整式的运算典型例题
河南省七年级数学上册第二章整式的加减典型例题
河南省七年级数学上册第二章整式的加减典型例题单选题1、下列说法:①2xπ的系数是2;②多项式2x2+xy2+3是二次三项式;③x2−x−2的常数项为2;④在1x,2x+y,13a2b,5y4x,0中,整式有3个.其中正确的有()A.1个B.2个C.3个D.4个答案:A分析:根据单项式、多项式和整式的有关概念解答即可.解:①2xπ的系数是2π,原说法错误;②多项式2x2+xy2+3是三次三项式,原说法错误;③x2-x-2的常数项为-2,原说法错误;④在1x ,2x+y,13a2b,5y4x,0中,整式有3个,原说法正确.综上,正确的只有1个.故选:A.小提示:本题考查了单项式和多项式的有关概念,能熟记定义是解此题的关键,注意:①表示数与数或数与字母的积的形式,叫单项式;单项式中的数字因数,叫单项式的系数;单项式中所有字母的指数的和,叫单项式的次数;②两个或两个以上的单项式的和,叫多项式;多项式中的每个单项式,叫多项式的项;多项式中次数最高的项的次数,叫多项式的次数,③单项式和多项式统称整式.2、周末,奶奶买了一些小桔子,小亮、姐姐、弟弟做了一个有趣的游戏:首先姐姐,小亮,弟弟手中拿上相同数量的桔子(每人手中的桔子大于4个),然后依次完成以下步骤:第一步:姐姐给小亮2个桔子;第二步:弟弟给小亮1个桔子;第三步:此时,姐姐手中有几个桔子,小亮就给姐姐几个桔子.请你确定,最终小亮手中剩余的桔子有几个()A.3B.4C.5D.6答案:C分析:本题是整式加减法的综合运用,设每人有x个桔子,解答时依题意列出算式,求出答案.解:设刚开始姐姐,小亮,弟弟手中都拿x个桔子(x>4),那么,姐姐给小亮2个桔子,姐姐手中剩下的桔子数为:x-2,接着,弟弟给小亮1个桔子,此时小亮手中的桔子数为:x+2+1=x+3,然后,姐姐手中有几个桔子,小亮就给姐姐几个桔子.最终小亮手中剩余的桔子数为:x+3-(x-2)=x+3-x+2=5.故选:C.小提示:此题考查了列代数式以及整式的加减,解题的关键是根据题目中所给的数量关系列代数式运算.3、下列计算正确的是( )A.3ab+2ab=5ab B.5y2−2y2=3C.7a+a=7a2D.m2n−2mn2=−mn2答案:A分析:运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.解:A、3ab+2ab=5ab,故选项正确,符合题意;B、5y2−2y2=3y2,故选项错误,不符合题意;C、7a+a=8a,故选项错误,不符合题意;D、m2n和2mn2不是同类项,不能合并,故选项错误,不符合题意;故选:A.小提示:本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.4、下列各式中,不是..整式的是()A.1x B.x-y C.xy6D.4x答案:A分析:利用整式的定义逐项判断即可得出答案.解:A.1x既不是单项式,又不是多项式,不是整式,故本选项符合题意;B.x-y,是多项式,是整式,故本选项不符合题意;C.xy6,是单项式,是整式,故本选项不符合题意;D.4x,是单项式,是整式,故本选项不符合题意;故选A.小提示:本题考查整式的定义,整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母.5、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.6、不改变代数式a2+2a−b+c的值,下列添括号错误的是()A.a2+(2a−b+c)B.a2−(−2a+b−c)C.a2−(2a−b+c)D.a2+2a+(−b+c)答案:C分析:将各选项代数式去括号,再与已知代数式比较即可.解:A、a2+(2a-b+c)=a2+2a-b+c,正确,此选项不符合题意;B、a2-(-2a+b-c)=a2+2a-b+c,正确,此选项不符合题意;C、a2-(2a-b+c)=a2-2a+b-c,错误,此选项符合题意;D、a2+2a+(-b+c)=a2+2a-b+c,正确,此选项不符合题意;故选:C.小提示:本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键.7、下列等式中正确的是()A.2x−5=−(5−2x)B.7a+3=7(a+3)C.−(a−b)=−a−b D.2x−5=−(2x−5)答案:A分析:根据去括号和添括号法则逐项进行判断即可.A.2x−5=−(5−2x),故A正确,符合题意;),故B错误,不符合题意;B.7a+3=7(a+37C.−(a−b)=−a+b,故C错误,不符合题意;D.2x−5=−(−2x+5),故D错误,不符合题意.故选:A.小提示:本题主要考查了去括号和添括号法则,熟练掌握去括号法则:括号前面是加号时,去掉括号,括号内的算式不变。
中考重点整式的基本运算与应用
中考重点整式的基本运算与应用整式是代数式的一种,由字母、数、和代数运算符号(加、减、乘、除)构成。
在数学学习中,整式的基本运算是非常重要的核心内容之一。
本文将详细讨论整式的四种基本运算,即加法、减法、乘法和除法,并结合中考题目,介绍了一些典型的应用。
一、加法运算加法是整式的基本运算之一,其运算规则相对简单,只需按照同类项相加的原则进行操作。
例题1:已知整式A=2a^2-3ab+4b^2+5a,B=3ab-5a^2+b^2-2b,求A+B的值。
解析:根据加法运算的规则,将同类项进行合并相加即可。
A+B=(2a^2-3ab+4b^2+5a)+(3ab-5a^2+b^2-2b)=2a^2+(-3ab+3ab)+4b^2+(5a+(-5a^2))+b^2+(-2b)=2a^2+4b^2-5a^2+5a+b^2-2b=(-3a^2+5a)+5b^2+(-2b)=-3a^2+5a+5b^2-2b因此,A+B的值为-3a^2+5a+5b^2-2b。
二、减法运算减法是整式的基本运算之一,其运算规则同样较为简单,只需将减法转化为加法进行操作。
例题2:已知整式C=3x^2-5xy+2y^2-4,D=4xy+2x^2-y^2+3y-3,求C-D的值。
解析:根据减法运算的规则,将减法转化为加法运算。
C-D=(3x^2-5xy+2y^2-4)-(4xy+2x^2-y^2+3y-3)=3x^2+(-2x^2)+2y^2+(-y^2)+(-5xy-4xy)+(3y-(-3))=(3x^2-2x^2)+2y^2-y^2-9xy+3y+3=x^2+2y^2-9xy+3y+3因此,C-D的值为x^2+2y^2-9xy+3y+3。
三、乘法运算乘法是整式的基本运算之一,其运算规则较为复杂,需要运用“分配律”和“合并同类项”的原则。
例题3:已知整式E=(2x^2-3y)(x+4),求E的值。
解析:根据乘法运算的规则,将两个多项式按照分配律进行展开和合并同类项。
4.2.3 整式的加减---整式加减运算 课件 2024—2025学年人教版数学七年级上册
四 整式的加减
例5.求 1 x 2(x 1 y2 ) ( 3 x 1 y2 )的值,其中 x 2, y 2
2
3
23
3
解:原式 1 x 2x 2 y2 3 x 1 y2
2
3 23
3x y2
2
当 x 2, y 时
3
原式
(3)
(2)
2 3
2
6 4 64. 99
课堂练习
⑴ 根据题意列代数式; ⑵ 去括号、合并同类项; ⑶ 得出最后结果.
作业布置
1.课堂作业:课本70页第6题 2.家庭作业:名校课堂63-64页
静水中速度都是50 km/h,水流速度是a km/h.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
解:顺水航速=船速+水速=(50+a)km/h,
逆水航速=船速–水速=(50–a)km/h. (1)2小时后两船相距(单位:km)
2(50+a)+2(50–a)=100+2a+100–2a=200.
a2
(
2 3
ab)
(3) (x 2x2 5) (4x2 3 6x)
(4) (3a2 ab 7) 4a2 2ab 7
一 探究新知
整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先
去括号,然后再合并同类项.
一 整式加减的应用
例2 两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船在
本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这 些笔记本和圆珠笔,小红和小明一共花费多少钱? 解:小红和小明买笔记本共花费(3x+4x)元,买圆珠笔共花费(2y+3y)元.
