新人教版2020年八年级数学上册第十三章轴对称检测卷1

合集下载

人教版八年级数学上册检测题 第十三章检测题

人教版八年级数学上册检测题 第十三章检测题

第十三章检测题(时间:100分钟满分:12022一、选择题(每小题3分,共30分)1.(2020·永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是( D )2.(2020·大连)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是( B )A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)3.(南充中考)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( B )A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM第3题图第4题图第5题图4.(2020·宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是( A )A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线5.(2020·绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( C )A.16°B.28°C.44°D.45°6.(衢州中考)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是( D )A.60°B.65°C.75°D.80°第6题图第7题图7.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为点D,交AC于点E,∠A=∠ABE,AC=5,BC=3,则BD的长为( A )A.1 B.1.5 C.2 D.2.58.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( C ) A.10 B.8 C.6 D.4第8题图第9题图第10题图9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为( C ) A.15°B.22.5°C.30°D.45°10.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC 和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.下列五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确结论的个数是( C )A.2个B.3个C.4个D.5个二、填空题(每小题3分,共15分)11.(兰州中考)在△ABC中,AB=AC,∠A=40°,则∠B=__70__°.12.(2020·达州)如图,点P(-2,1)与点Q(a,b)关于直线l(y=-1)对称,则a+b=__-5__.第12题图第13题图第14题图第15题图13.(2020·常州)如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F.若△AFC是等边三角形,则∠B=__30__°.14.(2020·恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=__40°__.15.(黄冈中考)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB 的中点,若∠CMD=120°,则CD的最大值是__14__.【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD =120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形,∵CD≤CA′+A′B′+B′D=CA+AM +BD=2+4+8=14,∴CD的最大值为14三、解答题(共75分)16.(8分)如图,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC.将图中的等腰三角形全都写出来,并求∠B的度数.解:图中等腰三角形有△ABC,△ADB,△ADC,∠B=36°17.(9分)如图,已知直线l及其两侧两点A,B.(1)在直线l上求一点O,使点O到A,B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.解:图略(1)连接AB与l的交点O即为所求(2)作AB的垂直平分线,与l的交点P 即为所求(3)作点B关于l的对称点B′,作直线AB′与l的交点Q即为所求18.(9分)(2020·吉林)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点;(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.解:(1)如图①,MN即为所求(2)如图②,PQ即为所求(3)如图③,△DEF即为所求19.(9分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.解:(1)∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∠DAC=∠BAC-∠BAD =120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB20.(9分)(天门中考)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求21.(10分)如图,在△ABC 中,AB =AC ,∠BAC =120°,AD 是BC 边的中线,点E ,F 分别是AB ,AC 的中点,连接DE ,DF .(1)求证:△ADE 是等边三角形;(2)若AB =2,求四边形AEDF 的周长.解:(1)∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°.∵AD 是BC 边的中线,∴AD⊥BC .∴∠BAD =60°,AD =12 AB .∵AE =12AB ,∴AE =AD .∴△ADE 是等边三角形 (2)由(1)证得△ADE 是等边三角形,同理△ADF 是等边三角形.∴AE =AF =AD =DE =DF .∵AE =12AB =1,∴四边形AEDF 的周长是422.(10分)(2020·绍兴)问题:如图,在△ABD 中,BA =BD .在BD 的延长线上取点E ,C ,作△AEC ,使EA =EC .若∠BAE =90°,∠B =45°,求∠DAC 的度数.答案:∠DAC =45°.思考:(1)如果把以上“问题”中的条件“∠B =45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B =45°”去掉,再将“∠BAE =90°”改为“∠BAE =n °”,其余条件不变,求∠DAC 的度数.解:(1)∠DAC 的度数不会改变;∵EA =EC ,∴∠AED =2∠C ①,∵∠BAE =90°,∴∠BAD =12 (180°-∠B )=12 [180°-(90°-∠AED )]=12[180°-(90°-2∠C )]=45°+∠C ,∴∠DAE =90°-∠BAD =90°-(45°+∠C )=45°-∠C ②,由①,②得∠DAC=∠DAE +∠CAE =45° (2)设∠ABC =m °,则∠BAD =12 (180°-m °)=90°-12m °,∠AEB =180°-n °-m °,∴∠DAE =n °-∠BAD =n °-90°+12m °,∵EA =EC ,∴∠CAE =12 ∠AEB =90°-12 n °-12 m °,∴∠DAC =∠DAE +∠CAE =n °-90°+12 m °+90°-12n °-12 m °=12n °23.(11分)如图,已知AE ⊥FE ,垂足为点E ,且E 是DC 的中点.(1)如图①,如果FC ⊥DC ,AD ⊥DC ,垂足分别为点C ,D ,且AD =DC ,判断AE 是∠FAD 的平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件“AD =DC ”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图③,如果(1)中的条件改为“AD ∥FC ”,(1)中的结论仍成立吗?请说明理由.解:(1)AE 是∠FAD 的角平分线 (2)成立.理由如下:延长FE 交AD 的延长线于G .∵E 为CD 的中点,∴CE =DE .易证△CEF ≌△DEG (ASA),∴EF =EG .∵AE ⊥FG ,∴AF =AG ,∴AE 是∠FAD 的平分线 (3)结论仍成立,证明方法同(2)。

