必修五-解三角形练习题

合集下载

完整版高中数学必修5解三角形测试题及答案

完整版高中数学必修5解三角形测试题及答案

高中数学必修5解三角形测试题及答案一、选择题:〔每题 5分,共60分〕1.在VABC 中,AB 3,A 45,C 75,那么BC=A .33 B . 2C .2D .3 32.以下关于正弦定理的表达或变形中错误的选项是..A .在VABC 中,a:b:c=sinA:sinB:sinCB .VABC 中,a=bsin2A=sin2Ba =b+cC .VABC 中,sin AsinB+sinCD .VABC 中,正弦值较大的角所对的边也较大sinAcosB B 的值为3.VABC 中,假设 a,那么bA .30B .45C .60D .90ab c,那么VABC 是4.在VABC 中,假设 =cosCcosAcosBA .直角三角形B .等边三角形C .钝角三角形5.以下命题正确的选项是A .当a=4,b=5,A=30时,三角形有一解。

B .当a=5,b=4,A=60时,三角形有两解。

A 〕B 〕B 〕〔B 〕.等腰直角三角形D 〕C .当a= 3,b=2,B=120时,三角形有一解。

D .当a=3 6,A=60时,三角形有一解。

2,b=26.ABC 中,a=1,b=3,∠A=30°,那么∠B 等于〔 B 〕A .60°B .60°或120°C .30°或150°D .120°7. 符 合 下 列 条 件 的 三 角 形 有 且 只 有 一 个 的 是〔 D〕A .a=1,b=2,c=3B .a=1,b=2,∠A=30°C .a=1,b=2,∠A=100°D .b=c=1,∠B=45°8. 假设 (a+b+c)(b+c - a)=3abc, 且sinA=2sinBcosC, 那 么 ABC 是〔 B〕A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A=,a= 3,b=1,3c=那么(B)(A)1(B)2(C)3-1(D)3uur10.〔2021 重庆理〕设ABC 的三个内角A,B,C ,向量m ( 3sinA,sinB),ruurr1cos(AB),那么C =〔n(cosB,3cosA),假设mgnC 〕A .B .25C .D .66 3 311.等腰△ABC 的腰为底的2倍,那么顶角A 的正切值是〔 D 〕A. 3B.3C. 15D.1528712.如图:D,C,B 三点在地面同一直线上 ,DC=a,从C,D 两点测得A 点仰角分别是β,α(α<β),那么A 点离地面的高度 AB 等于〔A 〕Aasin sinasin sin A .)B .)sin(cos(asin cosacos sin C .)D .)sin(cos(αβBD C题号 1234567891011 12答案二、填空题:〔每题 5分,共 20分〕13.a 2,那么 abc _______2_______sinAsinBsinA sinC14.在ABC 1 (a 2+b 2-c 2),那么角∠C=______.中,假设S ABC =4415.〔广东2021理〕点A,B,C 是圆O 上的点, 且AB4, ACB450 ,那么圆O 的面积等于8.rrr rrr16.a2,b4,a 与b 的夹角为3,以a,b 为邻边作平行四边形,那么此平行四边形的两条对角线中较短的一条的长度为____2 3________三、解答题:〔 17题10分,其余小题均为 12分〕17.在ABC 中,c 2,b2 3 ,B450,解三角形ABC 。

必修5解三角形测试题与答案

必修5解三角形测试题与答案

解三角形测试题一、选择题:1、 ABC 中 ,a=1,b=3 , ∠A=30 ° ,则∠ B 等于()A .60°B . 60°或 120°C . 30°或 150°D . 120°2、切合以下条件的三角形有且只有一个的是()A . a=1,b=2 ,c=3B . a=1,b= 2 ,∠ A=30 °C . a=1,b=2,∠ A=100 °C . b=c=1, ∠ B=45 °3、在锐角三角形 ABC 中,有()A . cosA>sinB 且 cosB>sinA B . cosA<sinB 且 cosB<sinAC . cosA>sinB 且 cosB<sinAD . cosA<sinB 且 cosB>sinA4、若 (a+b+c)(b+c -a)=3abc,且 sinA=2sinBcosC, 那么 ABC 是()A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设 A 、B 、C 为三角形的三内角 ,且方程 (sinB - sinA)x 2+(sinA -sinC)x +(sinC - sinB)=0 有等根,那么角 B()A .B>60°B .B ≥60°C . B<60 °D .B ≤60°6、知足 A=45,c= 6,a=2 的△ ABC 的个数记为 m,则 a m 的值为()A . 4B . 2C . 1D .不定7、如图: D,C,B 三点在地面同向来线上,DC=a, 从 C,D 两点测得A 点仰角分别是β,α (α <β),则 A 点离地面的高度AB 等于 ()a sin sin asinsinAA .)B .)sin(cos(DCBC .a sin cos a cos sinsin(D .cos())8、两灯塔 A,B 与大海察看站C 的距离都等于 a(km), 灯塔 A 在C 北偏东30°,B 在 C 南偏东 60° ,则 A,B 之间的相距()A . a (km)B .3 a(km)C .2 a(km)D . 2a (km)二、填空题:9、A 为ABC 的一个内角 ,且 sinA+cosA=7ABC 是______ 三角形 ., 则1210、在 ABC 中, A=60 °, c:b=8:5, 内切圆的面积为 12π,则外接圆的半径为 _____. 11、在ABC 1中,若 S ABC =(a 2+b 2- c 2),那么角∠ C=______.412、在ABC31中, a =5,b = 4,cos(A -B)=,则 cosC=_______.32三、解答题: 13、在ABC 中 ,求分别知足以下条件的三角形形状:① B=60 ° ,b 2=ac ;② b 2tanA=a 2tanB ; ③ sinC=sin A sin B④ (a 2- b 2)sin(A+B)=(a 2+b 2)sin(A - B).cos A cos B14、已知ABC 三个内角1 1= -2 A 、 B 、 C 知足 A+C=2B,+, 求cos AcosCcos BcosAC的值.215、二次方程ax2- 2 bx+c=0,此中a、b、c是一钝角三角形的三边,且以 b 为最长 .①证明方程有两个不等实根;②证明两个实根α,β都是正数;③若 a=c,试求 |α-β |的变化范围 .16、海岛O 上有一座海拨1000 米的山 , 山顶上设有一个察看站A, 上午11 时 ,测得一轮船在岛北60°东 C 处 ,俯角30° ,11 时 10 分 ,又测得该船在岛的北60°西 B 处 ,俯角 60° .①这船的速度每小时多少千米?②假如船的航速不变,它何时抵达岛的正西方向?此时所在点 E 离岛多少千米?参照答案解三角形一、 BDBBD AAC二、( 9)钝角( 10)143( 11)( 12)1 348三、( 13)剖析:化简已知条件,找到边角之间的关系,便可判断三角形的形状. ①由余弦定理cos 60 a 2c2b2a2 c 2b21 a 2c2ac ac( a c) 20 ,2ac2ac2a c .由a=c及B=60°可知△ABC为等边三角形.②由b 2 tan A a 2tan B b 2 sin Acos Aa 2 sin B sin B cos A b2sin 2 Bsin Acos A sin B cos B,sin 2 A sin 2B, cos B sin A cosB a2sin 2 A∴ A=B 或 A+B=90 °,∴△ ABC 为等腰△或 Rt△.③sin C sin Asin B ,由正弦定理:cos A cos Bc(cos A cos B)a b, 再由余弦定理:a2b2 c 2a2 c 2 b 2a b c2bcc2ac(a b)( c 2a22)0,c2a22,ABC为Rt .④由条件变形为sin( A B)a2 b 2b bsin( A B)a2b2sin( A B)sin( A B)a2,sin Acos B sin 2Asin 2 A sin 2B,或.sin( A B)sin( A B)b2cos Asin B sin 2B ABAB90∴△ ABC是等腰△或 Rt△.评论:这种判断三角形形状的问题的一般解法是:由正弦定理或余弦定理将已知条件转变为只含边的式子或只含角的三角函数式,而后化简观察边或角的关系,进而确立三角形的形状. 有时一个条件既可用正弦定理也可用余弦定理甚至能够混用.如本例的②④也可用余弦定理,请同学们试一试看.(14)剖析:A C2B,B60,A C120再代入三角式解得 A或 C.解:A C2B,180B2B,B60 .A C120 .∴由已知条件化为:1122.cos(120A)cos A22cos(120A)cos Acos Acos(120A),设A C, 则A60, C60.代入上式得:cos(60) 2cos(60) 2 2 cos(60) cos(60) .化简整理得42 cos22cos3 2 0( 2 cos2)( 22 cos3)0,cos2,即 cos AC2.注:此题有多222种解法 . 即能够从上式中消去B、C 求出cosA,也能够象本例的解法 .还能够用和、差化积的公式,同学们能够试一试 .( 15)剖析:证明方程有两个不等实根,即只需考证△>0 即可 .要证α,β为正数,只需证明α β> 0 ,α + β> 0即可.解:① 在钝角△ ABC中,b边最长 . 1 cos B0且 b2 a 2c22ac cos B,(2b) 24ac2b 24ac2(a2c22ac cosB) 4ac2(a c)24ac cos B0. (此中2( a c) 2且4ac cos B0∴方程有两个不相等的实根. ②2b0,c0,∴两实根α、β都是正数 .a a2b2b2③ a=c 时, a ,() 2 a 222() 244c a21a2(a 2 c 22ac cos B) 4a 24 cos B,1cos B0,0 4 cos B4,所以 0|| 2 .a 2( 16)剖析:这是一个立体的图形,要注意绘图和空间的简单感觉.解:①如图:所示. OB=OA tan 303(千米 ), OC 3 (千米)3则 BC OB 2OC 22OB OC cos12013(千米)3船速 v 131039 (千米/小时)3260②由余弦定理得:cos OBC OB 2BC 2OC 2 5 13,sin EBO sin OBC2OB BC261 (5 13)2339,cos EBO5 13,sin OEB sin[180( EBO30 )]262626sin(EBO30 )sin EBO cos30cos EBO sin 3013 .13再由正弦定理,得OE=1.5 (千米),BE 39 (),BE5(分钟) . 6千米v答:船的速度为 239 千米/小时;假如船的航速不变,它 5 分钟抵达岛的正西方向,此时所在点 E离岛千米.。