人教版七年级数学(上)第一章《整式》经典例题及练习含答案
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
整式的加减练习100题(有答案)
整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
(附答案)《整式的除法》典型例题
《整式的除法》典型例题
例1 计算:
(1);(2);
(3);(4).分析:这几个题都是多项式除以单项式,要用多项式的每一项分别除以单项式再把除得的结果相加.
解:(1);
(2);
(3);
(4).
说明:在多项式除以单项式一定要用多项式的每一项分别除以单项式,注意不要“漏除”.
例2 计算:.
分析:这道题是科学记数法表达的单项式之间的除法运算,同样可以运用法则运算.
解:
说明:数的运算更要注意运算的顺序.
例3计算题:
(1);(2);
(3);
(4);
(5).
解:(1)
(2)=
(3)=
(4)
(5)
=
说明:计算单项式除以单项式时要注意①商的符号;②运算顺序与有理数运算顺序相同.
例4(1)已知一多项式与单项式-7x5y4的积为21 x5y7- 28x6y5+7y(2x53y2)3,求这个多项式.
(2)已知一多项除以多项式所得的商是,余式是,求这个多项式.
解:(1)所求的多项为
(2)所求多项式为
说明:乘法和除法互为逆运算在多项式中经常运用。
根据是“被除式=除式×商式+余式”.
例5 计算:
(1);
(2).
分析:(1)题的底数不同,首先应化为同底数幂,把视作整体进行计算,(2)题先对除式进行乘方,把视作整体运用法则运算.
解:(1)
(2)
说明:多项式因式如果互为相反数时,注意符号.
学习这件事,不是缺乏时间,而是缺乏努力。
学习要有三心:一信心;二决心;三恒心.
知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。
整式练习题及答案
整式练习题及答案整式的加减第1课时代数式课标要求1.掌握⽤字母表⽰数,建⽴符号意识.2.会列代数式表⽰简单的数量关系,会正确书写代数式,会求代数式的值.3.在数学活动中,体会抽象概括的数学思想⽅法和“特殊?⼀般”相互转化的辨证关系. 中招考点⽤字母表⽰数,列代数式,正确书写代数式,求代数式的值.典型例题例1 某市出租车收费标准为:起步价5元,3千⽶后每千⽶价1.2元,则乘坐出租车⾛x(x ﹥3)千⽶应付______________元.分析:因为x ﹥3,所以应付费⽤分为两部分,⼀部分为起步价5元,另⼀部分为⾛(x-3)千⽶应付的1.2(x-3)元.解:[])3(2.15-+x注意:和、差形式的代数式要在单位前把代数式括起来.例2 下列代数式中,书写正确的是()A. ab ·2B. a ÷4C. -4×a ×bD. xy 213E. mn 35 F. -3×6 分析:A :数字应写在字母前⾯ B :应写成分数形式,不⽤“÷”号 C :数与字母相乘,字母与字母相乘时,“×”号省略 D :带分数要写成假分数 E 、F 书写正确. 解:E 、F.例3 下列各题中,错误的是()A. 代数式.,22的平⽅和的意义是y x y x +B. 代数式5(x+y)的意义是5与(x+y)的积C. x 的5倍与y 的和的⼀半,⽤代数式表⽰为25y x +D. ⽐x 的2倍多3的数,⽤代数式表⽰为2x+3分析:选项C 中运算顺序表达错误,应写成)5(21y x + 友情提⽰:数学语⾔有⽂字语⾔、符号语⾔、图形语⾔.进⾏数学思维时,同学们要学会恰当使⽤各种语⾔推理分析,各种语⾔的互译是⼀种数学基本功.例4 当x=1时,代数式13++qx px 的值为2005,求x=-1时,代数式13++qx px 的值.分析:当x=1时,13++qx px ==++1q p 2005,p+q=2004,当x=-1时,13++qx px =-=+-1q p -(p+q )+1=-2004+1=-2003.解:当x=1时,13++qx px ==++1q p 2005 ∴ p+q=2004∴当x=-1时,13++qx px =-1+-q p=-(p+q )+1=-2004+1 =-2003.提⽰:“整体”思想在数学解题中经常⽤到,请同学们在解题时恰当使⽤.例5 下图是⼀个数值转换机的⽰意图,请你⽤x 、y 表⽰输出结果,并求输⼊x 的值为3,y 的值为-2时的输出结果.解:输出结果⽤x 、y 表⽰为: 223y x + 当x=3,y=-2时,223y x +=2)2(323-+? =-1.提⽰:弄清图中运算顺序.例6 某餐饮公司为⼤庆路沿街20户居民提供早餐⽅便,决定在路旁建⽴⼀个快餐店P ,点P 选在何处,才能使这20户居民到P 点的距离总和最⼩?分析:⾯对复杂的问题,应先把问题“退”到⽐较简单的情形:如图1,如果沿街有2户居民,很明显点P 设在p 1、、、p 2之间的任何地⽅都⾏.. p 1 .p . p 2 图1 . p 1、 . p 2(p ). p 3图2如图2,如果沿街有3户居民,点P 应设在中间那户居民、p 2门前.------以此类推,沿街有4户居民,点P 应设在第2、3户居民之间的任何位置,沿街有5户居民,点P 应设在的第3户门前,------沿街有n 户居民:当n 为偶数时,点P 应设在第2n 、12+n 户居民之间的任何位置;当n 为奇数时,点P 应设在第21+n 户门前. 解:根据以上分析,当n=20时,点P 应设在第10、11户居民之间的任何位置.思维驿站:请同学们认真体会“特殊?⼀般”的辨证关系,掌握化归的思想⽅法,学会把复杂的问题化为简单的情形来解决.强化练习⼀、填空题1. 代数式2a-b 表⽰的意义是_____________________________.2. 列代数式:⑴设某数为x,则⽐某数⼤20%的数为_______________.⑵a 、b 两数的和的平⽅与它们差的平⽅和________________.3. 有⼀棵树苗,刚栽下去时,树⾼ 2.1⽶,以后每年长0.3⽶,则n 年后的树⾼为________________,计算10年后的树⾼为_________⽶.4. 某⾳像社对外出租光盘的收费⽅法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么⼀张光盘在出租后第n 天(n >2的⾃然数)应收租⾦_________________________元.5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律⽤⾃然数n(n ≥1)表⽰出来______________________.6. ⼀个两位数,个位上的数是a ,⼗位上的数字⽐个位上的数⼩3,这个两位数为_________,当a=5时,这个两位数为_________.⼆、选择题1. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为()A. 0.7a 元B.0.3a 元C.a 310 元D. a 710元 2. 根据下列条件列出的代数式,错误的是()A. a 、b 两数的平⽅差为a 2-b 2B. a 与b 两数差的平⽅为(a-b)2C. a 与b 的平⽅的差为a 2-b 2D. a 与b 的差的平⽅为(a-b)23. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为()A. –2005B. 2005C. -1D. 14. 笔记本每本m 元,圆珠笔每⽀n 元,买x 本笔记本和y ⽀圆珠笔,共需()A. ( mx+ny )元B. (m+n)(x+y)C. (nx+my )元D. mn(x+y) 元5. 当x=-2,y=3时,代数式4x 3-2y 2的值为()A. 14B. –50C. –14D. 50三、解答题1. 已知代数式3a 2-2a+6的值为8, 求1232+-a a 的值. 2. 当a=-1,b=-21,c=211时,求代数式b 2-4ac 的值,并指出求得的这个值是哪些数的平⽅. 3. ⼈在运动时的⼼跳速率通常和⼈的年龄有关.如果⽤a 表⽰⼀个⼈的年龄,⽤b 表⽰正常情况下这个⼈在运动时所能承受的每分钟⼼跳的最⾼次数,那么b=0.8(220-a).⑴正常情况下,在运动时⼀个14岁的少年所能承受的每分钟⼼跳的最⾼次数是多少?