人教版八年级上册数学第13章测试卷及答案

人教版八年级上册数学第13章测试卷及答案

精品基础教育教学资料,仅供参考,需要可下载使用!《轴对称》综合测试一一、选择题(每小题3分,共24分)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3.下列条件中,不能得到等边三角形的是()A.有两个角是60°的三角形B.有一个角是60°的等腰三角形C.有两个外角相等的等腰三角形D.三边都相等的三角形4.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC 于点E,则△BEC的周长为()A.13 B.14 C.15 D.165.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB6.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是()A. 10°B. 15°C. 20°D. 25°7.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A.(0,3)B.(1,2) C.(0,2)D.(4,1)8. 如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为( B )A. 6cm2B. 5cm2C. 4cm2D. 3cm2二、填空题(每小题4分,共24分)9.已知点A(a,2019)与点B(2020,b)关于y轴对称,则a+b的值为.10.等腰三角形一个角等于100°,则它的一个底角的度数是.11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.12.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.13.如图,在△ABC中,∠B与∠C的平分线交于点O.过O点作DE∥BC,分别交AB、AC 于D、E.若AB=8,AC=6,则△ADE的周长是 .14.如图:D、E是三角形ABC的边BC上的两点,且BD=DE=AD=AE=EC,则∠BAC的大小等于.三、解答题(5个小题,共52分)15.(8分)如图所示,写出△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.16.(10分)如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用三种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.17.(10分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.18.(12分)如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F.(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.(12分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N 第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.《轴对称》综合测试一参考答案一、1. D 2.B 3.C 4.A 5.C 6.B 7.A 8.B.提示:1. 提示:A、有3条对称轴;B、有4条对称轴;C、有2条对称轴;D、有6条对称轴.故选D.2.提示:A、两个关于某直线对称的图形一定全等,本选项正确;B、对称图形的对称点不一定在对称轴的两侧,如可能在对称轴上,故本选项错误;C、两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴,本选项正确;D、平面上两个全等的图形不一定关于某直线对称,本选项正确.故选B.3.提示:A、有两个角是60°的三角形,那么第三个角也是60°,故是等边三角形;B、有一个角是60°的等腰三角形是等腰三角形;C、有两个外角相等的等腰三角形,不一定是等边三角形;D、三边都相等的三角形是等边三角形,正确;故选:C.4.提示:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.5.提示:∵∠ACB=90°,∠A=30°,∴BC=AB.∵CD是高,∴∠BCD=∠A=30°,∴BD=BC,∴BD=AB.故选C.小结:30º锐角所对的边等于斜边的一半,只有在直角三角形中才成立,其他三角形中不成立.6.提示:∵在△ABC中,D为BC中点,AB=AC,∴AD⊥BC;又∵AD=AE,∠AED=75°,∴∠ADE=75°∴∠EDC=∠ADC-∠ADE=90°-75°=15°.故选B.小结:本题主要考查了等腰三角形的两条重要性质:等边对等角和“三线合一”.7.提示:如图所示,点B′(0,3).故选A.小结:本题考查的是画轴对称图形,旨在培养学生的动手操作能力和观察能力.8.提示:如图,延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,设△ACE的面积为m,∴S△ABE=S△ABC+S△ACE=10+m,∴S△PBC=S△ABE-S△ACE=1022m m+-=5.故选:B.小结:因为等底同高的两个三角形面积相等,所以三角形被中线分成的两个三角形面积相等.二、9. -1 10.40°11.10°12.9 13.14 14.120°提示:9. 提示:由点A(a,2019)与点B(2020,b)关于x轴对称,得a=-2020,b=2019,a+b=-1,故答案为:-1.10.提示:∵一个角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40°.11.提示:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.12.提示:根据等腰三角形是轴对称图形,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2.故答案为:9.小结:本题考查了等腰三角形的性质及轴对称性质,利用对称发现△CEF和△BEF的面积相等是正确解答本题的关键.13.提示:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴BD=DO,同理OE=EC,∴△ADE的周长=AD+AE+ED=AB+AC=8+6=14.故答案为14.小结:本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.14.提示:∵AD=AE=DE,∴△ADE是等边三角形,∴∠ADE=∠AED=∠DAE=60°,∵AD=AB,AE=EC,∴∠B=∠BAD,∠C=∠CAE,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE=30°,∴∠BAC=∠BAD+∠DAE+∠CAE=120°.故答案为:120°.小结:本题考查了等边三角形的判定的性质,发现并利用等边三角形是解题的关键.三、15. 解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标:A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),如图所示:△A2B2C2,即为所求.16.解:本题画法较多,只要满足题意均可,如图所示:17.思路分析:根据等腰直角三角形的性质,得到△BEH是等腰直角三角形,然后利用角平分线的性质,得到DE=HE,再利用BM=2DE,得到△HEM是等腰直角三角形,从而获证. 解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.小结:等腰直角三角形既是等腰三角形也是直角三角形,因此它兼具这两种三角形的所有性质.18.思路分析:(1)利用垂直平分线的性质求AB的长;(2)由四边形内角和得∠ACB的度数,再由三角形内角和得∠A+∠B的度数,最后根据等腰三角形的性质求∠MCN的度数.解:(1)∵DM是AC边的垂直平分线,∴MA=MC,∵EN是BC边的垂直平分线,∴NB=NC,∴AB=AM+MN+NB=MC+MN+NC=△CMN的周长=20cm;(2)∵MD⊥AC,NE⊥BC,∠MFN=70°,∴∠ACB=180°﹣∠MFN=110°,∴∠A+∠B=70°,∵MA=MC,NB=NC,∴∠MCA=∠A,∠NCB=∠B,∴∠MCA+∠NCB=70°,∴∠MCN=110°-70°=40°.小结:本题主要考查了线段垂直平分线和等腰三角形的性质.线段垂直平分线经转化后就是等腰三角形.19.思路分析:(1)当M、N两点重合时,它们的路程差是12,据此可求出运动时间;(2)当M在AC上,N在AB上时,可得到等边三角形△AMN,根据等边三角形的性质得运动时间;(3)根据点M、N将在点C重合,所以点M、N在BC上时,能得到以MN为底边的等腰三角形AMN,证明△ACM≌△ABN,由全等三角形的性质求得运动时间.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.小结:动点问题要动中求静,将动点运动的路径进行分段,逐段分析可解决问题.《轴对称》综合测试二一、选择题(每小题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.2.已知点A(﹣2,3)关于x轴对称的点是点B,点B关于y轴对称的点是C,则点C的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.已知a、b、c是三角形的三边长,且满足(a﹣b)2+|b﹣c|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形4.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是()A.15cm B.13cm C.11cm D.9cm5.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)6.将一张正方形按图1,图2方式折叠,然后用剪刀沿图3中虚线剪掉一角,再将纸片展开铺平后得到的图形是()A.B.C.D.7.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③8.