高中数学必修5解三角形测试题及答案

高中数学必修5解三角形测试题及答案

8高中数学必修5解三角形测试题及答案、选择题:(每小题5分,共60分)1 .在 L ABC 中,AB =、3, A = 45 , C = 75,则 BC=D . 3 .3在 LI ABC 中,a:b:c 二sinA:sinB:sinC|_|ABC 中,a=b = si n2A=s in2BLABC中,盒= s^SnCLI ABC 中,正弦值较大的角所对的边也较大a=、一3 ,b=2 ,B= 120 时,三角形有一解。

B .等边三角形 D .等腰直角三角形D .当 a =[2,b =GA=60时,三角形有一解。

6. A ABC 中,a=1,b=/ A=30 °,则/ B 等于 60° B . 60° 或 120°符合下列条件的30° 或150 ° 形有且D . 120° 有一a=1,b=2 ,c=3 a=1,b= .2,/ A=30 ° C . a=1,b=2, / A=100 ° 若(a+b+c)(b+ca)=3abc,且b=c=1, / B=45 °sin A=2s in BcosC,ABC(B . ,2 2. F 列关于正弦定理的叙述或变形中 错误的是3. sin A cosBABC 中,若-aB . 304. 在LI ABC 中,若 b 45a,则.B 的值为C . 60 b c —,则L ABC 是D . 90 A .直角三角形 5.下列命题正确的是A .当B .当 cosA cosB cosCB .等边三角形C .钝角三角形D .等腰直角三角形(a=4,b=5,A= 30时,三角形有一解。

a=5,b=4,A= 60时,三角形有两解。

C .当 A .直角三角形 C .等腰三角形317.在厶 ABC 中 ,已知 c 二■ 2,bB = 45°,解三角形 ABCjr .—9.在△ ABC 中,角 A 、B 、C 的对边分别为a 、b 、c ,已知A 二二,a=. 3 ,b=1,3则 c=( B)(A)1(B)2(C) '.3 — 1(D) .310 . ( 2009 重庆理)设 ABC 的三个内角 A, B, C ,向量 m = (、、3sin A,sin B),n = (cos B, .. 3 cos A),若 m|_n = 1 cos(A B),则 C = ( C )二 二2 二 5 二A .B .C .D .6 3 3 611.已知等腰△ ABC 的腰为底的2倍,则顶角 A 」2题号12345678910 11 12答案13.已知—=2,则 -------------- a +b-------------- = _______ 2 ______sin A si nA sin B si n C—1 2 22応14 .在△ ABC 中,若 S A ABC = — (a +b — c ),那么角/ C=_— ________ .4415.(广东2009理)已知点 代B,C 是圆0上的点, 且AB = 4, • ACB = 45°,则圆0的 面积等于—8二.16.已知a =2, b =4, a 与b 的夹角为孑,以a,b 为邻边作平行四边形,则此平行四边形的 两条对角线中较短的一条的长度为 ______ 2 J3 _______ 三、解答题:(17题10分,其余小题均为12分)A 的正切值是12 .如图:D,C,B 三点在地面同一直线上 ,DC=a,从3C,D 两点测得C .a sin _:sin : a sin : sin : cosC --) a sin : cos :acos : sin : cos 程壯)A 点仰角分别是 3,已知 a = 2、. 3, c = . 6 2, B = 45,求 b 及A 。

必修5解三角形练习题和答案

必修5解三角形练习题和答案

必修5解三角形练习题1.在ABC D 中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是(,则此三角形一定是( )A.等腰直角三角形等腰直角三角形B. 直角三角形直角三角形C. 等腰三角形等腰三角形D. 等腰或直角三角形等腰或直角三角形2. 在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为的值为A .38 38B .3737C C..36D 36 D..353.(2009宁夏海南卷文)有四个关于三角函数的命题:1p :$x ÎR, 2sin 2x +2cos 2x =122p : ,x y R $Î, sin()sin sin x y x y -=- 3p : "x Î[]0,p ,1cos 2sin 2x x -= 4p : sin cos 2x y x y p =Þ+= 其中假命题的是其中假命题的是(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC D 的内角A ,B ,C 所对的边分别为a ,b ,c ,若31s i n=A ,B b sin 3=,则a 等于等于 .5.5.在△在△在△ABC ABC 中,已知边10c =,cos 4cos 3A b B a ==,求边a 、b b 的长。

的长。

的长。

6.已知A 、B 、C 为ABC D 的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC D 的面积.的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =°,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.8.已知:△已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ×+×=.(1) (1)求角求角C 的大小;的大小;(2) (2)若若,,a c b 成等差数列,且18CA CB ×= ,求c 边的长边的长. .9.已知ABC D 的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =- 2(cos ,cos 2)2A n A = ,且72m n ×= . (1)求角A 的大小;的大小;(2)若3a =,试求当b c ×取得最大值时ABC D 的形状. 1010.在.在ABC D 中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值;的值; (Ⅱ)设15=BC ,求ABC D 的面积.的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[p Îx ⑴ 求)(x f 的最大值及此时x 的值;的值;⑵ 求)(x f 在定义域上的单调递增区间。

(典型题)高中数学必修五第二章《解三角形》测试题(含答案解析)