⑵⼀个45岁的⼈运动时10秒⼼跳的次数为22次,请问他有危险吗?为什么?反馈检测⼀、填空题(每⼩题5分,共25分)1. 某机关原有⼯作⼈员m ⼈,现精简机构,减少20%的⼯作⼈员,则剩下_____⼈.2. 结合⽣活经验作出具体解释:a-b__________________________________.3. 甲以a 千⽶/⼩时、⼄以b 千⽶/⼩时(a >b )的速度沿同⼀⽅向前进,甲在⼄的后⾯8千⽶处开始追⼄,则甲追上⼄需_____________⼩时.4. 若梯形的上底为a ,下底为b ,⾼为h ,则梯形的⾯积为____________;当a=2cm ,b=4cm ,h=3cm 时,梯形的⾯积为____________.5. 按下列程序计算x=3时的结果__________.⼆、选择题(每⼩题5分,共25分)1. 下列式⼦中符合代数式的书写格式的是()A. x ·y 21B.n m 3÷C.4y x -D.ab 432 2. ⼀个长⽅形的周长是45cm ,⼀边长acm ,这个长⽅形的⾯积为()cm 2 A.2)45(a a - B.245a C.)245(a - D.)245(a a - 3. 代数式x 2-7y 2⽤语⾔叙述为()A.x 与7y 的平⽅差B.x 的平⽅减7的差乘以y 的平⽅C.x 与7y 的差的平⽅D. x 的平⽅与y 的平⽅的7倍的差4. 当a=-2,b=4时,代数式))((22b ab a b a ++-的值是()A.56B.48C. –72D.725. ⼀个正⽅体的表⾯积为54 cm 2,它的体积是()cm 3A. 27B.9C.827 D. 36 三、解答题(每题10分,共50分)1. 列代数式⑴若⼀个两位数⼗位上的数是a ,个位上的数是b ,这个两位数是_________.若⼀个三位数百位上的数为a,⼗位上的数是b ,个位上的数c ,这个三位数是_________. ⑵某品牌服装以a 元购进,加20%作为标价.由于服装销路不好,按标价的⼋五折出售,降价后的售价是__________元,这时仍获利________________________元.⑶电影院第⼀排有a 个座位,后⾯每排⽐前⼀排多2个座位,则第x 排的座位有____________个.⑷A 、B 两地相距s 千⽶,某⼈计划a ⼩时到达,如果需要提前2⼩时到达,每⼩时需多⾛___________________千⽶.2. 已知代数式32++x x 的值为7,求代数式7332++x x 的值.3. 当41=+-b a b a 时,求代数式ba b a b a b a -+-+-)(2的值. 4. 若0)3(12=++-y x ,求21xy xy --的值.5. 给出下列程序:若输⼊x=1时,输出的值为-2,求输⼊x=-2时,输出的值是多少?第2课时整式的加减课标要求1. 了解单项式、多项式、整式的有关概念,弄清它们与代数式之间的联系和区别.2. 理解同类项的概念,会判断同类项,熟练合并同类项.3. 掌握去括号法则、添括号法则,能准确地进⾏去括号与添括号.4. 熟练地进⾏整式的加减运算.中招考点单项式、多项式、整式的有关概念,同类项的概念,去括号法则、添括号法则,整式的加减运算.典型例题例1 判断下列各代数式是否是单项式.如果不是,请简要说明理由;如果是,请指出它的系数和次数:⑴ a+2 ⑵ x 1 ⑶ 2r π⑷ b a 223- ⑸ m ⑹ -3×104t 分析:同学们要弄清题中涉及到的⼏个概念,即:数与字母的乘积组成的代数式叫做单项式(单独⼀个数或⼀个字母也是单项式);单项式中的数字因数叫做这个单项式的系数;单项式中所有字母的指数和叫做这个单项式的次数.解:⑴不是.因为原代数式中出现了加法运算. ⑵不是.因为原代数式是1与x 的商. ⑶是.它的系数是π,次数是2. ⑷是.它的系数是-23,次数是3. ⑸是.它的系数是1,次数是1. ⑹是.它的系数是-3×104,次数是1.注意:圆周率π是常数;当⼀个单项式的系数是1或-1、次数是1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数,如⑷中b a 223-. 例2 指出多项式223542x y y x +-的项、次数,是⼏次⼏项式,并把它按x 降幂排列、按y 的升幂排列.分析:解本题的关键是要弄清⼏个概念:多项式的项、次数,按某⼀字母降幂排列、按某⼀字母的升幂排列.解:多项式223542x y y x +-的项有:2x 3y,-4y 2,5x 2; 次数是4;是四次三项式;按x 降幂排列为:2x 3y+5x 2- 4y 2;按y 的升幂排列为:5x 2+2x 3y- 4y 2.提⽰:多项式的次数不是所有项的次数之和,⽽是次数最⾼项的次数;多项式的每⼀项都包括它前⾯的符号.例3 请写出-2ab 3c 2的两个同类项_______________.你还能写多少个?________.它本⾝是⾃⼰的同类项吗?___________.当m=________,3.8c b a m m -2是它的同类项?分析:本题是⼀道开发题,给同学们很⼤的思维空间,对同类项的正确理解是解题的关键. 解:2.1ab 3c 2 、-6ab 3c 2等;还能写很多(只要在ab 3c 2前⾯添加不同的系数);它本⾝也是⾃⼰的同类项;m=-1.∵1=m 且2-m=3∴m=-1.例4 如果关于字母x 的⼆次多项式-3x 2+mx+nx 2-x+3的值与x ⽆关,求m 、n 的值.分析:本题的“题眼”——多项式-3x 2+mx+nx 2-x+3的值与x ⽆关,这⼀条件说明了:关于字母x 的⼆次项系数、⼀次项系数都为零.解:∵ -3x 2+mx+nx 2-x+3=(-3+n )x 2+(m-1)x+3∴ -3+n=0,m-1=0∴ m=1,n=3.例5 a >0>b >c ,且c b a +? 化简c b b a c b a c a ++--++++分析:求绝对值⾸先要判断代数式是正数或0或负数.本题中可⽤赋值法、数形结合法判断a+c 、a+b+c 、a-b 、b+c 的符号.解:如图知,a 、b 、c 在数轴上的位置.∵ a >0,b <0,c <0,c b a +?∴ a+c >0,a+b+c >0,a-b >0,b+c <0∴ c b b a c b a c a ++--++++=(a+c )+(a+b+c )-(a-b )-(b+c )=a+c+a+b+c-a+b-b-c=a+b+c.反思总结:解含有字母的题⽬通常在字母取值范围赋值,可以把抽象问题直观化.强化练习⼀、填空题 1. 单项式323y x -的系数是_______,次数是_________. O . a .b .c .2. 多项式124332+-y x xy 的次数是______,三次项系数是________.3. 把多项式723322---y x y x xy 按x 升幂排列是_________________.4. 下列代数式:523,,41,3,2,1213,4332232y x a x y x bc a x m m x ----+--.其中单项式有_______________________________,多项式有___________________________.5. 多项式274a ab -b 2-8ab 2+5a 2b 2-9ab+ab 2-3中,________与-8ab 2是同类项,5a 2b 2与_______是同类项,是同类项的还有_____________________________.6. 3a-4b-5的相反数是_______________.⼆、选择题1. 如果多项式521)2(24-+--x x x a b 是关于x 的三次多项式,那么() A. a=0,b=3 B. a=1,b=3 C. a=2,b=3 D. a=2,b=12. 如果0233=+xyx By Axy ,则A+B=( ) A. 2 B. 1 C. 0 D. –13. 下列计算正确的是()A. 3a-2a=1B. –m-m=m 2C. 2x 2+2x 2=4x 4D. 7x 2y 3-7y 3x 2=04. 在3a-2b+4c-d=3a-d-( )的括号⾥应填上的式⼦是()A. 2b-4cB. –2b-4cC. 2b+4cD. –2b+4c5. 如果⼀个多项式的次数是4,那么这个多项式任何⼀项的次数应()A. 都⼩于4B. 都不⼤于4C. 都⼤于4D. ⽆法确定三、解答题1. 