高一必修五解三角形复习题及标准答案
高中数学必修5解三角形测试题及答案
5解三角形测试题及答案高中数学必修60分)一、选择题:(每小题5分,共??75?45?,CAB?3,A ABC)( A ,则BC= 1.在中,3??33322 D C.A.. B .)B (2.下列关于正弦定理的叙述或变形中错误的是..,a:b:c=sinA:sinB:sinC中ABC A.在sin2A=sin2B?ABC中,a=b B.b+ca=ABC 中,.CsinB+sinCsinA,ABC 中正弦值较大的角所对的边也较大D.BAcossin,ABC中的值为B则??,若3.( B )ba??906030?45? A.D B...C c ab ABC在?=ABC)B (4.中,若,则是cosCcosAcosB D.等腰直角三角形.钝角三角形B.等边三角形 C A.直角三角形) D (5.下列命题正确的是 ?30 A.当a=4,b=5,A=时,三角形有一解。
?60 B.当a=5,b=4,A=时,三角形有两解。
32?120 C.当时,三角形有一解。
a=,b=,B=362?60 ,A=,b=D.当时,三角形有一解。
a=23) B (中6.ΔABC ,a=1,b=,, ∠A=30°则∠B等于°.120 D C.30°或150°.B°A.60 60°或120°是个的且只有一有列条件的三角形.7符合下D()2 ,∠A=30°B.a=1,b= A .a=1,b=2 ,c=3C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45°8.若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是B().等边三角形 B .直角三角形 A.等腰直角三角形D .等腰三角形C?3,,b=1c,已知A=,a=9.在ΔABC中,角A、B、C的对边分别为a、b、 3 则c=( B)33(D)-1 (B)2 (C)(A)1)B m?(3sinA,sinC,B,A ABC?,,角个内10.(2009重庆理)设向量的三)B?1?cos(A?n?(cosB,3cosA)mn C( C ),则=,若????52.D.A B.C.6336 )11.已知等腰的腰为底的2倍,则顶角的正切值是(DABC△A151533B.D.C.A.782, 两点测得12.如图:D,C,B三点在地面同一直线上,DC=a,从C,DA点仰角分别是β)A β),则A点离地面的高度AB等于(α(α<A????sinasinasin?sin A.B.????)cos()??sin(βαB????sinsincoscosaa CD D.C.分)二、填空题:(每小题5分,共20cbaa??2??_______2_______ .已知,则13AsinC?sinA?sinBsin?1222_____.那么角∠c= (aC=_+b),-S14.在ΔABC中,若ABCΔ44045??ACBAB?4,CB,,A OO的是圆2009理)已知点且上的点,,则圆.(广东15?8.面积等于?b与?4,aa?2,ba,b为邻边作平行四边形,则此平行四边形的16的夹角为,以.已知3 23________ 两条对角线中较短的一条的长度为____三、解答题:(17题10分,其余小题均为12分)230ABCABC。
人教版高中数学必修5第一章解三角形测试题及答案
必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
必修5-解三角形单元测试题---(含答案)
2专题:正弦定理、余弦定理的应用正弦定理、余弦定理应用的常见题型: ⑴ 已知两角与一边,解三角形,有一解。
⑵ 已知两边及其中一边的对角,解三角形, 可能有两解、一解或无解(如右图)。
⑶ 已知三边,解三角形,有一解。
⑷ 已知两边及夹角,解三角形,有一解。
达标试题:1. 在厶 ABC 中,已知 A=30°, B=45°, a=1,贝Ub=(sinA : sinB : sinC=3 : 5: 7,那么这个三角形的最大角是( A.90 °B.120°C.135°D.150°4. 已知在△ ABC 中,a 、b 、c 分别是角 A B 、C 的对边,如果(a+b+c)(b+c-a)=3bc, 那么A=() A.30 °B.60°C.120°D.150°4 a 5. 在厶ABC 中,角A , B 的对边分别为a 、b 且A=2B sinB=,则旦的值是()5b6 B.3 C4 8 A. 一D.55356.在厶 ABC 中, a= . 2 , b=3 , 冗 B=—, 则A 等于()3冗冗3nA. 一B.C.D.或一644447. △ ABC 的内角 A 、B C 的对边分别是 a 、b 、c ,若 B=2A, a=1, b=3,贝U c=( )A.1B.2C..2D.1 或 2— 2 a + c8. 在厶ABC 中,内角A 、B C 所对应的边分别为 a 、b 、c ,若bsinA- 3 acosB=0,且b =ac ,贝U 的值为(b9. 在厶 ABC 中,角 A 、B 、C 所对应的边分别为 a 、b 、c , sinC+sin(A-B)=3sin2B.若 C=n,则-=()3 b11A-B.3C.或 3D.3 或丄24310. 在厶ABC 中,如果a+c=2b , B=30°,^ ABC 的面积为一,那么b 等于()A. ..2B..3C..2D.2.在厶 ABC 中,已知 C=n, b=4,3A. .. 7B.2.2ABC 的面积为C.2.32一3 ,D.2c=(3.已知在△ ABC 中, A. 一B. 2C.2D. 43D. 2+ . 32a 、b 、c ,且 a= ... 5, b=3, c=2 2,则角 A= .1a 、b 、c.已知 b-c= — a , 2sinB=3sinC ,贝U cosA 的值为413. 在厶 ABC 中,a 、b 、c 分别是角 A B C 的对边,若 a-c =2b ,且 sinB=6cosA?sinC ,贝U b= . 14. 已知△ ABC 的内角A 、B C 所对的边分别为 a 、b 、c ,若c 2<a 2+b 2+2abcos2C ,贝U C 的取值范围为715. 设」 的内角 A,B,C 所对的边分别为a,b,c ,且= == §。
(完整版)高一数学必修5解三角形,正弦,余弦知识点和练习题(含答案),推荐文档
C . a=1,b=2, / A=100C . b=c=1, / B=451 .正弦定理abc2R 或变a ・ A ・ c ain △・ain R ・ain C■ K/ ■ vzn u i L M / ・ w iii sin A sin B sinC222bc acco AUUo / v2a 2 2b c 2bccosA 92bc 92.余弦定理:b 22 2 a c 2accosB 或c a QCO l-< c b 22ac2cb 2 a2bacosC.2 22ba ccos C2ab3.( 1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角 2、已知两角和其中一边的对角,求其他边角 (2)两类余弦定理解三角形的问题:1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式〔、△ ABC 中,a=1,b= 3 , / A=30 °,则/ B 等于A . 60°B . 60° 或 120°2、符合下列条件的三角形有且只有一个的是A . a=1,b=2 ,c=3 ( )C . 30° 或 150°D . 120°( )B . a=1,b= .2,/A=30 °3、在锐角三角形 ABC 中,有( )A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinAB . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA4、若(a+b+c)(b+c — a)=3abc ,且 sinA=2sinBcosC,那么△ ABC 是A .直角三角形D .等腰直角三角形1、在厶ABC 中,已知内角 A —,边BC 2.3.设内角B(1)求函数y f (x)的解析式和定义域;(2)求y 的最大值.2、在VABC 中,角A,B,C 对应的边分别是a,b,c ,若si nAsi nBB .等边三角形C .等腰三角形 5、C 为三角形的三内角,且方程(sinB—si nA)x 2+(si nA — sinC)x+(si nC — sin B)=0有等根,那么角 B6、 满足A=45 B>60 ° C . B<60 D . B w 60°,c= , 6 ,a=2的厶ABC 的个数记为 m,则a m 的值为B .D .不定7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是B ,点离地面的高度AB等于asin sin A .sin( )B .asin sin cos( )asin cos C .sin( )a cos sin D .cos( )9、A 为 ABC 的一个内角,且 sinA+cosA = 172,肌 ABC 是三角形•11、在4 ABC 1 中,若 S ABC = (a 2+b 2 — c 2),那么角/ C=412、在4 ABC 13、在4 ABC① B=60 亠31 中,a =5,b = 4,cos(A — B)= 一,则 cosC= _____ .32中,求分别满足下列条件的三角形形状:,b 2=ac ; ② b 2ta nA=a 2ta nB ;sin A sin B ③ sin C=cos A cos Bx ,周长为—求 a:b:c2 ,3、在锐角三角形ABC中,有( )23、在 VABC 中 a, b, c 分别为 A, B, C 的对边,若 2sinA(cosB cosC) 3(sinB sinC), (1)求A 的大小;(2)若a .61,b c 9,求b 和c 的值。
