受数学的严谨性和数学知识在实际生活中的广泛应用,增强学生的应用意识和自信心。
四、教学重难点1、教学重点勾股定理的内容及证明。
2、教学难点勾股定理的证明及应用。
五、教法与学法1、教法(1)情境教学法:通过创设情境,激发学生的学习兴趣,引导学生主动探究。
(2)启发式教学法:在教学过程中,通过提问、引导等方式,启发学生思考,培养学生的思维能力。
(3)多媒体辅助教学法:运用多媒体课件展示图形的变化和推理过程,帮助学生更好地理解和掌握知识。
新人教版勾股定理说课稿
新人教版勾股定理说课稿尊敬的各位评委、老师,大家好!今天,我将为大家说课新人教版数学教材中的一个非常重要的知识点——勾股定理。
勾股定理是初中数学的重要内容,对于培养学生的空间观念和逻辑推理能力具有重要意义。
接下来,我将从教材分析、教学目标、教学重点与难点、教学方法、教学过程及板书设计等方面进行详细阐述。
教材分析新人教版数学教材将勾股定理安排在初中二年级下学期,学生在此之前已经学习了三角形的基本概念、直角三角形的性质以及实数的运算等相关知识。
这为勾股定理的学习奠定了基础。
勾股定理不仅是解决直角三角形问题的关键,也是后续学习三角函数、解析几何等高级数学知识的基础。
教学目标1. 知识与技能目标:使学生理解并掌握勾股定理的概念、公式及其证明方法,能够运用勾股定理解决实际问题。
2. 过程与方法目标:培养学生通过观察、实验、推理等方法探究数学问题的能力,提高学生的逻辑思维和空间想象能力。
3. 情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的合作精神和科学态度。
教学重点与难点1. 教学重点:勾股定理的概念、公式及其证明方法。
2. 教学难点:勾股定理的证明过程以及在实际问题中的应用。
教学方法本节课将采用启发式教学法、探究式学习法和合作学习法相结合的方式进行教学。
通过提出问题、引导学生自主探究、小组合作交流,帮助学生构建知识体系,深化理解。
教学过程1. 导入新课通过回顾三角形的相关知识,特别是直角三角形的性质,引出勾股定理的概念。
可以通过提问学生已知的直角三角形边长关系,激发学生的兴趣和好奇心。
2. 探究新知首先,通过观察和实验,引导学生发现直角三角形两直角边的平方和等于斜边的平方这一规律。
然后,通过几何证明,让学生理解勾股定理的证明过程。
在此过程中,教师可以适时提供辅助线和提示,帮助学生完成证明。
3. 巩固练习设计一系列勾股定理的应用题,让学生在小组内合作完成。
这些题目应涵盖不同的类型,包括直接应用勾股定理、结合其他几何知识解决问题等,以检验学生对勾股定理的理解和运用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学《勾股定理》说课稿尊敬的各位评委、老师:
上午好!今天我说课的课题是《勾股定理》,我将从说教材,说教学任务,说教学过程及说远程教育资源在教学中的应用四个方面说课。
首先,说教材。
《勾股定理》是人教版新课标第十八章第一节的内容,是中学数学几个重要定理之一。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。
其次,说教学任务。
根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。
知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法,应用网络查询资料。
过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。
情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生爱国情感。
在探索问题的过程中,培养学生的合作交流意识和探索精神。
本节课的重点是勾股定理的发现、验证和应用。
难点是用拼图方法、面积法证明勾股定理。
教学工具使用勾股定理拼图模具以及学件,而多媒体辅助工具为
多媒体网络教室和课件。
为了实现教学目标,突出教学重点,突破教学难点,在教学中我以“问题情境-分析探究-得出猜想-总结升华”为主线展开。
而学法主要采用启发探究法、合作法、情境法。
第三,说教学过程。
整个教学过程打算分为以下八个活动。
活动一,展示两幅图片,第一幅图片为我国著名数学家华罗庚教授提议的向宇宙发射的勾股定理的图形,用来与外星人联系。
第二幅图片为2002年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。
这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。
为什么要引入这两幅图呢?带着这个问题进入活动二。
活动二,通过讲述毕达哥拉斯的故事来进一步激发学生的学习兴趣,使学生在不知不觉中进入探究学习的最佳状态。
然后提出三个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。