(典型题)高中数学必修五第二章《解三角形》测试题(含答案解析)

一、选择题1.在△ABC 中,若b =2,A =120°,三角形的面积S =AB .C .2D .42.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,(b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ).A .133,244⎡⎤⎢⎥⎣⎦ B .133,244⎛⎫⎪⎝⎭ C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫⎪⎝⎭6.在ABC 中,角A 、B 、C 对边分别为a 、b 、c ,若b =cos 20B B +-=,且sin 2sin C A =,则ABC 的周长是( )A .12+B .C .D .6+7.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8058.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形9.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb+的值为( ) A .24B .22C .1D .211.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m12.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m二、填空题13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.已知ABC 中,2,2BC AB AC ==,则ABC 面积的最大值为_____ 18.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 19.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在①()cos cos 3cos 0C A A B +-=,②()cos23cos 1B A C -+=,③cos sin 3b C B a +=这三个条件中任选一个,补充在下面问题中. 问题:在ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若1a c +=,___________,求角B 的值和b 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】12sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得a =,∴24sin 2a R A === , 解得R =2.本题选择C 选项. 2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R∴=所以ABC∆的外接圆面积为=3ππ.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D【分析】根据角A的平分线交BC于E,满足0AE BC⋅=,得到ABC是等腰三角形,再由2221sin24+-==ABCa b cS ab C,结合余弦定理求解.【详解】因为0AE BC⋅=,所以AE BC⊥,又因为AE是角A的平分线,所以ABC是等腰三角形,又2221sin24+-==ABCa b cS ab C,所以2221sin cos22a b cab C Cab+-==,因为()0,Cπ∈,所以4Cπ,所以ABC是等腰直角三角形,故选:D【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.4.D解析:D【分析】根据cos cosa Ab B=,利用正弦定理将边转化为角得到sin cos sin cosA AB B=,然后再利用二倍角的正弦公式化简求解.【详解】因为cos cosa Ab B=,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.5.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==.因为(b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B 【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .6.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =, 2a ∴=,24c a ==,因此,ABC 的周长是623a b c ++=+.故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.7.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得802BD =,在ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒,∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得802BD =,ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠2280(802)280802cos135=+-⨯⨯⨯︒2805=⨯,∴805AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.11.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.12.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin AM AMCAC ACM∠===∠在Rt ABC ∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.二、填空题13.【分析】利用余弦定理求出的值再利用三角形的面积公式可求得的面积【详解】由余弦定理可得可得则解得因此的面积是故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用正弦定理【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC 的面积. 【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++-,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 1222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦解析:【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围.【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<,cos 64A A ππ∴<<∴∈sin 2sin cos 2cos sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:12-【分析】由三角形的面积公式结合等式8cos 3ABC bc A S =△,可求得3tan 4A =,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值. 【详解】因为881cos sin 332ABC bc A S bc A ==⨯△,所以4cos sin 3A A =,则3tan 4A =,故()()22cos sin 1cos sin sin cos sin cos 22sin cos 2sin cos 2sin cos 2sin cos B CA B C A A A A A A A A A A A A A π++-+++--===---- tan 112tan 12A A -==--. 故答案为:12-.【点睛】 本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.【分析】设则根据面积公式得由余弦定理求得代入化简由三角形三边关系求得由二次函数的性质求得取得最大值【详解】解:设则根据面积公式得由余弦定理可得可得:由三角形三边关系有:且解得:故当时取得最大值故答案解析:43【分析】设AC x =,则2AB x =,根据面积公式得ABC S ∆=,由余弦定理求得cos C 代入化简ABC S ∆=223x <<,由二次函数的性质求得ABC S ∆取得最大值. 【详解】解:设AC x =,则2AB x =,根据面积公式得 1sin sin 12ABC S AC BC C x C x ∆=== 由余弦定理可得2224443cos 44x x x C x x+--==,可得:ABCS ∆==由三角形三边关系有:22x x +>,且22x x +>,解得:223x <<,故当x =时,ABC S ∆取得最大值43, 故答案为:43. 【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.18.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b aab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.19.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴sin 30︒=()sin 1801530CB ︒︒︒--, CB =30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =, 由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确.故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.条件选择见解析;最大值为3. 【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABCS ∆=,即可求解. 【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =, 根据正弦定理可得cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=,根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABCSbc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin A ===,1sin 22ABC S bc A b b∆==⨯=,所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin 2A b===,1sin 2ABCS bc A b ∆===, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.22.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 2224ABCSac B ==⨯=. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 23.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得; 【详解】 解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =,故2222cos sin cos2sin cos AA A A A+=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin A =,cos A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.24.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >.又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b C b C b C c B C C ====⎛⎫- ⎪⎝⎭. 方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-,所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =. 【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠ 所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.条件选择见解析;3B π=,b 最小值为12. 【分析】选①,利用三角形的内角和定理、诱导公式以及两角和的余弦公式化简得出tan B =结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选②,利用三角形的内角和定理、诱导公式以及二倍角的余弦公式求出cos B 的值,结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选③,利用正弦定理边角互化、三角形的内角和定理以及两角和的正弦公式化简可求得tan B =()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值.【详解】解:若选择①:在ABC 中,有A B C π++=,则由题可得:()()cos cos cos 0A B A A B π-++-=⎡⎤⎣⎦, ()cos cos cos cos 0A B A B A B -++=,sin sin cos cos cos cos cos 0A B A B A B A B -+-=,sin sin cos A B A B =,又sin 0A ≠,所以sin B B =,则tan B =又()0,B π∈,所以3B π=,因为1a c +=,所以1c a =-,()0,1a ∈.由余弦定理可得:2222cos b a c ac B =+-22a c ac =+-()()2211a a a a =+---2331a a =-+, ()0,1a ∈,又2211324b a ⎛⎫=-+ ⎪⎝⎭, 所以,当12a =时,()2min 14b =,即b 的最小值为12; 若选择②:在ABC 中,有A B C π++=, 则由题可得()222cos 13cos 2cos 3cos 11B B B B π---=+-=, 解得1cos 2B =或cos 2B =-(舍去), 又()0,πB ∈,所以3B π=.(剩下同①)若选择③:由正弦定理可将已知条件转化为sin cos sin sin 3B C C B A +=, ()()sin cos s s in cos in sin sin B C C B A B C B C π=+=-+=+⎡⎤⎣⎦,代入上式得sin sin cos 3C B C B =,又sin 0C ≠,所以sin B B =,tan B =又()0,B π∈,所以3B π=.(剩下同①) 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.。

高一数学必修五第一章试题——解三角形(带答案)

高一数学必修五第一章试题——解三角形(带答案)