高一必修5解三角形练习题及答案
第一章 解三角形一、选择题1.在ABC ∆中; (3) a =03,30;c C ==(4)则可求得角045A =的是( ) A .(1)、(2)、(4) B .(1)、(3)、(4) C .(2)、(3) D .(2)、(4) 2.在ABC ∆中;根据下列条件解三角形;其中有两个解的是( ) A .10=b ; 45=A ; 70=C B .60=a ;48=c ; 60=B C .14=a ;16=b ; 45=A D . 7=a ;5=b ; 80=A 3.在ABC ∆中;若; 45=C ; 30=B ;则( )A ; BC D4.在△ABC ;则cos C 的值为( )A. D. 5.如果满足 60=∠ABC ;12=AC ;k BC =的△ABC 恰有一个;那么k 的取值范围是( )A B .120≤<k C .12≥k D .120≤<k 或二、填空题6.在ABC ∆中;5=a ;60A =; 15=C ;则此三角形的最大边的长为 .7.在ABC ∆中;已知3=b ;;30=B ;则=a _ _.8.若钝角三角形三边长为1a +、2a +、3a +;则a 的取值范围是 .9.在△ABC 中;AB=3;AC=4;则边AC 上的高为10. 在ABC △中;(1)若A A B C 2sin )sin(sin =-+;则ABC △的形状是 .(2)若ABC △的形状是 .三、解答题11. 已知在ABC ∆中;cos 3A =;,,a b c 分别是角,,A B C 所对的边.(Ⅰ)求tan 2A ; (Ⅱ)若sin()23B π+=;c =ABC ∆的面积. 解:12. 在△ABC 中;c b a ,,分别为角A 、B 、C 的对边;58222bcb c a -=-;a =3; △ABC 的面积为6; D 为△ABC 内任一点;点D 到三边距离之和为d 。
⑴求角A 的正弦值; ⑵求边b 、c ; ⑶求d 的取值范围 解:13.在ABC ∆中;,,A B C 的对边分别为,,,a b c 且cos ,cos ,cos a C b B c A 成等差数列.(I )求B 的值; (II )求22sin cos()A A C +-的范围。
必修5解三角形练习题和答案
必修5解三角形练习题1.在ABC D 中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是(,则此三角形一定是( )A.等腰直角三角形等腰直角三角形B. 直角三角形直角三角形C. 等腰三角形等腰三角形D. 等腰或直角三角形等腰或直角三角形2. 在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为的值为A .38 38B .3737C C..36D 36 D..353.(2009宁夏海南卷文)有四个关于三角函数的命题:1p :$x ÎR, 2sin 2x +2cos 2x =122p : ,x y R $Î, sin()sin sin x y x y -=- 3p : "x Î[]0,p ,1cos 2sin 2x x -= 4p : sin cos 2x y x y p =Þ+= 其中假命题的是其中假命题的是(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC D 的内角A ,B ,C 所对的边分别为a ,b ,c ,若31s i n=A ,B b sin 3=,则a 等于等于 .5.5.在△在△在△ABC ABC 中,已知边10c =,cos 4cos 3A b B a ==,求边a 、b b 的长。
的长。
的长。
6.已知A 、B 、C 为ABC D 的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC D 的面积.的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =°,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.8.已知:△已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ×+×=.(1) (1)求角求角C 的大小;的大小;(2) (2)若若,,a c b 成等差数列,且18CA CB ×= ,求c 边的长边的长. .9.已知ABC D 的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =- 2(cos ,cos 2)2A n A = ,且72m n ×= . (1)求角A 的大小;的大小;(2)若3a =,试求当b c ×取得最大值时ABC D 的形状. 1010.在.在ABC D 中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值;的值; (Ⅱ)设15=BC ,求ABC D 的面积.的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[p Îx ⑴ 求)(x f 的最大值及此时x 的值;的值;⑵ 求)(x f 在定义域上的单调递增区间。
高一数学必修5《解三角形》测试题(含答案)
高一数学必修5《解三角形》测试题(含答案)work Information Technology Company.2020YEAR《解三角形》测试题一、选择题(本大题共6小题,每小题6分,共36分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150°C .60°D .60°或120°2.在△ABC 中,若BA sin sin >,则A 与B 的大小关系为( ) A. BA > B.B A < C. A ≥B D. A 、B 的大小关系不能确定 3.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18C .93D .1834.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为( )A .23 B .-23 C .14 D .-145.△ABC 中,1c o s 1c o s A aB b-=-,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形6. 已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为( )A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C )B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C )C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sinC cos(A +B ) 二、填空题(本大题共4小题,每小题6分,共24分)7.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .8.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 9、ABC ∆中,若b=2a , B=A+60°,则A= .10.在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、.C 的对边,则ca bc b a +++=________.三、解答题(本大题共3小题,共40分)11.(本小题共12分)已知a =33,c =2,B =150°,求边b 的长及S △.12. (本小题共14分) 一缉私艇发现在北偏东 45方向,距离12 nmile 的海面上有一走私船正以10 nmile/h 的速度沿东偏南 15方向逃窜.缉私艇的速度为14nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+45的方向去追,.求追及所需的时间和α角的正弦值.13. (本小题共14分)在∆ABC 中,设,2tan tan bbc B A -=,求A 的值。