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的12)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P n﹣P n﹣1的值为()A.114n-⎛⎫⎪⎝⎭B.C.112n-⎛⎫⎪⎝⎭D.二、填空题(每小题4分,共24分)9.我国国旗上的五角星有条对称轴.10.已知点P(2a+b,b)与P1(8,﹣2)关于y轴对称,则a+b= .11.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为.12.已知一个等腰三角形的两边长分别是6和5,那么它的周长为.13.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为.14.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.三、解答题(5个小题,共52分)15.(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.16.(10分)如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P 的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.17.(10分)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B= °,∠C= °;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2.①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.18.(12分)(1)如图1,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.(保留作图痕迹不写作法)(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使得△AMN周长最小;②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为.19.(12分)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG 与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.《轴对称》综合测试二参考答案一、1. D 2.B 3.B 4.B 5.C 6.B 7.A 8.C.提示:1. 提示:利用轴对称图形定义判断.下列四个汉字中,可以看作轴对称图形的是“中”,故选D.2.提示:点A(﹣2,3)关于x轴对称的点B的坐标为(﹣2,﹣3).点B(﹣2,﹣3)关于y轴对称的点C的坐标为(2,-3).故选:B.3.提示:根据非负数的性质,得∴a﹣b=0,且b﹣c=0,∴a=b,且b=c,∴a=b=c,∴这个三角形一定是等边三角形,故选B.4.提示:∵AB=AC,∴∠ABC=∠C.∵DE∥AB,∴∠DEC=∠ABC=∠C,∠ABD=∠BDE,∴DE=DC,∵BD是∠ABC的平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE,∴BE=DE=DC=5cm,∴△CDE 的周长为DE+DC+EC=5+5+3=13(cm),故选B.5.提示:如图,∵点P (﹣1,2),∴点P 到直线x=1的距离为1﹣(﹣1)=2,∴点P 关于直线x=1的对称点P ′到直线x=1的距离为2,∴点P ′的横坐标为2+1=3,∴对称点P ′的坐标为(3,2).故选C .小结:本题采用数形结合的办法更容易得到答案,找一个点的坐标,应分为求点的横坐标与纵坐标两个小题.6.提示:由于剪去的是一个等腰直角三角形,四个等腰直角三角形直角顶点重合可以得到一个正方形.故选:B .小结:此题主要考查了剪纸问题,解答此类题最好动手操作,易得出答案. 7.提示:由题意知,要求“被一条直线分成两个小等腰三角形”,(1)中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能; (2)不能;(3)显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能; (4)中的为36°,72,72°和36°,36°,108°,能.故选A .小结:在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形形状相同才有可能. 8.提示:P 1=1+1+1=3,P 2=1+1+12=52,P 3=1+12+12+14×3=114,P 4=1+12+12+14×2+18×3=238,… ∴p 3﹣p 2=114﹣52=14=212,P 4﹣P 3=238﹣114=18=312,则Pn ﹣Pn ﹣1=112n -=112n -⎛⎫⎪⎝⎭.故选C .小结:本题考查了等边三角形的性质;要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、9. 5 10.﹣5 11.12 12.16或17 13.5.5 14.8.提示:9. 提示:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.提示:∵点P(2a+b,b)与P1(8,﹣2)关于y轴对称,∴2a+b=﹣8,b=﹣2,解得:a=﹣3,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.11.提示:∵点B与点E关于DC对称,∴BC=CE=4.∵E是AB的中点,∴BE=12AB=4.∴△BEC的周长12.故答案为:12.12.提示:当腰为6时,则三角形的三边长分别为6、6、5,满足三角形的三边关系,周长为17;当腰为5时,则三角形的三边长分别为5、5、6,满足三角形的三边关系,周长为16;综上可知,等腰三角形的周长为16或17.故答案为:16或17.小结:已知等腰三角形的两边长求周长,不仅要分类讨论,还要看是否符合三角形三边关系.13.提示:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=12AB=12×11=5.5,∴DF=5.5.故答案为:5.5.小结:角平分线与平行线结合时,常有等腰三角形出现.14.提示:如图,AB是腰长时,有4个点可以作为点C,AB是底边时,有4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故答案为8.小结:掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.三、15. 解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心.16.解:如图,过P作PE⊥AB于E,由题意得:∠PAE=15°,∠PBE=30°,AB=30海里.∴AB=BP=30,在Rt△BPE中,∵∠PBE=30°,∴PE=12BP=12×30=15.又∵周围18海里都会有危险,∴轮船继续向北航行,有触礁危险.17.思路分析:(1)由等边对等角,得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形内角和可求得∠B,∠C;(2)①由(1)可知∠BAD=∠CAD=36°,利用三角形内角和求得∠ANH、∠AEH的度数,可得AN=AE;②由①知AN=AE,借助已知利用线段的和差可得CD=BN+CE.解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.小结:本题主要考查等腰三角形的判定和性质,掌握等角对等边、等边对等角是解题的关键,注意方程思想的应用.18.思路分析:(1)根据两点之间线段最短,作A关于直线MN的对称点E,连接BE交直线MN于C,即可得出答案;(2)作P关于OA、OB的对称点C、D,连接CD交OA、OB于E、F.此时△PEF周长有最小值;(3)①取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,根据轴对称的性质可得AM=PM,AN=QN,然后求出△AMN周长=PQ,根据轴对称确定最短路线问题,PQ的长度即为△AMN 的周长最小值;②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AMN=2∠P,∠ANM=2∠Q,然后求解即可得出答案.解:(1)作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,则此时C点符合要求.(2)作图如下:(3)①作图如下:②∵∠BAE=125°,∴∠P+∠Q=180°﹣125°=55°,∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.小结:在平面内找最短路径,要利用轴对称,用这个点的对称点去代替这个点,化曲为直.19.思路分析:(1)利用“三边相等”的三角形是等边三角形证得△EBC是等边三角形;(2)延长ED使得DW=DM,连接MN,即可得出△WDM是等边三角形,利用△WGM≌△DBM即可得出BD=WG=DG+DM,再利用AD=BD,即可得出答案;(3)利用等边三角形的性质得出∠H=∠2,进而得出∠DNG=∠HNB,再求出△DNG≌△HNB 即可得出答案.(1)证明:如图1所示:在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=.∵BD平分∠ABC,∴∠CBD=∠DBA=∠A=30°.∴DA=DB.∵DE⊥AB于点E.∴AE=BE=.∴BC=BE.∴△EBC是等边三角形;(2)结论:AD=DG+DM.证明:如图2所示:延长ED使得DW=DM,连接MW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,又∵DM=DW,∴△WDM是等边三角形,∴MW=DM,在△WGM和△DBM中,∵∴△WGM≌△DBM,∴BD=WG=DG+DM,∴AD=DG+DM.(3)结论:AD=DG﹣DN.证明:延长BD至H,使得DH=DN.由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.小结:此题主要考查了等边三角形的判定与性质以及全等三角形的判定与性质,根据已知做出正确辅助线是解题关键.。