高一数学必修五第一章试题——解三角形一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c 分别是△ABC 中∠A ,∠B ,∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直2.在△ABC 中,已知a -2b +c =0,3a +b -2c =0,则sin A ∶sin B ∶sin C 等于( )A .2∶3∶4B .3∶4∶5C .4∶5∶8D .3∶5∶73.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .624.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =1,sin B =32,C =π6,则b 的值为( )A .1B .32C .3或32 D .±17.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75°C .30°D .15°8.若G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,且aGA →+bGB →+33cGC →=0,则角A =( )A .90°B .60°C .45°D .30°9.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC→,则AD 的长为( ) A .4(3-1) B .4(3+1) C .4(3-3)D .4(3+3)10.在△ABC 中,B A →·B C →=3,S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,则B 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π4,π3 B .⎣⎢⎡⎦⎥⎤π6,π4 C .⎣⎢⎡⎦⎥⎤π6,π3 D .⎣⎢⎡⎦⎥⎤π3,π211.在△ABC 中,三内角A ,B ,C 所对边分别为a ,b ,c ,若(b -c )sin B =2c sin C 且a =10,cos A =58,则△ABC 面积等于( )A .392 B .39 C .313 D .312.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A (a cos C +c cos A )=3b ,则cb 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫32,233 C .(1,2) D .⎝ ⎛⎭⎪⎫32,1二、填空题(本大题共4小题,每小题5分,共20分)13.已知在△ABC 中,a +b =3,A =π3,B =π4,则a 的值为________.14.在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos C =255,则AC +BC =________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb ,则边c 的值为________.16.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 满足2b =a +c ,B =π4,则cos A -cos C =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .19.(本小题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约 3 km有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12 km/h的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?20.(本小题满分12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若λ=6,B=5π6,求sin A;(2)若λ=4,AB边上的高为3c6,求C.21.(本小题满分12分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tan A=3cbc2+b2-a2.(1)求角A的大小;(2)当a=3时,求c2+b2的最大值,并判断此时△ABC的形状.22.(本小题满分12分)在海岸A处,发现北偏东45°方向,距A处(3-1) n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以10 3 n mile/h的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?一、选择题1. 答案 C解析 ∵k 1=-sin A a ,k 2=bsin B ,∴k 1k 2=-1,∴两直线垂直.故选C . 2. 答案 D解析 因为a -2b +c =0,3a +b -2c =0, 所以c =73a ,b =53a .a ∶b ∶c =3∶5∶7. 所以sin A ∶sin B ∶sin C =3∶5∶7.故选D . 3. 答案 C解析 ∵S △ABC =12ac sin B =2,∴c =42. 由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =52(R 为△ABC 外接圆的半径).故选C . 4. 答案 C解析 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ), ∴12(cos A ·cos B +sin A ·sin B )=12, ∴cos(A -B )=1.∴A -B =0,∴A =B ,∴△ABC 为等腰三角形.故选C . 5. 答案 A解析 ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的是①②.故选A . 6. 答案 C解析 在△ABC 中,sin B =32,0<B <π, ∴B =π3或2π3,当B =π3时,△ABC 为直角三角形, ∴b =a ·sin B =32; 当B =2π3时,A =C =π6,a =c =1.由余弦定理得b 2=a 2+c 2-2ac cos 2π3=3, ∴b =3.故选C . 7. 答案 A解析 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°. 故选A . 8. 答案 D解析 由重心性质可知GA →+GB →+GC →=0,故GA →=-GB →-GC →,代入aGA →+bGB→+33cGC →=0中,即 (b -a )GB →+33c -aGC →=0,因为GB →,GC →不共线,则⎩⎨⎧b -a =0,33c -a =0,即⎩⎨⎧b =a ,c =3a ,故由余弦定理得cos A =b 2+c 2-a 22bc =32.因为0<A <180°,所以A =30°.故选D .9. 答案 C解析 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1), 因为BD →=3-12BC →,所以BD =3-12BC . 又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).故选C . 10. 答案 C解析 由题意知ac ·cos B =3,所以ac =3cos B , S △ABC =12ac ·sin B =12×3cos B ×sin B =32tan B . 因为S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,所以tan B ∈⎣⎢⎡⎦⎥⎤33,3, 所以B ∈⎣⎢⎡⎦⎥⎤π6,π3.故选C .11. 答案 A解析 由正弦定理,得(b -c )·b =2c 2,得b 2-bc -2c 2=0,得b =2c 或b =-c (舍).由a 2=b 2+c 2-2bc cos A ,得c =2,则b =4. 由cos A =58知,sin A =398.S △ABC =12bc sin A =12×4×2×398=392.故选A . 12. 答案 A解析 2sin A (a cos C +c cos A )=3b ⇔2sin A ·(sin A cos C +sin C cos A )=3sin B ⇔2sin A sin(A +C )=3sin B ⇔2sin A sin B =3sin B ⇔sin A =32, 因为△ABC 为锐角三角形, 所以A =π3,a 2=b 2+c 2-bc , ① a 2+c 2>b 2, ② a 2+b 2>c 2, ③由①②③可得2b 2>bc ,2c 2>bc ,所以12<cb <2.故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 33-32解析 由正弦定理,得b =a sin B sin A =63a .由a +b =a +63a =3,解得a =33-32.14. 答案 3+5解析 ∵cos ∠DAC =31010,cos C =255, ∴sin ∠DAC =1010,sin C =55, ∴sin ∠ADC =sin(∠DAC +∠C ) =1010×255+31010×55=22. 由正弦定理,得AC sin ∠ADC =DCsin ∠DAC,得AC =5DC .又∵BD =2DC ,∴BC =3DC . 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos C=5DC 2+9DC 2-25DC ·3DC ·255=2DC 2. 由AB =2,得DC =1,从而BC =3,AC =5.即AC +BC =3+5. 15. 答案 22解析 在△ABC 中,∵1+tan A tan B =1+sin A cos Bcos A sin B = cos A sin B +sin A cos B cos A sin B =sin (A +B )cos A sin B =sin C cos A sin B =2cb . 由正弦定理得c b cos A =2c b ,∴cos A =12,∴A =60°. 又∵a =23,C =45°.由a sin A =c sin C 得2332=c 22,∴c =22.16. 答案 ±42 解析 ∵2b =a +c ,由正弦定理得2sin B =sin A +sin C ,又∵B =π4,∴sin A +sin C =2,A +C =3π4. 设cos A -cos C =x ,可得(sin A +sin C )2+(cos A -cos C )2=2+x 2,即sin 2A +2sin A sin C +sin 2C +cos 2A -2cos A cos C +cos 2C =2-2cos(A +C )=2-2cos 3π4=2+x 2.则(cos A -cos C )2=x 2=-2cos 3π4=2, ∴cos A -cos C =±42. 三、解答题 17.解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos15°=cos(45°-30°)=6+24. (2)在△ABE 中,AB =2, 由正弦定理,得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°sin75°=2×126+24=6-2.18.解 (1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化为cos A sin A +cos Bsin B =sin Csin C =1,因为A 和B 为三角形内角,所以sin A sin B ≠0,则两边同时乘以sin A sin B ,可得sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,原式得证.(2)因为b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =14,所以tan B =4.19.解 如右图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1 km .在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32,∴∠ACB =120°(∠ACB =60°不符合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1.∵BC 12×60=5,∴在BC 上需要5 min ,CD 上需要5 min .∴最长需要5 min 检查员开始收不到信号,并至少持续5 min 该考点才算合格.20.解 (1)由已知B =5π6,a 2+b 2=6ab ,综合正弦定理得4sin 2A -26sin A +1=0.于是sin A =6±24,∵0<A <π6,∴sin A <12,∴sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ),从而有3sin C +cos C =2即sin ⎝ ⎛⎭⎪⎫C +π6=1. 又π6<C +π6<7π6,∴C =π3.21.解 (1)由已知及余弦定理,得sin A cos A =3cb 2cb cos A ,sin A =32,因为A 为锐角,所以A =60°. (2)解法一:由正弦定理,得a sin A =b sin B =c sin C =332=2, 所以b =2sin B ,c =2sin C =2sin(120°-B ).c 2+b 2=4[sin 2B +sin 2(120°-B )] =41-cos2B 2+1-cos (240°-2B )2=4-cos2B +3sin2B=4+2sin(2B -30°).由⎩⎨⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°. 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6,此时C =60°,△ABC 为等边三角形.解法二:由余弦定理得(3)2=b 2+c 2-2bc cos60°=b 2+c 2-bc =3.∵bc ≤b 2+c 22(当且仅当b =c 时取等号),∴b 2+c 2-b 2+c 22≤3,即b 2+c 2≤6(当且仅当b =c 时等号). 故c 2+b 2的最大值为6,此时△ABC 为等边三角形.22.解 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直.∴∠CBD =120°.在△BCD 中,由正弦定理,得CD sin ∠CBD =BD sin ∠BCD, ∴103t sin120°=10t sin ∠BCD , ∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.。