(完整word)高一数学必修5解三角形-知识点和练习题(含答案)-推荐文档
1.ΔABC中,a=1,b= , ∠A=30°,则∠B等于()A. 60°B. 60°或120° C. 30°或150° D. 120°1、的值等于()2.符合下列条件的三角形有且只有一个的是()A. a=1,b=2 ,c=3B. a=1,b= ,∠A=30°C. a=1,b=2,∠A=100° C. b=c=1, ∠B=45°3.在锐角三角形ABC中, 有()A. cosA>sinB且cosB>sinAB. cosA<sinB且cosB<sinAC. cosA>sinB且cosB<sinAD. cosA<sinB且cosB>sinA4.若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是()A. 直角三角形B. 等边三角形C. 等腰三角形D. 等腰直角三角形5.设A.B.C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根, 那么角B()A. B>60°B. B≥60°C. B<60°D. B ≤60°6.满足A=45°,c= ,a=2的△ABC的个数记为m,则a m的值为()A. 4B. 2C. 1D. 不定7、如图: D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β, α(α<β),则A点离地面的高度AB等于()A. B.C. D.9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形.参考答案(正弦、余弦定理与解三角形)一、BDBBD AAC 二、(9)钝角 (10) (11) (12) 三、(13)分析: 化简已知条件, 找到边角之间的关系, 就可判断三角形的形状.①由余弦定理 ,.由a=c 及B=60°可知△ABC 为等边三角形. ②由∴A=B 或A+B=90°, ∴△ABC 为等腰△或Rt △. ③ , 由正弦定理: 再由余弦定理:. ④由条件变形为︒=+=∴=∴=⇒=--+-++∴90,2sin 2sin sin sin sin cos cos sin ,)sin()sin()sin()sin(2222B A B A B A BA B A B A b a B A B A B A B A 或. ∴△ABC 是等腰△或Rt △.。
(典型题)高中数学必修五第二章《解三角形》测试题(含答案解析)
一、选择题1.在△ABC 中,若b =2,A =120°,三角形的面积S =AB .C .2D .42.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,(b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ).A .133,244⎡⎤⎢⎥⎣⎦ B .133,244⎛⎫⎪⎝⎭ C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫⎪⎝⎭6.在ABC 中,角A 、B 、C 对边分别为a 、b 、c ,若b =cos 20B B +-=,且sin 2sin C A =,则ABC 的周长是( )A .12+B .C .D .6+7.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8058.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形9.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb+的值为( ) A .24B .22C .1D .211.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m12.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m二、填空题13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()226b a c =+-,23B π=,则ABC 的面积是______________. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若8cos 3ABC bc A S =△,则22cos sin 122sin cos B CA A A++-=-________. 17.已知ABC 中,2,2BC AB AC ==,则ABC 面积的最大值为_____ 18.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 19.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在①()cos cos 3cos 0C A A B +-=,②()cos23cos 1B A C -+=,③cos sin 3b C B a +=这三个条件中任选一个,补充在下面问题中. 问题:在ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若1a c +=,___________,求角B 的值和b 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】12sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得a =,∴24sin 2a R A === , 解得R =2.本题选择C 选项. 2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R∴=所以ABC∆的外接圆面积为=3ππ.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D【分析】根据角A的平分线交BC于E,满足0AE BC⋅=,得到ABC是等腰三角形,再由2221sin24+-==ABCa b cS ab C,结合余弦定理求解.【详解】因为0AE BC⋅=,所以AE BC⊥,又因为AE是角A的平分线,所以ABC是等腰三角形,又2221sin24+-==ABCa b cS ab C,所以2221sin cos22a b cab C Cab+-==,因为()0,Cπ∈,所以4Cπ,所以ABC是等腰直角三角形,故选:D【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.4.D解析:D【分析】根据cos cosa Ab B=,利用正弦定理将边转化为角得到sin cos sin cosA AB B=,然后再利用二倍角的正弦公式化简求解.【详解】因为cos cosa Ab B=,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.5.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==.因为(b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B 【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .6.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =, 2a ∴=,24c a ==,因此,ABC 的周长是623a b c ++=+.故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.7.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得802BD =,在ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒,∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得802BD =,ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠2280(802)280802cos135=+-⨯⨯⨯︒2805=⨯,∴805AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.11.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.12.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin AM AMCAC ACM∠===∠在Rt ABC ∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.