人教版2020年数学八年级上册第13章轴对称能力测试题

人教版2020年数学八年级上册第13章轴对称能力测试题

DCBA人教版数学八年级上册第13章能力测试题含答案(时限:100分钟 总分:100分)班级 姓名 总分 一、选择题(本大题共12小题,每小题2分,共24分)1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( ) ⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线. A. 3个 B. 4个 C. 5个 D. 6个2.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B 关于直线L 对称3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( )A.(-2,-1)B.(-2,1)C.(2,1)D.(1,-2)5.已知点A的坐标为(1,4),则点A关于x轴对称的点的纵坐标为()A. 1B. -1C. 4D. -46.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线.7.已知点A(-2,1)与点B关于直线x=1成轴对称,则点B的坐标为()A.(4,1)B.(4,-1)C.(-4,1)D.(-4,-1)8.已知点P(1,a)与Q(b,2)关于x轴成轴对称,又有点Q(b,2)与点M(m,n)关于y轴成轴对称,则m-n的值为()A. 3B.-3C. 1D. -19.等腰三角形的一个内角是50°,则另外两个角的度数分别为()A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为()A. 30°B. 150°C. 30°或150°D.12°11.等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为()A. 4cmB. 8cmC. 4cm或8cmD. 以上都不对12.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)13.等边三角形是轴对称图形,它有条对称轴.14.如图,如果△A1B C与△ABC关于y轴对称,那么点A的对应点A1的坐标为21题⑴L21题⑵B15.如图是某时刻在镜子中看到准确时钟的情况,则实际时间是 . 16.已知∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ = .17.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为 .18.点P (1,2)关于直线y =1对称的点的坐标是 ;关于直线x =1对称的的坐标是 .19.三角形三内角度数之比为1∶2∶3,最大边长是8cm ,则最小边的长是 . 20.在△ABC 和△ADC 中,下列3个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题 : .三、解答题:(本大题共52分)21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹) ⑴ 如图,已知线段AB 和直线L ,作出与线段AB 关于直线L 对称的图形.⑵ 已知∠AOB 和C 、D 两点,求作一点P ,使PC =PD ,且P 到∠AOB 两边的距离相等.A22.(5分)如图所示,在平面直角坐标系中,A (-1,5),B (-1,0),C (-4,3). ⑴求出△ABC 的面积.⑵ 在图形中作出△ABC 关于y 轴的对称图形△A 1B 1C 1. ⑶ 写出点A 1,B 1,C 1的坐标.23.(5分)如图所示,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0). ⑴ 写出点C 和点D 的坐标; ⑵ 求出梯形ABCD 的面积.24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为PDCBAPEDCBA 13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC 为边分别向外作等边三角形ABD和等边三角形ACE ,连接CD 、BE 并且相交于点P. 求证:⑴CD =BE. ⑵∠BPC =120°NMFE C BA27.(6分)下面有三个结论:⑴ 等腰三角形两底角的平分线的交点到底边两端的距离相等. ⑵ 等腰三角形两腰上中线的交点到底边两端的距离相等. ⑶ 等腰三角形两腰上的高的交点到底边两端的距离相等. 请你任选一个结论进行证明.28.(7分)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F , 求证:BM =MN =NC.ED CB A一、选择题:1.C;2.C;3.B;4.A;5.D;6.D;7.A;8.B;9.C;10.C;11.C;12.D;二、填空题:13. 3;14.(-1,3);15. 4点40分;16. 2;17. 4cm2;18.(1,0),(1,2);19.4cm;20.等腰三角形的顶角平分线和底边上的中线重合.三、解答题:21.略;22.⑴=×5×3=7.5(平方单位);⑵略;⑶A1(1,5),B1(1,0);C1(4,3).23.⑴C(2,0),D(3,3).⑵=(4+6)×3=15(平方单位).24.∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.25.连接CD,并延度CD交AB于E,证CE垂直平分AB,可得∠DCB=30°再证△BDC≌△BDP即可.26.略;27.略28.连接MA、NA,证明:MA=NA=MN.1、在最软入的时候,你会想起谁。

初中八年级数学第十三章轴对称单元检测试卷习题一(含答案) (100)

初中八年级数学第十三章轴对称单元检测试卷习题一(含答案) (100)

初中八年级数学第十三章轴对称单元检测试卷习题一(含答案)、、是三个格点(网格线的交点叫做格点) .如图,在方格纸中,A B P()1过点P画AB的垂线,垂足为点C,画出三角形PBC绕点P旋转后180︒的图形;()2平移线段AB,使点B与点P重合,请画出平移后的线段PD.【答案】(1)画图见解析;(2) 画图见解析;【解析】【分析】(1)根据旋转的特征,三角形绕点旋转后后,点P不变,其他各部分均绕点P按照相同的方向旋转相同度数即可得到新图形;(2)根据平移的性质,点B 到点P移动方向为向右平移一个单位后,向上平移三个单位,将点A向右平移一个单位后,再向上平移三个单位得到点D,连接PD即可;【详解】解:(1)(2)如图:【点睛】本题主要考查了作旋转一定角度后的图形,作平移后的图形,掌握作旋转一定角度后的图形,作平移后的图形是解题的关键.92.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,△C=45°,sinB=1,AD=1.3(1)求BC的长;(2)求tan△DAE的值.【答案】(1)1;(212【解析】【分析】(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt∠ADC,得出DC=1;解Rt∠ADB,得出AB=3,根据勾股定理求出BD=BC=BD+DC即可求解.(2)先由三角形的中线的定义求出CE的值,则DE=CE﹣CD,然后在Rt ∠ADE 中根据正切函数的定义即可求解.【详解】解:(1)在∠ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.在∠ADC 中,∠∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在∠ADB 中,∵∠ADB=90°,sinB=13,AD=1, ∴AD 1AB 31sinB 3===.∴BD ===∠BC BD DC 1=+=.(2)∠AE 是BC 边上的中线,∠CE=1212. ∠DE=CE ﹣12.∠DE 1tan DAE AD 2∠==. 【点睛】本题考查了三角形的高、中线的定义,勾股定理,解直角三角形,难度中等,分别解Rt △ADC 与Rt △ADB ,得出DC=1,AB=3是解题的关键.93.如图,在平面直角坐标系xoy 中,点,点,将绕着点旋转后得到.(I)在图中画出; (II)点A ,点B 的对应点A ’和B ’的坐标分别是A ’ 和B ’ ; (III)请直接写出AB 和A ’B ’的数量关系和位置关系。

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。

人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)

人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)