高中数学必修五解三角形测试题及答案

高中数学必修五解三角形测试题及答案

高中数学必修五解三角形测试题及答案1.在三角形ABC中,如果C=90度,a=6,B=30度,那么c-b的值是多少?选项:A。

1 B。

-1 C。

2/3 D。

-2/32.如果A是三角形ABC的内角,那么下列函数中一定取正值的是什么?选项:A。

XXX3.在三角形ABC中,角A和角B都是锐角,并且cosA>sinB,那么三角形ABC的形状是什么?选项:A。

直角三角形 B。

锐角三角形 C。

钝角三角形 D。

等腰三角形4.在等腰三角形中,一条腰上的高为3,这条高与底边的夹角为60度,那么底边的长度是多少?选项:A。

2 B。

3 C。

3/2 D。

2/35.在三角形ABC中,如果b=2sinB,那么角A等于多少?选项:A。

30度或60度 B。

45度或60度 C。

120度或60度 D。

30度或150度6.边长为5、7、8的三角形的最大角与最小角的和是多少?选项:A。

90度 B。

120度 C。

135度 D。

150度填空题:1.在直角三角形ABC中,如果C=90度,那么sinAsinB 的最大值是1/4.2.在三角形ABC中,如果a=b+bc+c,那么角A的大小是60度。

3.在三角形ABC中,如果b=2,B=30度,C=135度,那么a的大小是2.4.在三角形ABC中,如果5.在三角形ABC中,如果AB=2(6-2),C=30度,那么AC+BC的最大值是5.解答题:1.在三角形ABC中,如果acosA+bcosB=ccosC,那么三角形ABC是等腰三角形。

2.在三角形ABC中,证明:b-a/c = c-b/a。

3.在锐角三角形ABC中,证明:XXX>XXX。

4.在三角形ABC中,如果a+c=2b,A-C=π/3,那么sinB 的值是1/2.1.在△ABC中,若 $\log(\sin A) - \log(\cos B) - \log(\sin C) = \log 2$,则△ABC的形状是()A。

直角三角形 B。

必修五解三角形练习试题

必修五解三角形练习试题

必修五解三角形练习题一、选择题1.在△ABC中,AB=5,BC=6,AC=8,那么△ABC的形状是( )A.锐角三角形 B.直角三角形C.钝角三角形D.非钝角三角形2.在△ABC中,a=1,b=3,A=30°,B为锐角,那么A,B,C的大小关系为( )A.A>B>CB.B>A>C C.C>B>AD.C>A>B3.在△ABC中,a=8,B=60°,C=75°,那么b等于( )A.4 2 B .4 3 C .4 6a+b+c4.在△ABC中,A=60°,a=3,那么sinA+sinB+sinC等于( )D.235.假设三角形三边长之比是1: 3:2,那么其所对角之比是() A.1:2:3 B6.在△ABC中,假设.1: 3:2 C .1: 2: 3 :a=6,b=9,A=45°,那么此三角形有(3:2 )A.无解B.一解C.两解D.解的个数不确定7.△ABC的外接圆半径为R,且2R(sin2A-sin2C)=(2a-b)sinB(其中a,b分别为A,B的对边),那么角C的大小为()A.30°B.45° C .60°D.90°8.在△ABC中,s in 2A+sin2B-sinAsinB=sin2C,且满足ab=4,那么该三角形的面积为()A.1 B .2sinB9.在△ABC中,A=120°,AB=5,BC=7,那么sinC的值为( )10.在三角形ABC中,AB=5,AC=3,BC=7,那么∠BAC的大小为( )11.有一长为1km的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,那么坡底要加长( )A.km B.1km C.kmkm12.△ABC中,A,B,C的对边分别为a,b,c.假设a=c=6+2,且A=75°,那么b为()A.2B.4+23C.4-23-2二、填空题13.在△ABC中,A=60°,C=45°,b=4,那么此三角形的最小边是____________.14.在△ABC中,假设b=2a,B=A+60°,那么A=________.15.在△ABC中,A+C=2B,BC=5,且△ABC的面积为10 3,那么B=________,AB=________.16.在△ABC中,(b+c):(c+a):(a+b)=8:9:10,那么sinA:sin B:sin C=________.三、解答题a2sin AcosB(1)17.(10分)在△ABC中,假设b2=cosAsinB,判断△ABC的形状.(2)(3)(4)(5)(6)18.(12分)锐角三角形ABC中,边a,b是方程x2-23x+2=0的两根,角A,B满足2sin(A+B)-3=0.求:(7)角C的度数;(2)边c的长度及△ABC的面积.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满A 2 5 →→足cos2=5,AB·AC=3.(1)求△ABC的面积;(2)假设b+c=6,求a的值.π20.(12分)在△ABC中,内角A=3,边BC=2 3,设内角B=x,周长为y.求函数y=f(x)的解析式和定义域;求y的最大值.21.(12分)△ABC中,A,B,C所对的边分别为a,b,c,tanC=sinA+sinBcosA+cosB,sin(B-A)=cosC.求A,C;(1)假设S△ABC=3+3,求a,c.。

高中必修五——解三角形(含答案)

高中必修五——解三角形(含答案)