二、填空题13.【分析】利用余弦定理求出的值再利用三角形的面积公式可求得的面积【详解】由余弦定理可得可得则解得因此的面积是故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用正弦定理【分析】利用余弦定理求出ac 的值,再利用三角形的面积公式可求得ABC 的面积. 【详解】由余弦定理可得222222cos b a c ac B a c ac =+-=++,222a c b ac ∴+-=-,()2222626b a c a c ac =+-=++-,可得222260a c b ac +-+-=,则260ac ac --=,解得6ac =,因此,ABC的面积是11sin 62222ABC S ac B ==⨯⨯=△.故答案为:2. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 1222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦解析:【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围.【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<,cos 64A A ππ∴<<∴∈sin 2sin cos 2cos sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.16.【分析】由三角形的面积公式结合等式可求得然后利用二倍角余弦公式结合弦化切可求得所求代数式的值【详解】因为所以则故故答案为:【点睛】本题考查利用三角形的面积公式二倍角余弦公式诱导公式以及弦化切求值考查解析:12-【分析】由三角形的面积公式结合等式8cos 3ABC bc A S =△,可求得3tan 4A =,然后利用二倍角余弦公式、结合弦化切可求得所求代数式的值. 【详解】因为881cos sin 332ABC bc A S bc A ==⨯△,所以4cos sin 3A A =,则3tan 4A =,故()()22cos sin 1cos sin sin cos sin cos 22sin cos 2sin cos 2sin cos 2sin cos B CA B C A A A A A A A A A A A A A π++-+++--===---- tan 112tan 12A A -==--. 故答案为:12-.【点睛】 本题考查利用三角形的面积公式、二倍角余弦公式、诱导公式以及弦化切求值,考查计算能力,属于中等题.17.【分析】设则根据面积公式得由余弦定理求得代入化简由三角形三边关系求得由二次函数的性质求得取得最大值【详解】解:设则根据面积公式得由余弦定理可得可得:由三角形三边关系有:且解得:故当时取得最大值故答案解析:43【分析】设AC x =,则2AB x =,根据面积公式得ABC S ∆=,由余弦定理求得cos C 代入化简ABC S ∆=223x <<,由二次函数的性质求得ABC S ∆取得最大值. 【详解】解:设AC x =,则2AB x =,根据面积公式得 1sin sin 12ABC S AC BC C x C x ∆=== 由余弦定理可得2224443cos 44x x x C x x+--==,可得:ABCS ∆==由三角形三边关系有:22x x +>,且22x x +>,解得:223x <<,故当x =时,ABC S ∆取得最大值43, 故答案为:43. 【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.18.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b aab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.19.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴sin 30︒=()sin 1801530CB ︒︒︒--, CB =30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =, 由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确.故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.条件选择见解析;最大值为3. 【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABCS ∆=,即可求解. 【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =, 根据正弦定理可得cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=,根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABCSbc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin A ===,1sin 22ABC S bc A b b∆==⨯=,所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin 2A b===,1sin 2ABCS bc A b ∆===, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.22.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 2224ABCSac B ==⨯=. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 23.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得; 【详解】 解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =,故2222cos sin cos2sin cos AA A A A+=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin A =,cos A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.24.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >.又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b C b C b C c B C C ====⎛⎫- ⎪⎝⎭. 方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-,所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =. 【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠ 所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.条件选择见解析;3B π=,b 最小值为12. 【分析】选①,利用三角形的内角和定理、诱导公式以及两角和的余弦公式化简得出tan B =结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选②,利用三角形的内角和定理、诱导公式以及二倍角的余弦公式求出cos B 的值,结合()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值; 选③,利用正弦定理边角互化、三角形的内角和定理以及两角和的正弦公式化简可求得tan B =()0,B π∈可求得B ,再利用余弦定理结合二次函数的基本性质可求得b 的最小值.【详解】解:若选择①:在ABC 中,有A B C π++=,则由题可得:()()cos cos cos 0A B A A B π-++-=⎡⎤⎣⎦, ()cos cos cos cos 0A B A B A B -++=,sin sin cos cos cos cos cos 0A B A B A B A B -+-=,sin sin cos A B A B =,又sin 0A ≠,所以sin B B =,则tan B =又()0,B π∈,所以3B π=,因为1a c +=,所以1c a =-,()0,1a ∈.由余弦定理可得:2222cos b a c ac B =+-22a c ac =+-()()2211a a a a =+---2331a a =-+, ()0,1a ∈,又2211324b a ⎛⎫=-+ ⎪⎝⎭, 所以,当12a =时,()2min 14b =,即b 的最小值为12; 若选择②:在ABC 中,有A B C π++=, 则由题可得()222cos 13cos 2cos 3cos 11B B B B π---=+-=, 解得1cos 2B =或cos 2B =-(舍去), 又()0,πB ∈,所以3B π=.(剩下同①)若选择③:由正弦定理可将已知条件转化为sin cos sin sin 3B C C B A +=, ()()sin cos s s in cos in sin sin B C C B A B C B C π=+=-+=+⎡⎤⎣⎦,代入上式得sin sin cos 3C B C B =,又sin 0C ≠,所以sin B B =,tan B =又()0,B π∈,所以3B π=.(剩下同①) 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.。