如果0.65x 2y 2a-1 与–0.25x b-1y 3是同类项,求a,b 的值.2. 先化简,再求值.b a a b ba ab b a 2222254325.0315.0-++-,其中a=-5,b=-3. 3. 把多项式6.041312123-+-b b b 写成⼀个三次多项式与⼀个⼆次三项式之差. 4. 计算:63)(41)(21y x y x y x y x --++++- 反馈检测⼀、填空题(每⼩题5分,共25分)1. 在⼀次募捐活动中,某校平均每名同学捐款a 元,结果⼀共捐款b 元,则式⼦ab 可解释为_________________________________________________________. 2. 在某地,⼈们发现蟋蟀叫的次数与温度有某种关系.⽤蟋蟀1分钟叫的次数除以7,然后再加上3,就可以近似地得到该地当时的温度(0C ).设蟋蟀1分钟叫的次数为n,⽤代数式表⽰该地当时的温度为_______0C ;当蟋蟀1分钟叫的次数为100时,该地当时的温度约为________0C (精确到个位).3. k=______时,-12341+k y x 与9332y x 的和是单项式. 4. 在括号内填上适当的项:(a+b-c)(a-b+c)=[][](_______)(________)-+a a .5. 多项式32327453.0xy y x y x ---的次数是____,常数项为_____,四次项为_______.⼆、选择题(每⼩题5分,共25分)1. 某宾馆的标准间每个床位标价为m 元,旅游旺季时上浮x%,则旅游旺季时标准间的床位价为()元.A.mx%B.m+x%C.m(1+x%)D.m(1-x%).2. ⽤代数式表⽰“a 与-b 的差”,正确的是()A.b-aB.a-bC.-b-aD.a-(-b)3. 当x=-2,y=3时,代数式4x 3-2y 2的值是()A.14B.-50C.-14D.504. 下列运算正确的是()A.3a+2b=5abB.3a 2b-3ba 2=0C.3x 2+2x 3=5x 5D.5y 2-4y 2=15. 下列说法中,错误的是()A.单项式与多项式统称为整式B.单项式x 2yz 的系数是1C.ab+2是⼆次⼆项式D.多项式3a+3b 的系数是3三、解答题(每题10分,共50分)1. ⑴若b a =,请指出a 与b 的关系. ⑵若25a 4b 4是某单项式的平⽅,求这个单项式.2. 化简求值:4a 2b-2ab 2-3a 2b+4ab 2,其中a=-1,b=2.3. 在计算代数式(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x=0.5,y=-1时,甲同学把x=0.5错抄成x=-0.5,但他计算的结果也是正确的.试说明理由,并求出这个结果.4. 你⼀定知道⼩⾼斯快速求出:1+2+3+4+…+100=5050的⽅法.现在让我们⽐⼩⾼斯⾛得更远,求1+2+3+4+…+n=_______________.请你继续观察:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…求出:13+23+33+…+n 3=_______________________.5. 如果A=3x 2-xy+y 2,B=2x 2-3xy-2y 2,那么2A-3B 等于多少?《整式的加减》综合检测(A )⼀、填空题(每题3分,共30分)1.光明奶⼚1⽉份产奶m 吨,2⽉份⽐1⽉份增产15%,则2⽉份产奶______吨.2.代数式6a 表⽰_____________________________________________.3.单项式-4πxy 2的系数是_______,次数是__________.4.多项式365922-+-y x xy xy 的⼆次项是___________.5.三个连续偶数中间⼀个是2n ,第⼀个是______,第三个是_______,这三个数的平⽅和是_____________(只列式⼦,不计算)6.若2a 3b-0.75ab k +3×105是五次多项式,则k=__________.7.单项式-5x m+3y 4与7x 5y 3n-1是同类项,则n m =_____,这两个单项式的和是___________.8.2ab+b 2+__________=3ab-b 2 .9.⼀长⽅形的⼀边长为2m+n,⽐另⼀边多m-n (m >n ),则长⽅形的周长是____________.10.x 是两位数,y 是三位数,y 放在x 左边组成的五位数是______________.⼆、选择题(每题4分,共20分)1. 下列说法中,正确的是()A.若ab=-1,则a 、b 互为相反数B.若3=a ,则a=3C.-2不是单项式D.-xy 2的系数是-12. 多项式522--a a 的项是()A.2a 2,-a,-3B. 2a 2,a,3C. 2a 2,-a,3D. 2a 2,a,-33. 下列代数式5.2,1,2,1,22--+-+yx a x x x x ,其中整式有()个 A.4 B.3 C.2 D.14. 若a <0, 则2a+5a 等于()A.7aB.-7aC.-3aD.3a5. 看下表,则相应的代数式是()A.x+2B.2x-3C.3x-10D.-3x+2三、解答题(每⼩题10分,共50分)1.已知211211-=?,----=?,3121321则=+)1(1n n ________. 计算:)1(1431321211++---+?+?+?n n 探究:)12)(12(1751531311+-+---+?+?+?n n . 2. 已知A=3a 2-2a+1 B=5a 2-3a+2 C=2a 2-4a-2, 求A-B-C.3. 如果关于x 的多项式21424-+x mx 与3x n +5x 是同次多项式,求4322123-+-n n n 的值.4. 化简5a 2-[])3(2)25(222a a a a a ---+(⽤两种⽅法)5. 按下列要求给多项式-a 3+2a 2-a+1添括号.⑴使最⾼次项系数变为正数;⑵使⼆次项系数变为正数;⑶把奇次项放在前⾯是“-”号的括号⾥,其余的项放在前⾯是“+”号的括号⾥.《整式的加减》综合检测(B )⼀、填空题(每题3分,共30分)1根据⽣活经验,对代数式a-2b 作出解释:_____________________________________.2.请写出所有系数为-1,含有字母x 、y 的三次单项式_________________________.3.如果多项式x 4-(a-1)x 3+5x 2+(b+3)x-1不含x 3和x 项,则a=_____,b=___________.4.试写出⼀个关于x 的⼆次三项式,使⼆次项系数为2,常数项为-5,⼀次项系数为3 ,答案是_______________________.5.指出代数式-a 2bc 2和a 3x 2的共同点,例如:都含字母a ,.①________________,②_____________.6.如果x 与2y 互为相反数,则.____________2=+yx 7.⼀个多项式加上-5+3x-x 2得到x 2-6,这个多项式是___________,当x=-1时,这个多项式的值是________.8.代数式-3+(x-a)2的最⼩值为_______,这时x=_______.9.把多项式2a-b+3写成以2a 为被减数的两个式⼦的差的形式是___________________.10.五·⼀⼴场内有⼀块边长为a ⽶的正⽅形草坪,经过统⼀规划后,南北向要加长2⽶,⽽东西向要缩短2⽶.改造后的长⽅形的⾯积为___________平⽅⽶.⼆、选择题(每题4分,共20分)1. 下⾯列出的式⼦中,错误的是()A.a 、b 两数的平⽅和:(a+b)2B.三数x 、y 、z 的积的3倍再减去3:3xyz-3C. a 、b 两数的平⽅差:a 2-b 2D. a 除以3的商与4的和的平⽅:(43+a )2 2. 下列各组单项式中是同类项的为()A.3xy,3xyzB.2ab 2c,2a 2bcC.-x 2y 2 ,7y 2x 2D. 5a,-ab3. 下列代数式a+bc,5a,mx 2+nx+p,-x.,1,5xyz,nm ,其中整式有()个 A.7 B.6 C.5 D.44. ⼀个正⽅形的边长减少10%,则它的⾯积减少()A.19%B.20%C.1%D.10%5. 