人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)一、单选题1.下列润滑油1ogo标志图标中,不是..轴对称图形的是()A.B.C.D.2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.ABC的三条中线的交点B.ABC三边的垂直平分线的交点C.ABC三条角平分线的交点D.ABC三条高所在直线的交点3.三角形的外心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点4.下列条件中,不能判定直线CD是线段AB(C,D不在线段AB上)的垂直平分线的是()A.CA=CB,DA=DB B.CA=CB,CD⊥ABC.CA=DA,CB=DB D.CA=CB,CD平分AB5.如图,在⊥ABC中,AB=AC,⊥A=36°,BD平分⊥ABC交AC于点D,则图中的等腰三角形共有()A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC 中,90,6,10,8BAC AC BC AB ∠=︒===,过点A 的直线//,DE BC ABC ∠与ACB ∠的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC 中,AD 是它的角平分线,DE AB ⊥于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC ∠=︒,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A.20m B 203m3C403m3D.203m11.如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=P A,连接PQ交AC于点D,则DE的长为()A.1B.1.8C.2D.2.512.如图,等边三角形ABC的三条角平分线相交于点O,//OD AB交BC于点D,//OE AC交BC于点E,那么这个图形中的等腰三角形共有()个A.4B.5C.6D.7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC中,10cmAB AC==,AB的垂直平分线交AC于点D,且BCD△的周长为17cm,则BC=________cm.15.如图,在ABC ∆中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ 的周长为 __________.16.ABC ∆中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50︒,则底角B 的大小为_________.17.如图,⊥AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA ∠=∠;(2)//DF AC ;(3)EAC B ∠=∠.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在⊥ABC 中,⊥BAC =90°,E 为边BC 上的任意点,D 为线段BE 的中点,AB =AE ,EF ⊥AE ,AF BC ∥.(1)求证:⊥DAE=⊥C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在ABC中,⊥A=2⊥B,CD平分⊥ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分⊥ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到DEC⊥DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知ABC中,AB=AC,⊥A=20°,BD平分⊥ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:⊥⊥⊥ABC为等边三角形,⊥AB=AC,⊥⊥ABC为等腰三角形;⊥⊥BO,CO,AO分别是三个角的角平分线,⊥⊥ABO=⊥CBO=⊥BAO=⊥CAO=⊥ACO=⊥BCO,⊥AO=BO,AO=CO,BO=CO,⊥⊥AOB为等腰三角形;⊥⊥AOC为等腰三角形;⊥⊥BOC为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥ABC=⊥ODE,⊥ACB=⊥OED,⊥⊥ABC=⊥ACB,⊥⊥ODE=⊥OED,⊥⊥DOE为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥BOD=⊥ABO,⊥COE=⊥ACO,⊥⊥DBO=⊥ABO,⊥ECO=⊥ACO,⊥⊥BOD=⊥DBO,⊥COE=⊥ECO,⊥⊥BOD为等腰三角形;⊥⊥COE为等腰三角形.故选:D.13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或10 18.证明:AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF ∴∠=∠=又AD AD =∴AED AFD ≌∴AE AF =∴,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ⊥BCE 的周长为8,⊥8BE EC BC ++=⊥AB 的垂直平分线交AB 于点D ,交AC 于点E ,⊥AE BE =,⊥8AE EC BC ++=,即8AC BC +=,⊥2AC BC -=,⊥5AC =,3BC =,⊥AB AC =,⊥5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA ∠=∠;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF ∠=∠,再利用角平分线的性质可得到BAD CAD ∠=∠,利用等量代换可得ADF CAD ∠=∠,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,⊥EF 是AD 的垂直平分线,⊥AE DE =,AQ DQ =,在AEQ △和DEQ 中,⊥,,,AQ DQ EQ EQ AE DE =⎧⎪=⎨⎪=⎩⊥AEQ DEQ ≌(SSS ),⊥EAD EDA ∠=∠;(2)⊥EF 是AD 的垂直平分线,⊥AF DF =,在AFQ △和DFQ 中,⊥,,,AQ DQ FQ FQ AF DF =⎧⎪=⎨⎪=⎩⊥AFQ DFQ ≌(SSS ),⊥BAD ADF ∠=∠,⊥AD 是ABC 的角平分线,⊥BAD CAD ∠=∠,⊥ADF CAD ∠=∠,⊥//DF AC ;(3)由(1)知EAD EDA ∠=∠,EAD CAD EAC ∠=∠+∠,⊥EDA CAD EAC ∠=∠+∠,又⊥EDA BAD B ∠=∠+∠,⊥CAD EAC BAD B ∠+∠=∠+∠,⊥BAD CAD ∠=∠,⊥EAC B ∠=∠.易错:证明:(1)⊥EF 是AD 的垂直平分线,⊥AE DE =,在AEQ △和DEQ 中,,,,AQ DQ AEQ DEQ AE DE =⎧⎪∠=∠⎨⎪=⎩⊥AEQ DEQ ≌(SAS ),⊥EAD EDA ∠=∠.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAE ECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅,FC AD ∴=;(2)由(1)已证:CEF DEA ≅,FE AE ∴=,又BE AE ⊥,BE ∴是线段AF 的垂直平分线,AB FB BC FC ∴==+,由(1)可知,FC AD =,AB BC AD ∴=+.22.(1)证明:⊥AB =AE ,D 为线段BE 的中点,⊥AD ⊥BC ,⊥⊥C +⊥DAC =90°,⊥⊥BAC =90°,⊥⊥BAD +⊥DAC =90°,⊥⊥C =⊥BAD ,⊥AB =AE ,AD ⊥BE ,⊥⊥BAD =⊥DAE ,⊥⊥DAE =⊥C ;(2)证明:⊥AF ⊥BC ,⊥⊥F AE =⊥AEB ,⊥AB =AE ,⊥⊥B =⊥AEB ,⊥⊥B =⊥F AE ,又⊥AEF =⊥BAC =90°,AB =AE ,⊥⊥ABC ⊥⊥EAF (ASA ),⊥AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥ACD ⊥⊥ECD (SAS ),⊥AD =DE ,⊥A =⊥DEC ,⊥⊥A =2⊥B ,⊥⊥DEC =2⊥B ,⊥⊥B =⊥EDB ,⊥⊥BDE 是等腰三角形;⊥BE =DE =AD =2.2,AC =EC =3.6, ⊥BC 的长为5.8;(2)⊥⊥ABC 中,AB =AC ,⊥A =20°, ⊥⊥ABC =⊥C =80°,⊥BD 平分⊥B ,⊥⊥1=⊥2=40°,⊥BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥DEB ⊥⊥DBC (SAS ),⊥⊥BED =⊥C =80°,⊥⊥4=60°,⊥⊥3=60°,在DA 边上取点F ,使DF =DB ,连接FE , 同理可得△BDE ⊥⊥FDE ,⊥⊥5=⊥1=40°,BE =EF =2,⊥⊥A =20°,⊥⊥6=20°,⊥AF =EF =2,⊥BD =DF =2.3,⊥AD =BD +BC =4.3.。

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。

人教版八年级数学上第十三章轴对称单元试卷含答案

人教版八年级数学上第十三章轴对称单元试卷含答案

第十三章《轴对称》测试题班别 姓名 成绩(一)、选择题(每题5分,共35分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :2、点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对 4、如图,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,厘米,则∆EBC 的周长为( )厘米A :16B :18C :26D :285、如图,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出 下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个6.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作 DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和; ④BF=CF .其中正确的有( )A .①②③B .①②③④C .①②D .①7.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD第6题第7题(二)、填空题(每小题5分,共35分)8、等腰三角形的一内角等于50°,则其它两个内角各为 ; 9、如图,在Rt △ABC 中,∠C=90°,∠A=30°, AB +BC=12㎝,则AB= ㎝;10、如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________;11.已知P 1点关于x 轴的对称点P 2(3-2a ,2a -5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P 1点的坐标是__________.12.等腰三角形的腰长与底边的比为4:3,一边长为24,则三角形的周长为_____________ ;13.如右图,在△ABC 中,BC=8,AB 的垂直平分线交BC 于D , AC 的垂直平分线交BC 与E ,则△ADE 的周长等于________.14.如下图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换, 若原来点A 坐标是(a ,b ),则经过第2013次变换后所得的A 点坐标是________.(三)、解答题(共50分)15、(6分) 如图所示,∠ABC 内有一点P ,在BA 、BC边上各取一点P 1、P 2,使△PP 1P 2的周长最小.(保留作图痕迹)CBA第1次关于x 轴对称第2次 关于y 轴对称 第3次 关于x 轴对称 第4次 关于y 轴对称16、(6分)已知A(a+b,1),B(―2,2a―b),若点A,B关于x轴对称,求a,b的值.15、(7分)如图,在△ABC中,∠B=90°,AB=BD,AD=CD,求∠CAD的度数。