问题一:在图中你能发现那些基本图形?同学可以发现等腰直角三角形。
问题二:与等腰直角三角形相邻的正方形面积之间有怎样的关系?同学通过直接数等腰直角三角形的个数可以得出A的面积加上B的面积等于C 的面积。
从而得到。
紧接着抛出第三个问题:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?同学可以很快得出:等腰直角三角形两直角边的平方和等于斜边的平方。
“问题是思维的起点”,通过层层设问,引导学生发现新知。
等腰直角三角形
三边具有这样的特殊关系,那么一般的直角三角形呢?我们进入活动三。
活动三,为了学生方便计算,将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。
在计算C的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。
当同学顺利的计算出六个正方形的面积之后,可以发现,正方形A、B的面积之和等于正方形C的面积。
从而得到。
此时进一步发问,如果直角三角形的两条直角边并不是正整数,仍然满足吗?引入几何画板。
老师首先进行演示,拖动点A或点B,我们可以发现,虽然a、b、c的长度在发生变化,但是始终满足。
然后可以通过多媒体网络教室将几何画板发送到学生的桌面上,让学生自己动手操作,学生通过几何画板验证出一般的直角三角形三边也满足之后,并可以请个别学生进行演示。
这样的设计渗透了从特殊到一般的数学思想,让学生参与到数学活动中。
培养学生的类比迁移能力。
活动四,严格的几何验证。
同学容易受前面知识的影响,想去构造以a、b、c三边为边长的正方形,从而验证正方形A的面积与正方形B的面积之和等于正方形C的面积。
当同学经过一段时间的思考之后发现,这种证明存在一定的难度。
此时,老师加以引导,在八年级上学期我们也曾经学习过用面积法证明公式的成立,就是完全平方公式。
(出示图形)大正方形的面积既可以表示为,也可以表示为。
也就是说,大正方形的面积可以用两种不同的方法表示,从而我们就
得到面积法证明的实质:同一面积用两种的不同的方法计算,结果相同。
此时,老师发放勾股定理拼图模具,让同学试试看,能不能仿照上面的例子,利用手中的纸质模具拼一拼,拼出一个规则图形,使得它的面积能用两种不同的方法表示。
当学生利用纸质模具拼出之后,可以利用多媒体网络教室将比拼平台发送到学生桌面,让他们利用电脑进行拼图,此时可以进行分组合作互相协助。
利用flash学件可以对直角三角形进行平移旋转。
相信同学在老师的指导和互相帮助之下,可以很快的拼出赵爽弦图和毕达哥拉斯用来证明勾股定理的图形。
通过这些实际操作,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备,给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。
利用分组讨论,加强学生的合作意识。
此时,将毕达哥拉斯的图形通过动画沿中间正方形的对角线剪开,可以得到一个直角梯形,同样我们可以利用直角梯形的面积来证明勾股定理。
这就是美国第二十届总统加菲尔德的证法,我们称之为总统证法。
当学生完成这三种证法之后,可以让学生应用网络查询有关于勾股定理的知识。
活动五,播放一段介绍勾股定理有关历史的动画。
我国古代劳动人民早在公元前一世纪前后成书的《周髀算经》中就有了有关于勾股定理的记载。
而毕达哥拉斯证明勾股定理比我们晚了500多年。
所以在我国被称之为勾股定理,而在我国召开的国际数学家大会也采用了赵爽弦图来作为大会的会徽。
当学生倾听完有关于勾股定理的历史之
后,再让学生欣赏一下赵爽弦图,看看赵爽是怎样利用分割、拼接的方法来证明勾股定理的。
在学生倾听历史,欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。
活动六,课堂训练,首先是几道填空题,这几道填空题既有类似又有不同,通过变式训练,强调应用勾股定理时应注意的问题。
一是勾股定理要应用于直角三角形当中,二是要注意哪一条边为斜边。
简单的填空题之后,可以出示一道和学生生活密切相关的应用题,让学生充分体会到数学是来源于生活,应用于生活。
训练之后就进入活动七,让学生谈谈这节课的收获是什么,他最感兴趣的地方是什么,想进一步研究的问题又是什么。
通过小结,培养学生的归纳概括能力。
最后活动八,布置作业。
针对学生认知的差异设计有层次的作业,既能巩固知识,有使学有余力的学生获得最佳发展。
第四,谈谈远程教育资源的应用
本节课出现的三幅图片都是在远程教育资源网上下载的资源。
而我通过对多媒体资源的引用和加工制作课件,创设了情境,加强了故事性、直观性,让枯燥的数学课堂充满了生气,提高了学生学习数学的浓厚兴趣和学习效果。
而在课堂上我也充分利用模式三计算机网络教室这一平台,发送几何画板和比拼平台,让学生参与到数学活动中,,提高了学生的动手动脑能力。
在教学中将数学资源与网络有机结合,师生互动,构建起数学教学现代教育模式的课堂。