高一数学必修五第一章试题——解三角形(带答案)
高一数学必修五第一章试题——解三角形一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c 分别是△ABC 中∠A ,∠B ,∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直2.在△ABC 中,已知a -2b +c =0,3a +b -2c =0,则sin A ∶sin B ∶sin C 等于( )A .2∶3∶4B .3∶4∶5C .4∶5∶8D .3∶5∶73.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .624.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =1,sin B =32,C =π6,则b 的值为( )A .1B .32C .3或32 D .±17.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75°C .30°D .15°8.若G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,且aGA →+bGB →+33cGC →=0,则角A =( )A .90°B .60°C .45°D .30°9.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC→,则AD 的长为( ) A .4(3-1) B .4(3+1) C .4(3-3)D .4(3+3)10.在△ABC 中,B A →·B C →=3,S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,则B 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π4,π3 B .⎣⎢⎡⎦⎥⎤π6,π4 C .⎣⎢⎡⎦⎥⎤π6,π3 D .⎣⎢⎡⎦⎥⎤π3,π211.在△ABC 中,三内角A ,B ,C 所对边分别为a ,b ,c ,若(b -c )sin B =2c sin C 且a =10,cos A =58,则△ABC 面积等于( )A .392 B .39 C .313 D .312.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A (a cos C +c cos A )=3b ,则cb 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫32,233 C .(1,2) D .⎝ ⎛⎭⎪⎫32,1二、填空题(本大题共4小题,每小题5分,共20分)13.已知在△ABC 中,a +b =3,A =π3,B =π4,则a 的值为________.14.在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos C =255,则AC +BC =________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb ,则边c 的值为________.16.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 满足2b =a +c ,B =π4,则cos A -cos C =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .19.(本小题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约 3 km有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12 km/h的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?20.(本小题满分12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若λ=6,B=5π6,求sin A;(2)若λ=4,AB边上的高为3c6,求C.21.(本小题满分12分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tan A=3cbc2+b2-a2.(1)求角A的大小;(2)当a=3时,求c2+b2的最大值,并判断此时△ABC的形状.22.(本小题满分12分)在海岸A处,发现北偏东45°方向,距A处(3-1) n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以10 3 n mile/h的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?一、选择题1. 答案 C解析 ∵k 1=-sin A a ,k 2=bsin B ,∴k 1k 2=-1,∴两直线垂直.故选C . 2. 答案 D解析 因为a -2b +c =0,3a +b -2c =0, 所以c =73a ,b =53a .a ∶b ∶c =3∶5∶7. 所以sin A ∶sin B ∶sin C =3∶5∶7.故选D . 3. 答案 C解析 ∵S △ABC =12ac sin B =2,∴c =42. 由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =52(R 为△ABC 外接圆的半径).故选C . 4. 答案 C解析 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ), ∴12(cos A ·cos B +sin A ·sin B )=12, ∴cos(A -B )=1.∴A -B =0,∴A =B ,∴△ABC 为等腰三角形.故选C . 5. 答案 A解析 ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的是①②.故选A . 6. 答案 C解析 在△ABC 中,sin B =32,0<B <π, ∴B =π3或2π3,当B =π3时,△ABC 为直角三角形, ∴b =a ·sin B =32; 当B =2π3时,A =C =π6,a =c =1.由余弦定理得b 2=a 2+c 2-2ac cos 2π3=3, ∴b =3.故选C . 7. 答案 A解析 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°. 故选A . 8. 答案 D解析 由重心性质可知GA →+GB →+GC →=0,故GA →=-GB →-GC →,代入aGA →+bGB→+33cGC →=0中,即 (b -a )GB →+33c -aGC →=0,因为GB →,GC →不共线,则⎩⎨⎧b -a =0,33c -a =0,即⎩⎨⎧b =a ,c =3a ,故由余弦定理得cos A =b 2+c 2-a 22bc =32.因为0<A <180°,所以A =30°.故选D .9. 答案 C解析 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1), 因为BD →=3-12BC →,所以BD =3-12BC . 又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).故选C . 10. 答案 C解析 由题意知ac ·cos B =3,所以ac =3cos B , S △ABC =12ac ·sin B =12×3cos B ×sin B =32tan B . 因为S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,所以tan B ∈⎣⎢⎡⎦⎥⎤33,3, 所以B ∈⎣⎢⎡⎦⎥⎤π6,π3.