当m 、n 都为⾃然数时,多项式a m +b n +2m+2的次数是()A.2m+n+2B.m+2C.m 或nD.m 、n 中较⼤的数三、解答题(每⼩题10分,共50分)1. 先化简,再求值:(4x 2-3x) +(2+4x-x 2 ) - (2x 2+x+1), 其中x= -2 .2. 已知x 2+y 2=7,xy= -2. 求5x 2-3xy-4y 2-11xy-7x 2+2y 2的值.3. 已知A=2x 2+3xy-2x-1, B= -x 2+xy-1, 且3A+6B 的值与x ⽆关,求y 的值.4. 若0)23(22=++-b b a ,求:63)(31)(41)(21b a b a b a b a b a -+++--++-值. 5. 规定⼀种新运算:a *b= ab+a-b, 求 a *b+(b-a )*b.第三部分《整式的加减》代数式强化练习参考答案⼀、1.2a 与b 的差 2.⑴(1+10%)x ⑵(a+b)2 +(a-b)2 3. 2.1+0.3n 5.1 4.1.6+0.5(n-2)5.n 2+n =n(n+1)6.10(a-3)+a 25 ⼆、1.D 2.C 3.C 4.A 5.B三、1. ∵3a 2-2a +6=8 2. b 2-4ac=(-21)2-4×(-1)×23=425 ∴ 3a 2-2a=2 ∵(±25)2=425 ∴1232=-a a ∴425是±25的平⽅. ∴.2111232=+=+-a a 3. ⑴b=0.8(220-14)=164.8答:正常情况下,在运动时⼀个14岁的少年所能承受的每分钟⼼跳的最⾼次数164次. ⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险.反馈检测参考答案⼀、1.(1-20%)m 2.答案不唯⼀3.b a -8 4.2)(h b a +,9cm 2 5.15 ⼆、1C 2D 3B 4C 5A三、1.⑴ 10a+b,100a+10b+c ⑵ (1+20%)a ·85%,0.2a ⑶ a+(x-1) ⑷ (a s a s --2) 2.19 3.-3.5 4. -5 5.4.强化练习参考答案⼀1. 32- , 4 2. 4, 3 3. –7+2xy 2-x 2y-x 3y 34. 523,41,15.03;,3,4332322y x x y x m m a bc a x --+---- 5. ab 2;-7a 2b 2 ;4ab 与-9ab 6. –3a+4b+5 .⼆、1.C 2.C 3.D 4.A 5.B三、1. 2,3 2. 30,315122-+ab b a 3. )6.04121(2123+--b b b 4. y x 411211+. 反馈检测参考答案⼀、1. 参加捐款的学⽣⼈数 2. (37+n )、17 3. 4 4. b-c,b-c 5. 5;-4;-7xy 3. ⼆、1.C 2.D 3.B 4.B 5.D三、1. ⑴a=b 或a=-b ⑵±5a 2b 2 2. a 2b+2ab 2,-63. 提⽰:(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)= 2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2 y 3当y=-1时,原式=-2×(-1)3=24. 2)1(+n n ,(1+2+3+4+-----+n )2 =4)1(2)1(222+=??+n n n n . 5. 提⽰:2A-3B=2(3x 2-xy+y 2)-3(2x 2-3xy-2y 2)=6x 2-2xy+2y 2-6x 2+9xy +6y 2=7xy +8y 2.《整式的加减》综合检测(A )⼀、1.(1+15%)m 2.答案不唯⼀ 3.-4π;3 4.-9xy 5.2n-2;2n+2;(2n-2)2+(2n)2+(2n+2)2 6.4 7.925,2x 5y 4 8. ab-2b 2 9.6m+6n 10.10y+x ⼆、1.D 2.A 3.B 4.C 5.D 三、1.解:111+-n n , )1(1431321211++---+?+?+?n n =211-+3121-+---+111+-n n =1-11+n =1+n n . )12)(12(1751531311+-+---+?+?+?n n =)311(21-+)5131(21-+---+)121121(21+--n n =)1211215131311(21+--+---+-+-n n =)1211(21+-n =12+n n . 2.解:A-B-C=(3a 2-2a+1)-(5a 2-3a+2 )-(2a 2-4a-2)=3a 2-2a+1-5a 2+3a-2-2a 2+4a+2=-4a 2+5a+1.3.解:根据题意,若m=0,则n=2; 若m ≠0,则n=4.当n=2时,4322123-+-n n n =-2当n=4时,4322123-+-n n n =8. 4. 解:⽅法⼀(先去⼩括号):原式=5a 2-[]a a a a a 6225222+--+=5a 2-(4a 2+4a )=a 2-4a.⽅法⼆(先去中括号):原式=5a 2-a 2-(5a 2-2a)+2(a 2-3a)=5a 2-a 2-5a 2+2a +2a 2-6a= a 2-4a.5.解:⑴ -a 3+2a 2-a+1=-( a 3-2a 2+a -1).⑵ -a 3+2a 2-a+1=+( -a 3+2a 2-a+1).⑶ -a 3+2a 2-a+1=-( a 3+a )+( 2a 2+1).《整式的加减.》综合检测(B )⼀、1.答案不唯⼀ 2. –xy 2,-x 2y 3. 1,-3 4. 2x 2+3x-5 5. 都是整式、都是单项式、次数都是56. 07. 2x 2-3x-1,48. –3,a9. 2a-(b-3) 10. (a+2)(a-2 )或a 2-4.⼆、1.A 2.C 3.B 4.A 5.D.三、1.解:原式=4x 2-3x+2+4x-x 2 -2x 2-x-1= x 2+1 ,当x= -2时,原式= (—2)2+1 = 5.2.解:原式= 5x 2-7x 2-3xy-11xy -4y 2+2y 2= -2x 2-14xy-2y 2= -2(x 2+y 2)-14xy ,当x 2+y 2=7,xy= -2时,原式= -2×7-14×(-2) = -14+28 = 14.3.解:3A+6B = 3(2x 2+3xy-2x-1)+6( -x 2+xy-1)= 6x 2+9xy-6x-3 -6x 2+6xy-6= 15xy-6x-9 = (15y-6)x-9要使此代数式的值与x ⽆关,只需15y-6=0, 即.52=y 4.解:∵ 0)23(22=++-b b a ,且02≥-b a ,0)23(2≥+b∴ 2a-b=0, 3b+2=0 ∴ b= -32, a= -31. 当b= -32, a= -31时, 63)(31)(41)(21b a b a b a b a b a -+++--++-= ())(613121b a -+-+))(3141(b a ++= )(127b a += )3231(127--= 12 7-. 5.解:a*b+(b-a)*b = ab+a-b+(b-a)b+(b-a)-b= ab+a-b+b 2-ab+b-a-b= -b+b 2.。
关于整式的典型例题
关于整式的典型例题整式是由常数、变量和它们的乘积以及它们的各种代数和构成的代数表达式。
下面我将给出几个典型的整式例题,并从不同的角度进行解析。
例题1,求多项式f(x) = 3x^3 2x^2 + 5x 1的值,当x = 2时。
解析:将x = 2代入多项式f(x)中,得到:f(2) = 3(2)^3 2(2)^2 + 5(2) 1 = 3(8) 2(4) + 10 1 = 24 8 + 10 1 = 25。
因此,当x = 2时,多项式f(x)的值为25。
例题2,将多项式g(x) = 4x^3 6x^2 + 2x + 3与多项式h(x) = 2x^2 4x + 1相加,求和的结果。
解析:将g(x)与h(x)相加,得到:g(x) + h(x) = (4x^3 6x^2 + 2x + 3) + (2x^2 4x + 1)。
= 4x^3 6x^2 + 2x + 3 + 2x^2 4x + 1。
= 4x^3 4x^2 2x + 4。