解三角形一.解答题(共5小题)1.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.(1)若b﹣c=a,2sinB=3sinC,求cosA的值;(2)若b2﹣2b+c2=0,求•的取值范围.2.已知函数f(x)=sin2x+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)设a,b,c分别为△ABC三个内角A,B,C的对边,f(c)=3,c=1,ab=2,求a,b的值.(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;(Ⅱ)若c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.4.在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.(I)求角C的大小;(Ⅱ)若c=,求△ABC周长的取值范围.(Ⅰ)若△ABC的面积等于,求a和b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求A;(Ⅲ)若ab=,求△ABC的周长.解三角形参考答案与试题解析一.解答题(共5小题)1.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.(1)若b﹣c=a,2sinB=3sinC,求cosA的值;(2)若b2﹣2b+c2=0,求•的取值范围.【分析】(1)利用正弦定理可求2b=3c,结合已知可得a=2c,b=,用余弦定理即可求值得解.(2)如图所示,延长AO交外接圆于D.由于AD是⊙O的直径,可得∠ACD=∠ABD=90°,于是cos,cos∠BAD=.可得=•(﹣)=2﹣2,.再利用c2=2b﹣b2,化为=(b﹣)2﹣.由于c2=2b﹣b2>0,解得0<b<2.令f(b)=(b﹣)2﹣.利用二次函数的单调性即可得出.【解答】解:(1)∵2sinB=3sinC,∴2b=3c.又∵b﹣c=a,∴a=2c,b=,∴cosA==﹣.(2)∵O为△ABC三边中垂线的交点,∴O为三角形外接圆的圆心.如图所示,延长AO交外接圆于D,连接BD、CD,∵AD是圆O的直径,∴∠ACD=∠ABD=90°,cos,cos∠BAD=.∵c2=2b﹣b2,∴=•(﹣AB)=•﹣•=2﹣2=b2﹣c2=b2﹣(2b﹣b2)=b2﹣b=(b﹣)2﹣.∵c2=2b﹣b2>0,∴0<b<2,设f(b)=(b﹣)2﹣,又f(0)=0,f(2)=2,∴的取值范围是:[﹣,2].【点评】本题考查了正弦定理,余弦定理,三角形的外接圆的性质、向量的运算法则、数量积运算、二次函数的单调性等基础知识与基本方法,属于难题.2.已知函数f(x)=sin2x+2cos2x.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)设a,b,c分别为△ABC三个内角A,B,C的对边,f(c)=3,c=1,ab=2,求a,b的值.【分析】(Ⅰ)利用三角函数间的关系将f(x)化简为f(x)=2sin(2x+)+1,由x∈[0,];可求得2x+∈[,],从而可求得函数f(x)的值域.(Ⅱ)由f(C)=3可求得C,利用余弦定理可求得a2+b2=7,通过解方程可求得a、b的值.【解答】解:(Ⅰ)f(x)=sin2x+2cos2x=sin2x+cos2x+1(2分)=2sin(2x+)+1(4分)∵x∈[0,],∴2x+∈[,],∴sin(2x+)∈[﹣,1],(6分)∴函数f(x)的值域为[0,3].(7分)(Ⅱ)∵f(C)=3,∴2sin(2C+)+1=3,即sin(2C+)=1.∵0<C<π,∴2C+∈[,],∴2C+=,∴C=.(10分)又c2=a2+b2﹣2abcosC,c=1,ab=2,cosC=,∴a2+b2=7.(12分)由,得或.(14分)【点评】本题考查三角函数间的关系,考查正弦函数的性质,考查余弦定理与解方程得能力,属于难题.3.在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知.(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;(Ⅱ)若c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.【分析】(Ⅰ)a=2,b=3,C=,由余弦定理可求得c,再利用正弦定理可求得△ABC的外接圆的半径,从而可求△ABC的外接圆的面积;(Ⅱ)利用三角函数间的关系将条件转化为:sinBcosA=2sinAcosA,对cosA分cosA=0与cosA≠0讨论,再分别借助正弦定理,通过解方程组与再由三角形的面积公式即可求得△ABC的面积.【解答】解:(Ⅰ)∵a=2,b=3,C=,∴由余弦定理得:c2=a2+b2﹣2abcosC=4+9﹣2×2×3×=7,∴c=,设其外接圆半径为R,则2R=,故R=,∴△ABC的外接圆的面积S=πR2=;(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sinBcosA=2sin2A=4sinAcosA,∴sinBcosA=2sinAcosA当cosA=0时,∠A=,∠B=,a=,b=,可得S=;当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a…①,∵c=2,∠C=60°,c2=a2+b2﹣2abcosC∴a2+b2﹣ab=4…②,联立①①解得a=,b=,∴△ABC的面积S=absinC=absin60°=.综上可知△ABC的面积为.【点评】本题考查余弦定理与正弦定理,考查转化与方程思想的综合运用,考查综合分析与运算能力,属于难题.4.在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.(I)求角C的大小;(Ⅱ)若c=,求△ABC周长的取值范围.【分析】(I)由三角函数的平方关系、余弦定理即可得出;(II)利用正弦定理、两角和差的正弦公式、三角函数的单调性即可得出.【解答】解:(I)∵cos2A=sin2B+cos2C+sinAsinB,∴1﹣sin2A=sin2B+1﹣sin2C+sinAsinB,∴sin2A+sin2B﹣sin2C=﹣sinAsinB,∴a2+b2﹣c2=﹣ab,∴=,又0<C<π,∴.(2)∵,∴a=2sinA,b=2sinB,则△ABC的周长L=a+b+c=2(sinA+sinB)+=2(sinA+)+=,∵,,∴,即,∴△ABC周长的取值范围是.【点评】熟练掌握三角函数的平方关系、正、余弦定理、两角和差的正弦公式、三角函数的单调性等是解题的关键.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=2,C=60°.(Ⅰ)若△ABC的面积等于,求a和b;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求A;(Ⅲ)若ab=,求△ABC的周长.【分析】(I)由余弦定理可得:c2=a2+b2﹣2abcosC,化为a2+b2﹣ab=4.由于△ABC 的面积等于,可得=,即ab=4,联立即可解得.(II)由sinC+sin(B﹣A)=2sin2A,可得sin(A+B)+sin(B﹣A)=2sin2A,化为cosA=0或cosB=2sinA.当cosA=0,A=90°,当cosB=2sinA,由正弦定理可得:b=2a,代入a2+b2﹣ab=4,解得a,再利用正弦定理可得sinA==,解得A,由a <c,A只能是锐角.(III)由a2+b2﹣ab=4.与ab=,解得a+b=3,即可得出.【解答】解:(I)由余弦定理可得:c2=a2+b2﹣2abcosC,∴4=a2+b2﹣2abcos60°,化为a2+b2﹣ab=4.∵△ABC的面积等于,∴=,化为ab=4,联立,解得a=b=2.(II)∵sinC+sin(B﹣A)=2sin2A,∴sin(A+B)+sin(B﹣A)=2sin2A,∴2sinBcosA=4sinAcosA,∴cosA=0或sinB=2sinA.当cosA=0,A=90°,当sinB=2sinA,由正弦定理可得:b=2a,代入a2+b2﹣ab=4,解得,则sinA==,解得A=30°,或A=150°,∵a<c,∴A<C,∴A=30°.综上可得:A=90°或A=30°.(III)由a2+b2﹣ab=4.可得:(a+b)2﹣3ab=4,由ab=,解得a+b=3,∴△ABC的周长=a+b+c=3+2=5.【点评】本题综合考查了正弦定理、余弦定理、三角形的面积计算公式、诱导公式、等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.。