人教版八年级上册数学 第13章 轴对称 单元测试卷(含答案)

人教版八年级上册数学 第13章 轴对称 单元测试卷(含答案)

人教版八年级上册数学第13章轴对称单元测试卷一.选择题1.点A(﹣3,1)关于x轴的对称点为()A.(﹣3,1)B.(﹣3,﹣1)C.(3,1)D.(3,﹣1)2.下列图形中,是轴对称图形的是()A.B.C.D.3.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC=2,则BC的长为()A.4 B.6 C.8 D.104.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定5.琪琪从镜中看到电子钟示数,则此时时间是()A.12:01 B.10:51 C.11:59 D.10:216.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋7.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)8.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是() A.13 B.14 C.15 D.169.如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON的对称点是点H,连接GH分别交OM,ON 于点A,B.若GH的长是12cm,则△PAB的周长为()A.12 B.13 C.14 D.1510.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A.8 B.10 C.14 D.10或14二.填空题11.已知点A(m,3)与点B(2,n)关于x轴对称,则(m+n)2020的值为.12.如图,在△ABC中,AB=AC,BD是∠ABC的平分线,DE∥AB与BC边相交于点E,若BE=3,CE=5,则△CDE的周长是.13.在Rt△ABC中,∠C=90°,∠A=30°,BC=5,斜边AB的长为.14.如图,在△ABC中,D为AB上一点,AD=DC=BC,且∠A=30°,AD=5,则AB=.15.在平面直角坐标系中,O为坐标原点,已知点A(2,﹣1),在x轴上确定一点P,使得△AOP为等腰三角形,则符合条件的点P有个.16.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后所得的A1坐标是(a,﹣b),则经过第2020次变换后所得的点A2020坐标是.17.如图,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是.18.如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是,它有条对称轴.19.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.20.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,点P2019的坐标是.三.解答题21.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.22.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.23.如图,在△ABC中,AB=AC=10cm,BC=6cm,∠A=50°,DE为AB的垂直平分线,分别交AB、AC于点E、D.(1)求△BCD的周长;(2)求∠CBD的度数.24.如图,在平面直角坐标系中,每个小正方形网格的边长为1个单位,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请写出点A,B,C的坐标;(2)求△ABC的面积;(3)请作出△ABC关于y轴对称的△A1B1C1.25.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MNA的度数是.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.26.如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.27.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若∠ABE=20°,请求出∠BEC的度数.答案一.选择题1.B.2.C.3.B.4.B.5.D.6.D.7.C.8.C.9.A.10.C.二.填空题11.1.12.11.13.10.14.10.15.4.16.(a,﹣b).17.10.18.等边三角形,319..等边三角形. 20.(8,3).三.解答题21.解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.22.解:∵点A(a+2b,﹣1),B(﹣2,a﹣b)关于y轴对称,∴,解得.故a+b=0+1=1.23.(1)解:∵DE为AB的垂直平分线,∴DA=DB,∴△BCD的周长=AC+BC=10+6=16(cm);(2)解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DA=DB,∠A=∠ABD=50°,∴∠CBD=65°﹣50°=15°.24.解:(1)由图知,A(﹣4,5)、B(﹣2,1)、C(﹣1,3);(2)△ABC的面积为3×4﹣×2×3﹣×1×2﹣×2×4=4;(3)如图所示,△A1B1C1即为所求.25.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50°;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△BCM的周长=BM+CM+BC=AM+MC+BC=AC+BC,∵AB=AC=8cm,△MBC的周长是14cm,∴BC=14﹣8=6(cm);②当P与M重合时,△PBC的周长最小.理由:∵PB+PC=PA+PC,PA+PC≥AC,∴当P与M重合时,PA+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=8+6=14(cm).26.证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.27.(1)证明:连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)解:∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE,∵∠ABE=20°,∴∠BEC=60°.。

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章轴对称测试卷一、选择题。

(每小题3分,共24分)1.以下四个图形中,对称轴条数最多的是()A B C D2.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋第2题图第3题图3.如图所示,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B.36°C.45°D.70°4.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A B C D5.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.小朋友文文把一张长方形的纸对折了两次(如图所示),使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为()A. 60 °B.75°C.90°D.120°第6题图第8题图7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是()A. 60°B. 120°C. 60°或150°D.60°或120°8.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 3B. 2.5C. 2D. 1二、填空题(每小题3分,共24分)1.仔细观察如图所示的图案,并按规律在横线上画出合适的图形.______2,则该汽车的车牌号是______.3.已知么MON= 45°,其内部有一点P,它关于OM的对称点是A,关于ON的对称点是B,且OP =2cm,则S△AOB=______4.如图所示,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为______cm.第4题图第6题图第7题图5.在直角坐标系中,点A,B,C,D的坐标分别为(-1,3),(-2,-4),(1,3),(2,-4),则线段AB与CD的位置关系是______.6.如图,在△ABC中,∠ACB = 90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点B',连接B'A,则B’A长度的最小值是______.7.如图所示,△ABD、△ACE是正三角形,BE和CD交于O点,则∠BOC =______.8.如图所示,有一块形状为等边△ABC的空地,DE,EF为空地中的两条路,且D为AB的中点,DE⊥AC于E,EF∥AB,现已知AE=5m,则地块△EFC的周长为______.三、解答题(共72分)1.如图所示,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.2.用围棋棋子可以在棋盘中摆出许多有趣的图案,如图甲,在棋盘上建立平面直角坐标系,以直线y=x为对称轴,我们可以摆出一个轴对称图形(其中A与A’是对称点),你看它像不像一条美丽的鱼?(1)请你在图乙中,也用10枚以上的棋子摆出一个以直线y=x为对称轴的轴对称图案,并在所摆的图形中找出两组对称点,分别标为B—B',C—C'(注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B,B',C,C'的坐标分别是:B( ),B'( ),C( ),C'( ).根据以上对称点的坐标规律,写出点P(a,b)关于对称轴y=x对称点p’的坐标是( ).甲乙3.如图所示,△ABC和△A’B’C’关于直线MN对称,△A’B’C'和△A’’B’’C’’关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB’’与直线MN, EF所夹锐角α的数量关系.4.如图所示,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB +BD与DE的长度有什么关系?并加以证明.5.如图所示,在等边三角形ABC中,∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.6.元旦联欢会上,同学们在礼堂四周摆了一圈条桌,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B.游戏规则是这样的:甲、乙二人从A 处同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了,如果小李不比小张跑得快,那他是不是有捷径呢?如果有,请把捷径画出来,并说明理由.参考答案一、1.B 2.B 3.B 4.D 5.D 6.C 7.D 8.C 二、1. 2.M645379 3.2cm ² 4. 50 5.关于y 轴对称 6.2 7. 120° 8. 45m三、1.连接AF. ∵AB=AC,∴∠B= ∠C=︒=︒-︒=∠-︒3021201802A 180.又∵EF 垂直平分AC ,∴AF = CF ∴∠CAF =∠C= 30°. ∴∠BAF= ∠BAC- ∠CAF=120°-30°=90°.在Rt △BAF 中,∵∠B=30°,∴BF =2AF.叉∵AF= CF,∴BF=2CF .2.(1)按要求摆出图形并标出两组对称点B-B ’,C-C';(2)答案不唯一,只要满足点B 的横坐标等于点B ’的纵坐标,点B 的纵坐标等于点B ’的横坐标,点C 的横坐标等于点C ’的纵坐标,点C 的纵坐标等于点C ’的横坐标即可;根据以上对称点坐标的规律,可以发现P(a ,b)关于对称轴y=x 的对称点P ’的坐标为(b ,a).3.(1)如图所示,连接B'B ’’,作线段B'B ’’的垂直平分线EF,则直线EF 是△A ’B ’C ’和△A ’’B ’’C ’’的对称轴.(2)连接BO .因为△ABC 和△A'B'C'关于MN 对称,所以∠BOM=∠B 'OM.又因为△A ’B ’C ’和△A ’’B ’’C ’’关于EF 对称,所以∠B 'OE= ∠B ''OE.所以∠BOB''=∠BOM+ ∠B 'OM+∠B'OE+ ∠B ‘’OE =2(∠B'OM+∠B 'OE) =2a .即∠BOB ’’= 2a.4. AB+BD= DE ,证明略.5.同意,连接OE ,OF.由题意可知:BE= OE,CF= OF,∠OBC=∠OCB= 30°, ∴∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∴∠BOC=120°,∴∠EOF=60°, ∠OEF=60°, ∠OFE=60°.∴△OEF 是等边三角形,∴OE = OF= EF= BE=CF.∴E ,F 是BC 的三等分点.6.分别以北条桌和东条桌为对称轴,作A ,B 的对称点A ’,B ’,连接A'B ’,交两长条桌于C ,D 两点,则折线ACDB 就是捷径.连接A'M 和B'M 因为A ,A ’于CM 对称,B ,B ’关于DM 对称,所以AC=A'C ,AM=A'M ,BD=B'D,BM=B'M.所以折线ACDB 的长=AC+CD+DB=A'C+CD+DB'=A'CDB'=A'B ’,而AM+BM=A'M+B'M> A'B',所以拆线ACDB 是捷径.。