故选C .11. 答案 A解析 由正弦定理,得(b -c )·b =2c 2,得b 2-bc -2c 2=0,得b =2c 或b =-c (舍).由a 2=b 2+c 2-2bc cos A ,得c =2,则b =4. 由cos A =58知,sin A =398.S △ABC =12bc sin A =12×4×2×398=392.故选A . 12. 答案 A解析 2sin A (a cos C +c cos A )=3b ⇔2sin A ·(sin A cos C +sin C cos A )=3sin B ⇔2sin A sin(A +C )=3sin B ⇔2sin A sin B =3sin B ⇔sin A =32, 因为△ABC 为锐角三角形, 所以A =π3,a 2=b 2+c 2-bc , ① a 2+c 2>b 2, ② a 2+b 2>c 2, ③由①②③可得2b 2>bc ,2c 2>bc ,所以12<cb <2.故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 33-32解析 由正弦定理,得b =a sin B sin A =63a .由a +b =a +63a =3,解得a =33-32.14. 答案 3+5解析 ∵cos ∠DAC =31010,cos C =255, ∴sin ∠DAC =1010,sin C =55, ∴sin ∠ADC =sin(∠DAC +∠C ) =1010×255+31010×55=22. 由正弦定理,得AC sin ∠ADC =DCsin ∠DAC,得AC =5DC .又∵BD =2DC ,∴BC =3DC . 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos C=5DC 2+9DC 2-25DC ·3DC ·255=2DC 2. 由AB =2,得DC =1,从而BC =3,AC =5.即AC +BC =3+5. 15. 答案 22解析 在△ABC 中,∵1+tan A tan B =1+sin A cos Bcos A sin B = cos A sin B +sin A cos B cos A sin B =sin (A +B )cos A sin B =sin C cos A sin B =2cb . 由正弦定理得c b cos A =2c b ,∴cos A =12,∴A =60°. 又∵a =23,C =45°.由a sin A =c sin C 得2332=c 22,∴c =22.16. 答案 ±42 解析 ∵2b =a +c ,由正弦定理得2sin B =sin A +sin C ,又∵B =π4,∴sin A +sin C =2,A +C =3π4. 设cos A -cos C =x ,可得(sin A +sin C )2+(cos A -cos C )2=2+x 2,即sin 2A +2sin A sin C +sin 2C +cos 2A -2cos A cos C +cos 2C =2-2cos(A +C )=2-2cos 3π4=2+x 2.则(cos A -cos C )2=x 2=-2cos 3π4=2, ∴cos A -cos C =±42. 三、解答题 17.解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos15°=cos(45°-30°)=6+24. (2)在△ABE 中,AB =2, 由正弦定理,得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°sin75°=2×126+24=6-2.18.解 (1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化为cos A sin A +cos Bsin B =sin Csin C =1,因为A 和B 为三角形内角,所以sin A sin B ≠0,则两边同时乘以sin A sin B ,可得sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,原式得证.(2)因为b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =14,所以tan B =4.19.解 如右图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1 km .在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32,∴∠ACB =120°(∠ACB =60°不符合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1.∵BC 12×60=5,∴在BC 上需要5 min ,CD 上需要5 min .∴最长需要5 min 检查员开始收不到信号,并至少持续5 min 该考点才算合格.20.解 (1)由已知B =5π6,a 2+b 2=6ab ,综合正弦定理得4sin 2A -26sin A +1=0.于是sin A =6±24,∵0<A <π6,∴sin A <12,∴sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ),从而有3sin C +cos C =2即sin ⎝ ⎛⎭⎪⎫C +π6=1. 又π6<C +π6<7π6,∴C =π3.21.解 (1)由已知及余弦定理,得sin A cos A =3cb 2cb cos A ,sin A =32,因为A 为锐角,所以A =60°. (2)解法一:由正弦定理,得a sin A =b sin B =c sin C =332=2, 所以b =2sin B ,c =2sin C =2sin(120°-B ).c 2+b 2=4[sin 2B +sin 2(120°-B )] =41-cos2B 2+1-cos (240°-2B )2=4-cos2B +3sin2B=4+2sin(2B -30°).由⎩⎨⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°. 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6,此时C =60°,△ABC 为等边三角形.解法二:由余弦定理得(3)2=b 2+c 2-2bc cos60°=b 2+c 2-bc =3.∵bc ≤b 2+c 22(当且仅当b =c 时取等号),∴b 2+c 2-b 2+c 22≤3,即b 2+c 2≤6(当且仅当b =c 时等号). 故c 2+b 2的最大值为6,此时△ABC 为等边三角形.22.解 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直.∴∠CBD =120°.在△BCD 中,由正弦定理,得CD sin ∠CBD =BD sin ∠BCD, ∴103t sin120°=10t sin ∠BCD , ∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.。
高中数学必修五解三角形测试题及答案
高中数学必修五解三角形测试题及答案1.在三角形ABC中,如果C=90度,a=6,B=30度,那么c-b的值是多少?选项:A。
1 B。
-1 C。
2/3 D。
-2/32.如果A是三角形ABC的内角,那么下列函数中一定取正值的是什么?选项:A。
XXX3.在三角形ABC中,角A和角B都是锐角,并且cosA>sinB,那么三角形ABC的形状是什么?选项:A。
直角三角形 B。
锐角三角形 C。
钝角三角形 D。
等腰三角形4.在等腰三角形中,一条腰上的高为3,这条高与底边的夹角为60度,那么底边的长度是多少?选项:A。
2 B。
3 C。
3/2 D。
2/35.在三角形ABC中,如果b=2sinB,那么角A等于多少?选项:A。
30度或60度 B。
45度或60度 C。
120度或60度 D。
30度或150度6.边长为5、7、8的三角形的最大角与最小角的和是多少?选项:A。
90度 B。
120度 C。
135度 D。
150度填空题:1.在直角三角形ABC中,如果C=90度,那么sinAsinB 的最大值是1/4.2.在三角形ABC中,如果a=b+bc+c,那么角A的大小是60度。
3.在三角形ABC中,如果b=2,B=30度,C=135度,那么a的大小是2.4.在三角形ABC中,如果5.在三角形ABC中,如果AB=2(6-2),C=30度,那么AC+BC的最大值是5.解答题:1.在三角形ABC中,如果acosA+bcosB=ccosC,那么三角形ABC是等腰三角形。
2.在三角形ABC中,证明:b-a/c = c-b/a。
3.在锐角三角形ABC中,证明:XXX>XXX。