因此,多项式g(x)与多项式h(x)相加的结果为4x^3 4x^2 2x + 4。
例题3,将多项式p(x) = 2x^4 3x^3 + 5x^2 4x + 1与多项式q(x) = x^2 2x + 3相乘,求积的结果。
解析:将p(x)与q(x)相乘,得到:p(x) q(x) = (2x^4 3x^3 + 5x^2 4x + 1) (x^2 2x + 3)。
= 2x^6 4x^5 + 6x^4 3x^5 + 6x^4 9x^3 + 5x^4 10x^3 + 15x^2 4x^3 + 8x^2 12x + x^2 2x + 3。
= 2x^6 7x^5 + 17x^4 23x^3 + 24x^2 14x + 3。
因此,多项式p(x)与多项式q(x)相乘的结果为2x^6 7x^5 +17x^4 23x^3 + 24x^2 14x + 3。
这些例题从不同的角度展示了整式的运算,包括求值、加法和乘法。
整式的加减法典型例题及练习
整式的加减法典型例题及练习一、整式的概念整式是由常数、变量及它们的积、商、幂次和各项次数非负的代数和确定次序的运算符号相连接而成的代数式。
整式可包括单项式和多项式。
二、整式的加法整式的加法是指将两个或多个整式相加得到一个新的整式。
在整式的加法中,同类项要进行合并。
例题1:将3x² + 2x - 5和-5x² + x + 3进行相加。
解:首先合并同类项,得到:(3x² - 5x²) + (2x + x) + (-5 + 3) = -2x² + 3x - 2练习1:将4x³ + 2x² - x + 3和-7x³ + 5x² + 4x - 2进行相加。
三、整式的减法整式的减法是指将一个整式减去另一个整式得到一个新的整式。
在整式的减法中,需要将被减数相应的改变符号,然后进行相加。
例题2:将4x² - 3x + 7减去(2x² + x - 3)。
解:首先将被减数相应的改变符号,得到:4x² - 3x + 7 + (-2x² - x + 3) = 2x² - 4x + 10练习2:将5x³ + 2x² - x + 3减去(3x³ - 2x² + 4x - 1)。
四、整式的加减混合运算整式的加减混合运算是指同时进行整式的加法和减法运算。
例题3:将(4x² - 3x + 7) - (2x² + x - 3) + (6x² - 4x + 5)进行运算。
解:先进行括号内的减法运算,得到:(4x² - 3x + 7) - (2x² + x - 3) + (6x² - 4x + 5) = 4x² - 3x + 7 - 2x² - x + 3 + 6x² - 4x + 5合并同类项:(4x² - 2x² + 6x²) + (-3x - x - 4x) + (7 + 3 + 5) = 8x² - 8x + 15练习3:将(5x³ + 2x² - x + 3) + (3x³ - 2x² + 4x - 1) - (4x³ + x² - 3x + 5)进行运算。
整式及其加减(一)
第六讲 整式及其加减(一) 字母表示数 知识点:用字母可以表示:○1数及数量关系;○2图形的周长、面积;○3数字、图形的变化规律;○4列等量关系。
【典型例题】1、用字母a ,b 表示两个数,则:(1)a 与b 的平方和是 ;(2)a 与b 的平方差是 ;(3)a 与b 的和的平方是 ;(4)a 与b 的差的平方是 ;(5)a 与b 的积的2倍的相反数是 ;(6)a 的倒数与b 的绝对值的31的和是 。
2、若一个圆的半径为8-r ,则圆的面积=S 。
3、(1)每台电脑售价为x 元,降价0010后每台电脑的售价为 。
(2)a kg 商品的售价为p 元,则6 kg 商品的售价为 元。
(3)三个连续自然数,中间的一个为n ,则另外两个分别为 和 。
4、在一次考试中,某班28名男生的总分是m 分,26名女生的平均分是n 分,这个班的平均分是( )A 、542628n m + 分B 、5426n m + 分C 、54nm + 分 D 、54)(28n m + 分5、按一定规律排列的一列数:2,4,6,8,10…第)1(+n 个数是 。
6、如图,阴影部分面积可以表示为( )A 、bc ab +B 、)(d b c ad -+C 、)()(c a d d b c -+-D 、cd ab +7、若一个三位数的百位数字是a ,十位数字是b ,个位数字是c ,则这个三位数可表示为 。
代数式知识点: 1、定义:用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:○1代数式中除了含有数、字母和运算符号外,还可以有括号;○2代数式中不含有“=、>、<、≠”等符号。
○3代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※2、代数式的书写格式:○1代数式中出现乘号,通常省略不写,如vt ; ○2数字与字母相乘时,数字应写在字母前面,如a 4; ○3带分数与字母相乘时,应先把带分数化成假分数,如a ⨯312应写作a 37; ○4数字与数字相乘,一般仍用“×”号,即“×”号不省略; ○5在代数式中出现除法运算时,一般写成分数的形式,如)4(4-÷a 应写作44-a ; 注意:分数线具有“÷”号和括号的双重作用。
整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)
整式的加减专题知识点常考(典型)题型重难点题型(含详细答案)一、目录二、知识点1.整式的加减定义2.整式的加减原则3.整式的加减步骤三、常考题型1.基础练题2.提高练题四、重难点题型1.含有分式的整式加减2.含有根式的整式加减3.含有绝对值的整式加减五、详细答案二、知识点1.整式的加减定义整式加减是指将同类项合并,最终得到一个简化的整式的过程。
整式是由各种数的积和和式构成,包括常数项、一次项、二次项等。
2.整式的加减原则在整式加减中,只有同类项才能相加减。
同类项是指变量的指数相同的项,例如2x^2和5x^2就是同类项,但2x^2和5x^3不是同类项。
3.整式的加减步骤整式加减的步骤如下:1.将同类项放在一起。
2.对同类项的系数进行加减运算。
3.将结果合并,得到简化后的整式。
三、常考题型1.基础练题例题:将3x^2+5x-2和2x^2-3x+1相加。
解题思路:将同类项放在一起,得到5x^2+2x-1,即为答案。
答案:5x^2+2x-12.提高练题例题:将4x^2+3x-1和2x^2-5x+3相减。
解题思路:将同类项放在一起,得到2x^2+8x-4,即为答案。
答案:2x^2+8x-4四、重难点题型1.含有分式的整式加减例题:将(2x^2+3)/(x+1)和(3x-1)/(x+1)相加。
解题思路:先将分式化简为同分母,得到(2x^2+3+3x-1)/(x+1),化简后得到(2x^2+3x+2)/(x+1),即为答案。
答案:(2x^2+3x+2)/(x+1)2.含有根式的整式加减例题:将3√2x+5和5√2x-2相减。
解题思路:将同类项放在一起,得到(3-5)√2x+7,化简后得到-2√2x+7,即为答案。
答案:-2√2x+73.含有绝对值的整式加减例题:将|2x+1|+|3x-2|和|4x-3|相减。
解题思路:考虑绝对值的取值范围,将式子拆分为两部分,得到(2x+1+3x-2)-(4x-3)和(4x-3)-(2x+1+3x-2),化简后得到5x-1和-x,即为答案。
整式的乘法典型例题
《整式的乘法》典型例题
例1 计算:
(1)
(2)
(3)
解:(1)原式
(2)原式
(3)原式
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2计算题:
(1);(2).
分析:(1)中单项式为,多项式里含有,,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式
(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3化简
(1);
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4求值:,其中.
解:原式
当时,
说明:求值问题,应先化简,再代入求值.
例5设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入求解.