必修5解三角形综合测试题及解析

必修5解三角形综合测试题及解析

必修5第一章《解三角形》综合测试题(A )及解析第Ⅰ卷(选择题)一、选择题(每题5分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的) 1.某三角形的两个内角为o 45和o 60,假设o 45角所对的边长是6,那么o60角所对的边长是 【 A 】A .B .C .D . 答案:A .解析:设o60角所对的边长是x ,由正弦定理得o o6sin 45sin 60x=,解得x =应选A .2.在ABC ∆中,已知a =10c =,o30A =,那么B 等于 【 D 】A .o 105B .o 60C .o15 D .o 105或o15 答案:D .解析:在ABC ∆中,由sin sin a c A C=,得sin sin 2c A C a ==,那么o 45C =或o135C =.故 当o45C =时,o105B =;当o135C =时,o15B =.应选D .3.在ABC ∆中,三边长7AB =,5BC =,6AC =,那么AB BC ⋅的值等于 【 D 】 A .19 B .14- C .18- D .19- 答案:D .解析:由余弦定理得49253619cos 27535B +-==⨯⨯,故AB BC ⋅=||AB ⋅||cos(BC π)B -= 1975()1935⨯⨯-=-.应选D . 4.在ABC ∆中,sin <sin A B ,那么 【 A 】 A .<a b B .>a b C .a b ≥ D .a 、b 的大小关系不确信 答案:A .解析:在ABC ∆中,由正弦定理2sin sin a bR A B==,得sin 2a A R =,sin 2b B R =,由sin A <sin B ,得<22a bR R,故<a b .应选A .5.ABC ∆知足以下条件:①3b =,4c =,o 30B =;②12b =,9c =,o60C =;③b =,6c =,o60B =;④5a =,8b =,o30A =.其中有两个解的是 【 B 】 A .①② B .①④ C .①②③ D .②③ 答案:B .解析:① sin <<c B b c ,三角形有两解;②o<sin 60c b ,三角形无解;③b =sin c B ,三角 形只有一解;④sin <<b A a b ,三角形有两解.应选B .6.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,那么ABC ∆的面积是 【 A 】A B C .2 D .3 答案:A .解析:由2220b bc c --=,得(2)()0b c b c -+=,故2b c =或b c =-(舍去),由余弦定理2222cos a b c bc A =+-及已知条件,得23120c -=,故2c =,4b =,又由7cos 8A =及A 是ABC ∆的内角可得sin A =1242S =⨯⨯=.应选A .7.设a 、1a +、2a +是钝角三角形的三边长,那么a 的取值范围为 【 B 】 A .0<<3a B .1<<3a C .3<<4a D .4<<6a 答案:B .解析:设钝角为C ,由三角形中大角对大边可知C 的对边为2a +,且cos C =222(1)(2)2(1)a a a a a ++-+⋅⋅+(3)(1)<02(1)a a a a -+=+,因为>0a ,故1>0a +,故0<<3a ,又(1)>+2a a a ++,故>1a ,故1<<3a .应选B .8.ABC ∆中,a 、b 、c 别离是三内角A 、B 、C 的对边,且4a =,5b c +=,tan tan A B ++tan A B =⋅,那么ABC ∆的面积为 【 C 】A .32 B . C .2 D .52答案:C .解析:由已知,得tan tan tan tan )A B A B +=-⋅,即tan()A B +=A 、B 是ABC ∆的内角,故o 120A B +=,那么o 60C =,由2224(5)24(5)c c c =+--⨯⨯-ocos60,解得72c =,故32b =,故113sin 4222ABC S ab C ∆==⨯⨯=.应选C .第Ⅱ卷(非选择题)二、填空题(每题5分,共30分)9.在ABC ∆中,1sin 3A =,cos B =1a =,那么b =_________.解析:由cos B =,得sin B ===,由sin sin a b A B =,得b =1sin 31sin 3a BA⨯==10.ABC ∆的内角A 、B 、C 的对边别离为a 、b 、c,假设c =b =,o 120B =,那么a =______.解析:由余弦定理得2222cos b a c ac B =+-,即2o62cos120a =+-,即24a -0=,解得a =(舍去负值).11.若是ABC ∆的面积是222S =,那么C =____________.答案:o30.解析:由题意得2221sin 2ab C =cos C C =,故tan 3C =,故o30C =.12.ABC ∆的三内角A 、B 、C 的对边别离为a 、b 、c ,假设o60A =,1b =,三角形的面积S =sin sin sin a b cA B C++++的值为____________.答案:3. 解析:由o 11sin sin6022S bc A c ===,得4c =.由余弦定理得22a b =+22cos c bc A - 13=,故a =.故osin sin sin 3sin 60a b c A B C ====,由等比性质,得sin sin sin sin a b c a A B C A ++==++13.一蜘蛛沿正北方向爬行x cm 捉到一只小虫,然后向右转o105,爬行10cm 捉到另一只小虫,这 时它向右转o135爬行回它的起点,那么x =____________.解析:由题意作出示用意如下图,那么ABC ∠=ooo18010575-=,BCA ∠=ooo18013545-=,10BC =,故ooo1807545A =--=xABCo135o105o 60,由正弦定理得o o10sin 45sin 60x =,解得x =cm ). 14.ABC ∆的内角A 、B 、C 的对边别离为a 、b 、c ,向量(3,1)m =-,(cos ,sin )n A A =, 假设m n ⊥,且cos cos sin a B b A c C +=,那么B =____________. 答案:6π或o30. 解析:由m n ⊥得0m n ⋅=sin 0A A-=,即sin 0A A =,故2sin()3A π-0=,故3A π=.由cos cos sin a B b A c C +=,得sin cos sin cos A B B A +=2sin C ,即2sin()sin A B C +=,故2sin sin C C =,故sin 1C =,又C 为ABC ∆的内角,故2C π=,故()()326B AC πππππ=-+=-+=.三、解答题(本大题共6小题,总分值80分.解许诺写出文字说明、证明进程或演算步骤) 15.(此题总分值12分)在ABC ∆中,已知2a=,c =o 45A =,解此三角形.解:由正弦定理,得sin sin 222c A C a ==⨯=o 60C ∠=或o120. 当o 60C ∠=时,oo180()75B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=+,那么1b =+.当o 120C ∠=时,oo180()15B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯⨯=-1b =.故1b =+,o 60C ∠=,o 75B∠=或1b =-,o 120C ∠=,o 15B ∠=.16.(此题总分值12分)如图,在四边形ABCD 中,已知BA AD ⊥,10AB =,BC =o 60BAC ∠=,o 135ADC ∠=,求CD 的长.解:在ABC ∆中,由正弦定理,得sin sin AB BACBCA BC⋅∠∠=o2==,因>BC AB ,故>CAB BCA ∠∠,故o 45BCA ∠=,故o75B =,由正弦 定理,得o o10sin 751)sin 45AC ==+,在ACD ∆中,因o o9030CAD BAC ∠=-∠=,由正弦 定理,得o o sin 30sin135AC CD ==答:CD .17.(此题总分值14分)a 、b 、c 是ABC ∆的内角A 、B 、C 的对边,S 是ABC ∆的面积,假设4a =, 5b =,S =c .BCDAA解:由11sin 45sin 22S ab C C ==⋅⋅⋅=,得sin C =,那么1cos 2C =或1cos 2C =-. (1)当1cos 2C =时,由余弦定理,得211625245212c =+-⋅⋅⋅=,故c =; (2)当1cos 2C =-时,由余弦定理,得211625245612c =++⋅⋅⋅=,故c =.综上可知c .18.(此题总分值14分)在ABC ∆中,sin sin cos B A C =,其中A 、B 、C 是ABC ∆的三个内角, 且ABC ∆最大边是12,最小角的正弦值是13. (1)判定ABC ∆的形状;(2)求ABC ∆的面积.解:(1)由sin sin cos B A C =依照正弦定理和余弦定理,得2222a b c b a ab+-=⋅,得222b c a +=,故ABC ∆是直角三角形.(2)由(1)知12a =,设最小角为α,那么1sin 3α=,故cos α=,故ABC S ∆=1111sin cos 121222233bc a a αα=⋅=⋅⋅⋅⋅=. 19.(此题总分值14分)海上某货轮在A 处看灯塔B 在货轮的北偏东o75,距离为海里;在A处看灯塔C 在货轮的北偏西o30,距离为由A 处行驶到D 处时看灯塔B 在货轮的北偏东o120.求 (1)A 处与D 处之间的距离; (2)灯塔C 与D 处之间的距离. 解:由题意画出示用意,如下图.(1)ABD ∆中,由题意得o 60ADB ∠=,o45B ∠=,由正弦定理得oosin 45sin 60AD =24= (海里).(2)在ABD ∆中,由余弦定理,得2222CD AD AC AD AC =+-⋅ocos302224=+-224⨯⨯,故CD =海里).答:A 处与D 处之间的距离为24海里,灯塔C 与D 处之间的距离为.● 以下两题任选一题作答20.(此题总分值14分)在锐角ABC ∆中,边a 、b 是方程220x -+=的两根,A 、B 知足2sin()A B +0=,解答以下问题:(1)求C 的度数; (2)求边c 的长度;(3)求ABC ∆的面积.解:(1)由题意,得sin()A B +=ABC ∆是锐角三角形,故o 120A B +=,o60C =;(2)由a 、b 是方程220x -+=的两根,得a b +=2a b ⋅=,由余弦定理,得22222cos ()31266c a b ab C a b ab =+-=+-=-=,故c =(3)故1sin 2ABC S ab C ∆==122⨯=. 20.(此题总分值14分)ABC ∆中,a 、b 、c 别离是三内角A 、B 、C 的对边,假设AB AC BA BC ⋅=⋅1=.解答以下问题:(1)求证:A B =;(2)求c 的值; (3)假设||6AB AC +=,求ABC ∆的面积.证:(1)因AB AC BA BC ⋅=⋅,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得 sin cos sin cos B A A B =,故sin()0A B -=,因为<<A B ππ--,故0A B -=,故 A B =.解:(2)因1AB AC ⋅=,故cos 1bc A =,由余弦定理得22212b c a bc bc+-⋅=,即222b c a +-= 2;又由(1)得a b =,故22c =,故2c =.解:(3)由||6AB AC +=22||||2||6AB AC AB AC ++⋅=,即2226c b ++=,故22c b +4=,因22c =,故b =ABC ∆是正三角形,故面积2ABC S ∆==.。