4.在三角形ABC中,如果a+c=2b,A-C=π/3,那么sinB 的值是1/2.1.在△ABC中,若 $\log(\sin A) - \log(\cos B) - \log(\sin C) = \log 2$,则△ABC的形状是()A。
直角三角形 B。
必修五解三角形整理+例题+练习+答案
第一章 解三角形一、知识点总结 1.正弦定理:()2,sin sin sin a b cC R R A B ===为三角形外接圆的半径变形:例(1)(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( )A .4 3B .2 3 C. 3 D.322.余弦定理:例(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值_(3)2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.3.面积公式例(4)△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 4.射影定理(了解):a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA5.三角形中的常用结论:2sin ,2sin ,2sin sin =,sin ,sin 222::sin :sin :sin ++=2sin sin sin sin +sin +sin sin sin sin A B C a b a R A b R B c R C a b cA B C R R R a b c A B Ca b c a b cR A B A B C C C A B c >===⎫⎪⎬==>⇔>>⇔>>⎪⎭====边角互化(大角对大边:)①②③④2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2⎧+-=⎪⎪+-⎪⇒=⎨⎪⎪+-=⎪⎩b c a A bc a c b B ac b a c C ab 111222∆===ABC a b c S ah bh ch 111sin sin sin =2224ABC abc S ab C bc A ac B R ∆===或(1),(+>-<a b c a b c 即两边之和大于第三边,两边之差小于第三边)二、常见题型 1、解三角形利用正弦定理:①已知两角和任意一边(AAS 、ASA ),求其他的两边及一角(只有一解) ②已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 利用余弦定理:①已知三边(SSS )求三角(只有一解)②已知两边及夹角(SAS ),求第三边和其他两角(只有一解)③已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 已知“SSA ”利用正弦定理与余弦定理求解的区别:(2)sin sin cos cos ∆>⇔>⇔>⇔<ABC A B a b A B A B在中,(3)222sin()sin ,cos()cos tan()tan ,sin cos ,cos sin ,2222A B CA B C A B C A B C A B C A B C A B A B C C πππ+++=⇒⇒=-+=+=-+=-+=-++==三角形中的诱导公式:,A.32或 3B.32或34C.3或34D. 32、判断三角形形状或求值方法一:确定最大角(只要知道三边的关系,就可以利用余弦定理的推论求出角) 方法二:边化角(统一化成角)方法三:角化边(统一化成边)❖常见的形式:例(6)ABC ∆中,若C B A B A 22222sin sin cos cos sin =-,判断ABC ∆的形状例 (7) 在△ABC 中,若cos A cos B =b a =43,试判断三角形的形状.3、构成三角形三边的问题2222222sin ,2sin ,2sin ,2cos sin sin sin 2sin sin cos a R A b R B c R C a b c bc A A B C B C A====+-⇒=+-⋅①常用公式:222222222sin ,sin ,sin ,222cos ,cos ,cos ,222a b cA B C R R R b c a a c b a b c A B C bc ac ab ===+-+-+-===①常用公式:sin =sin ()(sin sin +22)sin 2=sin 2()()2A B A B k k A B A B A B αβαβπαπβππ⇒=⎫⎪=⇔==-+⎬⇒=+=⎪⎭②常见结论:等腰三角形原理:或等腰三角形或直角三角形2222222222222229090a b c A a b c A a b c b a c c a b>+⇒>=+⇒=⎧<+⎪<+⇒⎨⎪<+⎩②常见结论:(钝角三角形)(直角三角形)锐角三角形cos cos ()()cos cos cos cos ()sin 2sin cos ())()3,sin 2sin cos ()a Ab B a bc A B C b a C A B C a b c b c a bc A B C =====+++-==①等腰三角形或直角三角形②等边三角形③直角三角形④等腰三角形⑤(且等边三角形21,,1()2.a a a a +-【例8】设为钝角三角形的三边,求实数考虑最大角为钝角和两边之和大于取值范围第三边的4、周长面积问题(记得同时利用两个公式:余弦定理和完全平方公式)5、正、余弦定理的综合应用【例11】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c,a =tan tan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c特别提醒:(1)求解三角形中的问题时,一定要注意A B C π++=这个特殊性:,sin()sin ,sincos 22A B CA B C A B C π++=-+==;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。
高一必修五解三角形复习题及标准答案
解 三角 形广州市第四中学刘运科一、选择题 . 本大题共 10 小题 . 在每题给出的四个选项中,只有一项为哪一项切合题目要求的.. △ ABC 的内角 A ,B , C 的对边分别为a ,b ,c ,若 c2, b6, B 120o,则 a等于【】A .6B . 2C .3D .22.在 △ABC 中,角 A 、B 、C 的对边分别为a 、b 、c ,已知 A, a 3, b 1 ,则c【】3A . 1B . 2C .31D . 33. 已知 △ ABC 中, a 2 , b3 , B 60o ,那么角 A 等于【】A . 135oB . 90oC . 45oD . 30o4. 在三角形 ABC 中, AB5,AC 3,BC 7,则BAC 的大小为【】2B .5C .3D .A .64335.△ ABC 的内角A 、B 、C 的对边分别为 a 、 b 、 c ,若 a 、b 、c 成等比数列, 且 c 2a ,则 cosB【】1322A . 4B .4C .4D . 36. △ ABC 中,已知 tan A11】, tan B,则角 C 等于【32A . 135oB . 120oC . 45oD . 30oABC 中, AB=3, AC=2 ,BC=uuur uuur7. 在10 ,则 AB AC【】A .3B .2C .2D .32332a cosA8. 若 △ABC的内角 A 、B 、C的对边分别为 a 、b 、c,且 b cosB ,】则【A . △ABC 为等腰三角形B . △ABC 为直角三角形C . △ABC 为等腰直角三角形D . △ ABC 为等腰三角形或直角三角形9. 若 tan A tan B > 1 ,则△ ABC 【】A. 必定是锐角三角形B. 可能是钝角三角形C. 必定是等腰三角形D. 可能是直角三角形10.△ ABC 的面积为 Sa2(b c) 2 ,则 tanA=【 】11 211B .C .D .A .3462二、填空题:本大题共 4 小题.11. 在△ ABC 中,三个角A, B, C 的对边边长分别为 a 3, b4, c 6 ,则 bc cos A ca cosB ab cosC的值为.12.在 △ ABC 中,若 tan A1 , C 150o, BC 1,则 AB.313. 在△ ABC 中,角 A 、 B 、 C 所对的边分别为a 、b 、c ,若 3b c cos A a cosC ,则cos A _________________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 为等腰三角形B. 为直角三角形
C. 为等腰直角三角形D. 为等腰三角形或直角三角形
9.若 ,则△ 【 】
A. 一定是锐角三角形B. 可能是钝角三角形
C. 一定是等腰三角形D. 可能是直角三角形
10. 的面积为 ,则 =Fra bibliotek】A. B. C. D.