解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.。
整式的乘除题型及典型习题
整式乘除一.典型例题分析:一、同底数幂的乘法1.下面各式的运算结果为14a 的是( )A. 347a a a a ⋅⋅⋅B. 59()()a a -⋅-C. 86()a a -⋅-D. 77a a +2.化简32()()x y y x --为 ( )A .5()x y -B .6()x y -C .5()y x -D . 6()y x -二、幂的乘方1.计算23)x -(的结果是( )A .5x -B .5xC .6x -D .6x 2.下列各式计算正确的是( )A .34()n n n x x =B .23326()()2x x x +=C .3131()n n a a ++=D .24816()a a a -⋅=-三、积的乘方1. ()3423a b -等于( )A .1269a b -B .7527a b -C .1269a bD .12627a b - 2. 下列等式,错误的是( )A.64232)(y x y x =B.33)(xy xy -=-C.442229)3(n m n m =D.64232)(b a b a =-四、单项式与多项式的乘法1、计算 (1)3(421)a a b -+ (2)2(2).(3)x x xy x -++-(3)(3)(2)x y y x -+ (4)22()()a b a ab b +-+五、乘法公式(平方差公式)1.下列式子可用平方差公式计算的式子是( )A .))((a b b a --B .)1)(1(-+-x xC .))((b a b a +---D .)1)(1(+--x x2. 计算()()a b c a b c -+--等于( )A. 2()a b c -+ B .22(a b c --)C .22a b c --()D .22a b c -+()3. 化简22(1)(1)a a +--的值为( )A .2B .4C .4aD .222a +乘法公式(完全平方公式)1. 下列各式计算结果是22114m n mn -+的是( ) A. 21()2mn - B. 21(1)2mn + C. 21(1)2mn - D. 21(1)4mn -2. 加上下列单项式后,仍不能使241x +成为一个整式的完全平方式的是()A .44xB . 4xC .4x -D .4六、同底数幂的除法1.下列运算正确的是( )A .842a a a ÷=B .0415⎛⎫= ⎪⎝⎭C .33x x x ÷=D .422()()m m m -÷--2. 下列计算错误的有( )①623a a a ÷=; ②527y y y ÷=;③32a a a ÷=; ④422()()x x x -÷-=-; ⑤852x x x x ÷⋅=.A .4个B .3个C .2个D .1个七、单项式与多项式的除法1.下列各式计算正确的是( )A .22a a a a ÷⨯=B .22a a a a ÷÷=C .21a a a ÷⨯=D .33a a a a ÷÷=2. 42332(51520)(5)a a b a b a --+÷-= .二.跟踪练习一、填空题1、25x x ⋅= , 2y y y y y ⋅+⋅⋅= .2、合并同类项:2223xy xy -= .3、33282n ⨯=, 则=n .4、5a b +=, 5ab =. 则22a b += .5、()()3232x x -+= .6、如果2249x mxy y -+是一个完全平方式, 则m 的值为 .7、52a a a ÷÷= ,43(2)(3)x x ÷= .8、()2a b ++ ()2a b =-.9、222217ab a c ⎛⎫⋅-= ⎪⎝⎭ . 10、32(612)(3)x x x x -+÷-= .11、 边长分别为a 和2a 的两个正方形按如图(I)的样式摆放,则图中阴影部分的面积为 .二、选择题12、下列计算结果正确的是( )A 248a a a ⋅=B 0x x --=C ()22224xy x y -=D ()437a a -=13.下列运算结果错误的是( )A ()()22x y x y x y +-=-B ()222a b a b -=-C ()()()2244x y x y x y x y +-+=- D 2(2)(3)6x x x x +-=--14、给出下列各式①2211101a a -=,②10102020x x -=,③4354b b b -=,④222910y y y -=-,⑤4c c c c c ----=-,⑥22223a a a a ++=.其中运算正确有( )A 3个B 4个C 5 个D 6个15.下列各式中,计算结果是2340a a --的是( )A ()()410a a +-B ()()410a a -+C ()()58a a -+D ()()58a a +-16.下列各式计算中,结果正确的是( )A ()()2222x x x -+=-B ()()223234x x x +-=-C ()()22x y x y x y --+=-D ()()222ab c ab c a b c -+=-17. 在下列各式中,运算结果为22412xy x y -+的是( )A ()221xy -+B ()2221x y --C ()2221x y -D ()221xy --18.下列计算中,正确的是( )A ()()835x x x -÷-=B ()()544a b a b a b +÷+=+C ()()()623111x x x -÷-=-D ()352a a a -÷-= 19. 235()a a ⨯的运算结果正确的是( )A 13aB 11aC 21aD 6a20. 若32m n x y x y x y ÷=,则有( )A 6,2m n ==B 5,2m n ==C 5,0m n ==D 6,0m n ==三、计算题21. ()()2342aa -⋅ 22. ()()()23235ab a b ab ⋅-⋅-23. 12ab ()⎥⎦⎤⎢⎣⎡+--b b a a 32432 24. ()()()25255x x x ++-.25. ()22123xyxy -÷. 26. ()()()2x y x y x y --+-.27. 应用乘法公式进行计算:2200620082007.⨯-.四、解答题28. 先化简,再求值:()()()()232325121x x x x x +-----,其中31-=x .29. 解方程:2(2)(4)(4)(21)(4).x x x x x ++-+=-+五、应用题30. 已知:为不等于0的数,且11m m -=-,求代数式221m m+的值.31.已知:212x xy +=,215xy y +=,求()()()2x y x y x y +-+-的值.大厦巍然屹立,是因为有坚强支柱,理想和信仰就是人生大厦支柱;航船破浪前行,是因为有指示方向罗盘,理想和信仰就是人生航船罗盘;列车奔驰千里,是因为有引导它铁轨,理想和信仰就是人生列车上铁轨。
整式的练习题及解答
整式的练习题及解答一、填空题1. 化简以下整式:(3x² - 2)(x - 4) + 5(x² + 2x - 1)解:将括号内的整式进行分配律展开,并合并同类项,得到:3x³ - 14x² + 7x - 182. 将以下整式写成乘积形式:4x² - 9y²解:根据差平方公式,将整式分解为(2x - 3y)(2x + 3y)3. 将以下整式写成乘积形式:a³ - b³解:根据差立方公式,将整式分解为(a - b)(a² + ab + b²)4. 计算以下整式的值:(x - 3)²,当x = 4时解:将整式展开,得到(x - 3)² = x² - 6x + 9。
当x = 4时,代入得到:4² - 6 × 4 + 9 = 25二、选择题1. 化简整式 (2x + 3)² - (3x - 4)²结果为:A. -x² - 2x - 7B. -x² - x - 7C. -x² + 2x - 7D. -x² - 2x + 7答案:B2. 将整式 a²b + b²a - ab²写成乘积形式得到:A. (a + b)²B. (a + b)(ab - b²)C. (a² - ab + b²)(a + b)D. a²b + ab²答案:B三、解答题1. 将以下整式写成乘积形式:x⁴ - y⁴解:根据差平方公式可以将整式分解为(x² - y²)(x² + y²)。
其中,x² -y²可再分解为(x - y)(x + y)。
因此,整式的乘积形式为(x - y)(x + y)(x² + y²)2. 化简整式 (3a + b)² - (a - 2b)²解:展开整式得到 (3a + b)² - (a - 2b)² = 9a² + 6ab + b² - (a² - 4ab + 4b²) 合并同类项得到 9a² + 6ab + b² - a² + 4ab - 4b²化简得到 8a² + 10ab - 3b²综上所述,整式的练习题及解答包括了填空题、选择题和解答题,涵盖了整式的简化、展开、分解等运算。
整式的加减知识点总结及习题
整式的加减【知识要点】同类项: 所含字母相同, 相同字母的指数也相同的项一、 注: ①同类项与字母顺序无关;②几个常数也是同类项1、 合并同类项:2、 概念: 把同类项合并成一项3、 方法: ①同类项的系数相加;②字母和字母的指数不变二、 步骤: ①准确找出同类项;②利用法则, 把同类项系数相加;三、 ③利用有理数加法计算出各项系数的和, 写出结果四、 去括号:1、 意义法则: ①括号前是“+”号, 去括号后符号不变2、 ②括号前是“-”号, 去括号后符号改变方法: ①由内到外②由外到内③内外同时【典型例题】下列各题中的两项是不是同类项? 为什么?(1)y x y x 2252与;(2)b a ab 3322与;(3)ab abc 44与;(4)nm mn 与3;(5)-5与+3.【例1】 合并下列各式中的同类项。
(1)223x x +;(2)37328422++---a a a a ;(3)m n nm 222123- (4)ab a ab 342-+在式子① , ② ,③ , ④ 中, 需要先去括号, 再合并同类项的有。
先去括号, 再合并同类项。
(1))(528b a b a -++;(2))(26c a a --【例2】 下列计算结果正确的是( )。
A. B.C. D.先化简, 再求值。
, 其中 , 。
【课堂练习】一、 选择题1.下列运算正确的是( )A. B 、C. D.2、已知 是同类项, 则 的值是( )A.1B.0C.2D.33.减去 等于 的代数式是( )A. B. C. D.4.化简 的结果是( )A. B 、 C 、 D 、二、 填空题1. = 。
2.7-3x-4x2+4x-8x2-15= 。
3.2(2a2-9b)-3(-4a2+b)= 。
4.8x2-[-3x-(2x2-7x-5)+3]+4x= 。
5.单项式 的系数是______, 次数是______;6、 是 次 项式, 它的项分别是 , 其中常数项是 ;三、 7、为鼓励节约用电, 某地对居民用户用电收费标准作如下规定: 每户每月用电如果不超过100度, 那么每度电价按a 元收费;如果超过100度, 那么超过部分每度电价按b 元收费。
《整式》典型例题
《整式》典型例题例1 把下列各式填在相应的集合里:253a -,x 5,2ab ,5232-+x x ,y -54,722y x -,y x xy +,0,π. 单项式集合:{ …}; 多项式集合:{ …}; 整式集合:{ …};例2 指出下列单项式的系数和次数:x - ,295xy ,8332bc a -,2R π.例3 说出下列多项式的项数、次数、最高次项系数,常数项。