人教版八年级上册数学 第十三章 轴对称 单元培优测试卷

人教版八年级上册数学  第十三章  轴对称  单元培优测试卷

人教版八年级上册数学第十三章轴对称单元培优测试卷一.选择题1. 如图,△ABC与△DEF关于直线l对称,若∠A=65°,∠B=80°,则∠F等于( )A.80°B.65°C.45°D.35°2. 东东从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A.21:10B.10:21C.10:51D.12:013. 下列条件不能得到等边三角形的是( )A.有两个内角是60°的三角形B.有两个角相等的等腰三角形C.腰和底相等的等腰三角形 D.有一个角是60°的等腰三角形4. 如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是( )A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)5. 某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处6. 下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ).A.①②③B.①②④ C.①③D.①②③④7. 如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是( )A.30° B.35° C.40° D.50°8. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对9. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形( )A.0个B.1个 C.2个D.3个10. 如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A. 2种B. 4种C. 5种D. 7种11. 如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.)n﹣1•65°C.()n﹣1•75°D.()n•85°12. 已知△ABC是等边三角形,D是BC边上的任意一点,连接AD并作等边三角形ADE,若DE⊥AB,则BD DC的值是()A.12B.23C.1D.32二.填空题13. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.14. 如图所示图案是几种车的标志,在这几个图案中,轴对称图形有________个,其中只有一条对称轴的轴对称图形有________个,对称轴最多的轴对称图形有________条对称轴.15. 如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM+MN的值最小时,∠OCM的度数为________.16.如图,点P在∠AOB内,M,N分别是点P关于OA,OB的对称点,连接MN交OA于点E,交OB于点F.若△PEF的周长是20 cm,则MN的长是________cm.17.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.18. 在直角坐标系内有两点A(-1,1)、B(2,3),若M为x轴上一点,且MA+MB最小,则M的坐标是________,MA+MB=________.19. 如图所示,在△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为________.20. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.三、作图题21. 方案设计①②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上.在图①、图②给定的网格中,以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形;(2)所画的两个四边形不全等.四、解答题22. 如图,在△ABC中,AB=AC,D为BC为上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.23. 如图,在△ABC中,D为BC上的一点,E,F为AD上的两点,若EB=EC,FB=FC.求证:AB=AC.24. 如图,在四边形ABCD中,AD∥BC,E是CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)AD=FC;(2)AB=BC+AD.25. 如图,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.26. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.27. 如图①,P是∠AOB内任意一点,OP=5 cm,M和N分别是射线OA和射线OB上的动点.(1)请你在图②中利用作图确定点M和点N的位置,使得△PMN的周长最小(保留作图痕迹);(2)在图②中,若△PMN周长的最小值是5 cm,则∠AOB的度数是多少?28. 已知:等边△ABC和点P,设点P到△ABC的三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.(1)如图1,若点P在边BC上,证明:h1+h2=h.(2)如图2,当点P在△ABC内时,猜想h1、h2、h3和h有什么关系?并证明你的结论.(3)如图3,当点P在△ABC外时,h1、h2、h3和h有什么关系?(不需要证明)29. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如①,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的平分线BD交AC于点D,且BD是△ABC 的一条特异线,则∠BDC=________度;(2)如图②,在△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC 的一条特异线;(3)如图③,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.。