二、填空题:本大题共4小题.
11.在△ 中,三个角 的对边边长分别为 ,则 的值为.
12.在 中,若 , , ,则 .
13.在△ABC中,角A、B、C所对的边分别为 、b、c ,若 ,则 _________________。
14. 的内角 的对边分别为 ,根据下列条件判断三角形形状:
三、解答题:本大题共6小题.解答须写出文字说明、证明过程和演算步骤.
又 ,故 ,
则 , ,
则 .
⑵.由 ,得到 .
由 ,解得 ,
故 .
17.【解】⑴. ∵ ∴ , ,
, ,
∵ ,∴ , .
⑵. 由题知 ,整理得 ,
,∴ ,∴ 或 ,
而 使 ,舍去,∴ .
18.【解】⑴.由余弦定理及已知条件得, ,
又因为 的面积等于 ,所以 ,得 .
联立方程组 解得 , .
⑵.由题意得 ,
在 中,由余弦定理,
.
.
故乙船的速度的大小为 (海里/小时).
21.【选做题】【解法一】如图,在等腰△ABC中, , , 的角平分线交AC于D,设BC=1,AB=x,利用此图来求 .
易知△ABC与△BCD相似,故 ,即 ,解得 .
△ABC中,由余弦定理, ;
【解法二(用二倍角公式构造方程,解方程)】
A. B. C. D.
4. 在三角形 中, ,则 的大小为【 】
A. B. C. D.
5. 的内角 的对边分别为 ,若 成等比数列,且 ,则 【 】
A. B. C. D.
6.△ABC中,已知 , ,则角C等于【】
A. B. C. D.
7.在 中,AB=3,AC=2,BC= ,则 【 】
A. B. C. D.
⑵.若 ,证明: 是直角三角形.
19.设锐角三角形 的内角 的对边分别为 , .
⑴.求 的大小;
⑵.求 的取值范围.
20.如图,甲船以每小时 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于 处时,乙船位于甲船的北偏西 方向的 处,此时两船相距 海里,当甲船航行 分钟到达 处时,乙船航行到甲船的北偏西 方向的 处,此时两船相距 海里,问乙船每小时航行多少海里
即 ,
当 时, , 是直角三角形;
当 时,得 ,
代入上式得 ,故 ,
是直角三角形.
19.【解】⑴.由 ,根据正弦定理得 ,所以 ,
由 为锐角三角形得 .
⑵.
.
由 为锐角三角形知,
,解得
,
所以 , ,
故 的取值范围为 .
20.【解】如图,连结 ,由已知 , ,
,
又 , 是等边三角形,
,
由已知, , ,
15.已知 的周长为 ,且 .
⑴.求边 的长;
⑵.若 的面积为 ,求角 的度数.
16.设 的内角 所对的边长分别为 ,且 , .
⑴.求边长 ;
⑵.若 的面积 ,求 的周长 .
17.已知 是三角形 三内角,向量 ,且
⑴.求角 ;
⑵.若 ,求
18.在 中,内角 对边的边长分别是 ,已知 , .
⑴.若 的面积等于 ,求 ;
高一必修五解三角形复习题及标准答案
解三角形
广州市第四中学刘运科
一、选择题.本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的.
. 的内角 的对边分别为 ,若 ,则 等于【 】
A. B.2C. D.
2.在 中,角 的对边分别为 ,已知 ,则 【 】
A.1B.2C. D.
3.已知 中, , , ,那么角 等于【 】
参考答案
题号
1
2
3
4
5
6
7
8
9
10
答案
D
B
C
A
B
A
D
D
A
C
11.【答案: 】12.【答案: 】
13.【答案: 】14.【答案:⑴等边三角形;⑵等腰三角形或直角三角形】
15. 【解】⑴.由题意,及正弦定理,得 ,
,
两式相减,得 .
⑵.由 的面积 ,得 ,
由余弦定理,得
,
所以 .
16.【解】⑴. ,
两式相除,有:
,即 ,
设 ,则 ,可化为 ,
,因 ,故 ,
,因 ,故 ,
( 舍去),故 .