(1)9342+-x x (2)7322++-b b a a (3)222b ab a ++ (4)2222132y xy x +--例4 当m 为何值时,39722621-+--y x y x m 是四次多项式.例5 判断下列各说法是否正确,错误的改正过来;(1)单项式243xy -的系数是43,次数是2次.( ) (2)单项式85abc的次数是1次.( )(3)任何两个单项式的和是多项式.( )(4)21m-是单项式.( ) (5)31不是单项式.( )(6)n -的系数是1-,次数是1次.( ) (7)2xy 没有系数.( )(8)多项式abc ab 3132-是一次二项式.( )(9)x x +-312是二次三项式. 例6 下列代数式中,哪些是单项式,哪些是多项式352x -,b a +-34,y x 2,abc ,21-,232b a -,1+a ,32ba -,1232+-x x ,x3. 例7 指出下列各单项式的系数和次数:231x ,53xyz -,b a 2,a ,8543y x π. 例8 下列多项式各是几次几项式,分别写出各多项式的项.(1)143-a ; (2)5232-+-x x (3)32232y xy y x x ---; (4)b a -4; (5)y x 21-; (6)33662b a b a -+参考答案例1 解:单项式集合:{253a -,2ab ,722y x -,0,π…};多项式集合:{5232-+x x ,y -54…};整式集合:{253a -,2ab ,5232-+x x ,y -54,722y x -,0,π,…}.说明:要注意单项式、多项式、整式的概念,特别是它们所包含的运算,另外,要注意所给式子的原始形式.如xx可化简为1,但它不是整式. 例2说明:要特别注意只含字母的单项式和系数是1或-1,只不过此时“1”省略不。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(下)重要知识点总结第一章:整式的运算一、概念 1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。
单项式不含加减运算,分母中不含字母。
3、多项式:几个单项式的和叫做多项式。
多项式含加减运算。
4、整式:单项式和多项式统称为整式。
二、公式、法则:(1)同底数幂的乘法:a m﹒a n=a m+n(同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m÷a n=a m-n(a ≠0)。
(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n=a nb n推广:逆用, a nb n=(ab )n(当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。
(6)负指数幂:11()(0)ppp a a a a-==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。
(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。
(9)平方差公式:(a+b )(a-b)=a 2-b2公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):222()2a b a b ab+=-+222()2a b a b ab+=+-222212[()()]a b a b a b +=++-22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-22()()4a b a b ab +=-+ 2214[()()]ab a b a b =+-- 完全平方和公式中间项= 完全平方差公式中间项= 完全平方公式中间项=例如:229x +mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;是一个完全平方公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷ (12)常用变形:221((nn x y x y +--2n2n+1)=(y-x), )=-(y-x)经典题型例1. 计算(1) 73x x ÷ (2) 5222()()33-÷-(3) 63()()ab ab -÷- (4) 32()()x y x y -÷-解:(1) 73734x x x x -÷==(2)525232222()()()()3333--÷-=-=-=827- (3) 63633()()()()ab ab ab ab --÷-=-=-33a b =-(4) 3232()()()x y x y x y x y --÷-=-=-例2. 计算(1) 73()a a a ÷÷ (2))()(5235b b b b ⋅÷⋅ (3) 472)()(y y y y -÷-+⋅解:(1) 73725()a a a a a a ÷÷=÷= (2) b b b b b b b =÷=⋅÷⋅785235)()(例3. 计算(1)420101010-÷⨯ 021111()()()335--÷-⨯-解:(1)4204(2)610101010110---÷⨯=⨯= (2)02121115()()()1(3)(5)3359--÷-⨯-=÷-⨯-=-注意:若0a ≠,则a 与1a -互为倒数,pa -与p a 互为倒数 例4. 计算(1))4()5.2(23xy x -⋅-(2)222253)21()2(z x xyz y x ⋅-⋅-解:(1)24232310)()]4()5.2[()4()5.2(y x y x x xy x =⋅⋅⋅-⨯-=-⋅-(2)222253)21()2(z x xyz y x ⋅-⋅- 222453)21(4z x xyz y x ⋅-⋅= )()()(]53)21(4[2224z z y y x x x ⋅⋅⋅⋅⋅⋅⋅⨯-⨯= 73365x y z =- 例5. 计算(1)23(231)2a a a -+-(2))21()23()21()2(2222a ab b a b ab a -⋅-++⋅- 解:(1)23(231)2a a a -+-aa a a a a a a 23293)1()23(3)23(223232+--=-⋅-+⋅-+⋅-= (2))21()23()21()2(2222a ab b a b ab a -⋅-++⋅-2232232232222222225212342)2()21(3)21(4214)21()23()21(4b a b a b a b a b a b a ab a b a a b a ab a a ab b a b ab a +=+-+=-⋅-+⋅-+⋅+⋅=-⋅-++⋅=例6. 计算(1)(3)(52)x y a b -- (2)133(5)(2)354x y x y ---+(3)(x +4)(x -1) (4)(3a +b )(a -2b ) 解:(1)(3)(52)x y a b --by ay bx ax b y a y b x a x 61525)2()3(5)3()2(5+--=-⋅-+⋅-+-⋅+⋅=(2)133(5)(2)354x y x y ---+yy x xy x yy xy x xy x y y y x y x y x x x 324110207133241511041532)31()43()31(53)31(2)5()43()5(53)5(2222-+-+-=-+--+-=⋅-+-⋅-+⋅-+⋅-+-⋅-+⋅-= (3)(x +4)(x -1)434422-+=-+-=x x x x x(4)(3a +b )(a -2b )2222362352a ab ab b a ab b =-+-=--【模拟试题】(答题时间:50分钟)一、选择题1. 62()()ab ab ÷等于( )A. 33a bB. 44a b C. 34a b D. 43a b2. 2322()()a a ÷-等于( )A. 2a -B. 2aC.a -D. a3. 236232()()m n m n -÷-等于( )A. 812m nB. 619m nC. 812m n -D. 69m n -4. 105,103m n==,则2310m n-值为( )A. –2B. 2527C. 675D. 2255. 32)()2(abc abc -⋅-的运算结果是( )A. 5554a b c -B. 5552a b c -C. 6664a b c -D. 6668a b c -6. 计算2423)105.1()1032(⨯⋅⨯-的结果是( )A. 111.510-⨯B. 1110 C. 112103⨯D. 14107. 若4693423)423(a a a a a a a knm+-=+-⋅,则m 、n 、k 为( ) A. 6,3,1 B. 3,6,1 C. 3,1,1 D. 2,1,18. 若(x +2)(x -5)2x px q =++,则常数p 、q 的值为( ) A. p =-3 ,q =10B. p =-3,q =-10C. p =7,q =-10D. p =7,q =109. 如果2(3)(32)x mx x -+-的乘积中不含x 的二次项,那么常数m 的值为( ) A. 0B. 23C. -23D.32-二、填空题1. 21()2-=( ),12()a -÷( )=3a -2. 当y ( )时,331(1)(1)y y -+=+3. 若3,5m n a a ==,若m n a -=( ),32m na -=( )4. (1.3810⨯)5( 1.310)⨯-⨯=( ),2232)3()21(xy y x -⋅-=( )5. )()1(22x x x -⋅+-=( )6. ⋅-)5(32b a ( )=3315a b ,4323)3()31()2(x x x -⋅-⋅-=( )7. 2335)109()1031(⨯⋅⨯-=( ),3233(410)(210)-⨯⨯-⨯=( )(用科学记数法表示)三、计算1. 23322333)()(])()[(a a a a ÷÷-⋅ 2.133(2)(2)(2)m m a b a b a b +-+÷+÷+3. 221202214()()(2)()(0.2)3325--÷--÷--4. )131(3)2()(22--+-⋅-b ab a ab a5.2585(4)4(4)2x x y x x x y --+--6. 2222(32)()a b a b -+7. 如果3121927381m m m ++-⨯÷=,求m 的值8. 化简求值25365(21)4(3)24a a a b a a b --+-+---,其中,a =-2,b =15。
9. 解方程(3x +8)(2x -1)=3x (2x +5)【试题答案】一、选择题 1. B 2. B 3. A 4. B 5. A6. D7. A8. B9. C 二、填空题1. 4 9a -2. ≠-13. 35,27254. -1.691310⨯,8798x y -5. 432x x x -+-6. -3a 1312x -7. 21310-⨯ 171.2810-⨯ 三、计算1. 12a2. 2a b +3. 184. 32253a b a b a --5. 2330x xy --6. 422432a a b b +- 7. m =-28. 2202a ab a --+ 0 9. x =-4。