高一必修5解三角形练习题及答案

高一必修5解三角形练习题及答案

高一必修5解三角形练习题及答案第一章解三角形一、选择题BC中,(1)b1.在A2ainB;(2)(abc)(bca)(22)bc,(3)a32,c3,C300;(4)inBbcoAa;则可求得角A450的是()A.(1)、(2)、(4)B.(1)、(3)、(4)C.(2)、(3)D.(2)、(4)2.在ABC中,根据下列条件解三角形,其中有两个解的是()A.b10,A45,C70B.a60,c48,B60C.a14,b16,A45D.a7,b5,A803.在ABC中,若bc21,C45,B30,则()A.b1,c2;B.b2,c1;C.b222,c12;D.b1222,c24.在△ABC中,已知coA513,inB35,则coC的值为()A.1665或5665B.16561665C.65D.655.如果满足ABC60,AC12,BCk的△ABC恰有一个,那么k的取值范围是(A.k83B.0k12C.k12D.0k12或k83二、填空题6.在ABC中,a5,A60,C15,则此三角形的最大边的长为.7.在ABC中,已知b3,c33,B30,则a__.8.若钝角三角形三边长为a1、a2、a3,则a的取值范围是.9.在△ABC中,AB=3,BC=13,AC=4,则边AC上的高为10.在△ABC中,(1)若inCin(BA)in2A,则△ABC的形状是.(2)若inA=inBinCcoBcoC,则△ABC的形状是.)三、解答题11.已知在ABC中,coA63,a,b,c分别是角A,B,C所对的边.(Ⅰ)求tan2A;(Ⅱ)若in(2B)223,c22,求ABC的面积.解:12.在△ABC中,a,b,c分别为角A、B、C的对边,a2c2b28bc5,a=3,△ABC的面积为6,D为△ABC内任一点,点D到三边距离之和为d。

⑴求角A的正弦值;⑵求边b、c;⑶求d的取值范围解:213.在ABC中,A,B,C的对边分别为a,b,c,且acoC,bcoB,ccoA成等差数列.(I)求B的值;(II)求2in2Aco(AC)的范围。

必修5解三角形练习题

必修5解三角形练习题

第一章《解三角形》练习题知识点归纳:1..正弦定理:R Cc B b A a 2sin sin sin ===(R 为△ABC 外接圆的半径) 变形:C B A c b a sin :sin :sin ::=. 另:三角形的内切圆半径cb a S r ABC ++=∆2. 2.余弦定理: A bc c b a cos 2222-+=;变形:(1)bca cb A 2cos 222-+=; B ac c a b cos 2222-+=; acb c a B 2cos 222-+=; C ab b a c cos 2222-+=. abc b a C 2cos 222-+= 变形:(2)A C B C B A cos sin sin 2sin sin sin 222-+=B C A C A B cos sin sin 2sin sin sin 222-+=C B A B A C cos sin sin 2sin sin sin 222-+=3.三角形中的边角关系和性质:(1)π=++C B A2222π=++C B A 在Rt △中,222c b a =+,C=A+B=900.(2)C B A sin )sin(=+ nC B A cos )cos(-=+ C B A tan )tan(-=+(3)2cos 2sin C B A =+ 2tan 2cos C B A =+ 2cot 2tan C B A =+ (4)tanA+tanB+tanC= tan A ·tanB ·tanC(5)b a >⇔B A >⇔B A sin sin >.⇔B cos cos <(6)21sin 21==C ab S ×底×高Rabc 4=.)(2c b a r ++=(三角形的内切圆半径r ,外接圆半径R ) (7)ma+nb=kc ⇔msinA+nsinB=ksinC(8)ma=nb ⇔ msinA=nsinB (9)a :b :c=sinA :sinB :sinC(10)若A 、B 、C 成等差数列,则B 060=.一、选择题1.在ABC ∆中,6=a , 30=B , 120=C ,则ABC ∆的面积是( ) A .9 B .18 C .39 D .3182.在ABC ∆中,若bB a A cos sin =,则B 的值为( ) A . 30 B . 45C . 60D . 903.在ABC ∆中,若B a b sin 2=,则这个三角形中角A 的值是( )A . 30或 60B . 45或 60C . 60或 120D . 30或 1504.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A .10=b , 45=A , 70=CB .60=a ,48=c , 60=BC .7=a ,5=b , 80=AD .14=a ,16=b , 45=A5.已知三角形的两边长分别为4,5,它们夹角的余弦是方程02322=-+x x 的根,则第三边长是( )A .20B .21C .22D .616.在ABC ∆中,如果bc a c b c b a 3))((=-+++,那么角A 等于( )A . 30B . 60C . 120D . 1507.在ABC ∆中,若 60=A ,16=b ,此三角形面积3220=S ,则a 的值是( ) A .620 B .75 C .51 D .498.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223 B .233 C .23 D .33 9.在ABC ∆中,若12+=+c b , 45=C , 30=B ,则( )A .2,1==c bB .1,2==c bC .221,22+==c bD .22,221=+=c b 10.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k 二、填空题11.在ABC ∆中,若6:2:1::=c b a ,则最大角的余弦值等于_________________.12.在ABC ∆中,5=a , 105=B , 15=C ,则此三角形的最大边的长为____________________.13.在ABC ∆中,已知3=b ,33=c , 30=B ,则=a __________________.14.在ABC ∆中,12=+b a , 60=A ,45=B ,则=a _______________,=b _______________.三、解答题15.△ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.16.在△ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,且bcosB +ccosC =acosA ,试判断△ABC 的形状.17. 如图,海中有一小岛,周围3.8海里内有暗礁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五解三角形练习题
一、选择题
1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .非钝角三角形
2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )
A .A >
B >
C B .B >A >C C .C >B >A
D .C >A >B
3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )
A .4 2
B .43
C .4 6 D.323
4.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C
等于( ) A.833 B.2393 C.2633D .2 3
5.若三角形三边长之比是1:3:2,则其所对角之比是( )
A .1:2:3
B .1: 3 :2
C .1: 2 :3D. 2 : 3 :2
6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )
A .无解
B .一解
C .两解
D .解的个数不确定
7.已知△ABC 的外接圆半径为R ,且2R (sin 2A -sin 2C )=(2a -b )sin B (其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )
A .30°
B .45°
C .60°
D .90°
8.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )
A .1
B .2C.2D. 3
9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )
A.85
B.58
C.53
D.35
10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为
( )
A.2π3
B.5π6
C.3π4
D.π3
11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )
A .0.5 km
B .1 km
C .1.5 km D.32 km
12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b 为( )
A .2
B .4+23
C .4-23D.6- 2
二、填空题
13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.
14.在△ABC 中,若b =2a ,B =A +60°,则A =________.
15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =________,AB =________.
16.在△ABC 中,已知(b +c ) : (c +a ) : (a +b )=8:9:10,则sin A :sin B :sin C =________.
三、解答题
17.(10分)在△ABC 中,若a 2b 2=sin A cos B cos A sin B ,判断△ABC 的形状.
18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B )-3=0.求:
(1)角C 的度数;(2)边c 的长度及△ABC 的面积.
19.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满
足cos A 2=255,AB →·AC →=3.
(1)求△ABC 的面积;
(2)若b +c =6,求a 的值.
20.(12分)在△ABC 中,已知内角A =π3,边BC =23,设内角B =x ,
周长为y .
(1)求函数y =f (x )的解析式和定义域;
(2)求y 的最大值.
21.(12分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B
,sin(B -A )=cos C . (1)求A ,C ;
(2)若S △ABC =3+3,求a ,c .。

相关文档
最新文档