人教版八年级上册第13章《轴对称》单元测试含答案

人教版八年级上册第13章《轴对称》单元测试含答案

人教版八年级上册第13章《轴对称》单元测试考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个 B.4个 C.5个 D.6个6.(5分)△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=度.14.(5分)图中的正五角星有条对称轴,图中与∠A的2倍互补的角有个.评卷人得分三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.参考答案与试题解析一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.1【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形.求解【解答】解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(1,1)关于y轴对称的点的坐标.【解答】解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°【分析】根据等腰三角形的性质就可以求出∠ABC和∠C的度数,由角平分线的性质就可以求出∠ABD的度数.【解答】解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题的关键是掌握角平分线的性质,此题比较简单.4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个【分析】解答此题首先找到△ABC 的对称轴,EH 、GC 、AD ,BF 等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC 成轴对称且以格点为顶点三角形有△ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选:C .【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.6.(5分)△ABC 中,AD 是中线,点D 到AB ,AC 的距离相等,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【分析】根据中线的性质得出S △ABD =S △ACD ,再由点D 到AB ,AC 的距离相等,得出AB=AC ,从而得出△ABC 一定是等腰三角形.【解答】解:∵AD是中线,=S△ACD,∴S△ABD∵D到AB,AC的距离相等,∴AB=AC,∴△ABC一定是等腰三角形,故选:B.【点评】本题考查了等腰三角形的判定以及中线的性质,掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D 为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.【分析】分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=5.【分析】根据含30度角的直角三角形的性质推出BC=AB,代入求出即可.【解答】解:∵∠C=90°,∠A=30°,AB=10,∴BC=AB=×10=5,故答案为:5.【点评】本题主要考查对含30度角的直角三角形的性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是251.【分析】易得所求的号码与看到的号码关于竖直的一条直线成轴对称,作出相应图形即可求解.【解答】解:由题意得:251|125.故答案为:251.【点评】考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是m<.【分析】直接利用关于x轴对称点的性质得出M点位置,进而得出答案.【解答】解:∵点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴点M在第四象限,∴,解得:m<.故答案为:m<.【点评】此题主要考查了关于x轴对称点的性质以及不等式组的解法,正确解不等式是解题关键.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为12.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=29度.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.14.(5分)图中的正五角星有5条对称轴,图中与∠A的2倍互补的角有10个.【分析】正五角星经过角的顶点和中心点的直线都是它的对称轴,有5条对称轴,且五角星的五个角相等,从而求得答案.【解答】解:正五角星经过角的顶点和中心点的直线都是它的对称轴,所以有5条对称轴.与∠A的2倍即是∠AIE,与该角互为补角的角有∠AIC和∠DIE共两个,同理可得出其他八个符合条件的角.故答案为:5,10.【点评】本题考查了轴对称的性质,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形,这条直线是它的对称轴.三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【分析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:y OA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.【分析】(1)由已知可得到几组相等的角,再根据三角形外角的性质可得到∠EDF,∠FEG,∠AFG,∠AMG分别与∠B的关系,再根据三角形内角和定理即可求解.(2)结合第(1)题,根据三角形内角和定理可知,需满足mn<90°,从而不难求解.【解答】解:(1)有4条,若∠ABC=10°,有8条.当∠ABC=20°,∵BD=DE=EF=FG=GM,∴∠DEB=∠B,∠EDF=∠EFD,∠FEG=∠FGE,∠GFM=∠FMG∵∠EDF=2∠B=40°,∠FEG=3∠B=60°,∠AFG=4∠B=80°,∠AMG=5∠B=100°,∴同理:∠AMG将成为下一个等腰三角形的底角∵100°+100°>180°∴不会再由下一条折线∴共有四条拆线,分别是:DE、EF、FG,GM.同理:当∠ABC=10°,有8条符合条件的折线.(2)由(1)可知∠EDF=2∠B=2m°,∠FEG=3∠B=3m°,∠AFG=4∠B=4m°,∵根据三角形内角和定理可知,需满足mn<90°,∴n<的整数.【点评】此题主要考查等腰三角形的性质,三角形外角和性质及三角形内角和定理的综合运用.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE 交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.【分析】(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可.(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.【解答】(1)证明:在AC上取点F,使CF=CD,连接DF.∵∠ACB=60°,∴△DCF为等边三角形.∴∠3+∠4=∠4+∠5=60°.∴∠3=∠5.∵∠1+∠ADE=∠2+∠ACE,∴∠1=∠2.在△ADF和△EDC中,,∴△ADF≌△EDC(AAS).∴CE=AF.∴CD+CE=CF+AF=CA.(2)解:CD、CE、CA满足CE+CA=CD;证明:在CA延长线上取CF=CD,连接DF.∵△ABC为等边三角形,∴∠ACD=60°,∵CF=CD,∴△FCD为等边三角形.∵∠1+∠2=60°,∵∠ADE=∠2+∠3=60°,∴∠1=∠3.在△DFA和△DCE中,∴△DFA≌△DCE(ASA).∴AF=CE.∴CE+CA=FA+CA=CF=CD.注:证法(二)以CD为边向下作等边三角形,可证.证法(三)过点D分别向CA、CE作垂线,也可证.【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.【分析】根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.【解答】证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.【点评】本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.。

人教版八年级数学上册试题 第十三章 轴对称章节测试卷(含详解)

人教版八年级数学上册试题  第十三章 轴对称章节测试卷(含详解)

第十三章《轴对称》章节测试卷一.选择题(共12小题,每小题4分,共48分)1.下列交通安全标志中,是轴对称图形的是( )A.B.C.D.2.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为( )A.30°B.50°C.90°D.100°3.到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点4.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( )A.20°B.40°C.50°D.60°5.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为( )A.18或21B.21C.24或18D.186.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m于点D 和点E,且DB=DE,若∠1=65°,则∠BDE的度数为( )A.115°B.120°C.130°D.145°7.在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是( )A.4个B.3个C.2个D.1个8.已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( )A.70°B.70°或55°C.40°或55°D.70°或40°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是( )A.a<﹣1B.﹣1<a<32C.−32<a<1D.a>3210.如图,在△ABC中,∠C=60°,AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F.若∠AFB=90°,EF=2,则BF长为( )A.4B.6C.8D.1011.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )A.10B.8C.6D.412.如图,点C、D在线段AB的同侧,CA=4,AB=12,BD=9,M是AB的中点,∠CMD=120°,则CD长的最大值是( )A.16B.19C.20D.21二.填空题(共4小题,每小题4分,共16分)13.若点A(m,﹣3),B(﹣2,n)关于y轴对称,则2m+3n的值为 .14.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为 .15.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为 .16.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为 .三.解答题(共8小题,共86分)17.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.18.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为 ;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)20.如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.21.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.22.已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC 的高为h.(1)若点P在一边BC上[如图①],此时h3=0,求证:h1+h2+h3=h;(2)当点P在△ABC内[如图②],以及点P在△ABC外[如图③]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.23.如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N同时停止运动,设运动时间为t(s).(1)当t为何值时,M,N两点重合?两点重合在什么位置?(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N 运动的时间;若不存在,请说明理由.24.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.答案一.选择题1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.【解答】解:∵△ABC和△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,∴△ABC≌△A′B′C′,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:D.3.【解答】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.4.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,又MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:B.5.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.6.【解答】解:如图,∵DB=DE,∴∠2=∠B,∴∠3=2∠B,∵∠C=90°,∴∠5=90°﹣∠B,∵m∥n,∴∠1+∠5+∠3=180°,∴65°+90°﹣∠B+2∠B=180°,∴∠B=25°,∴∠BDE=130°,故选:C.7.【解答】解:①有一个外角是120°的等腰三角形是等边三角形,正确;②有两个外角相等的等腰三角形不一定是等边三角形,错误;③有一边上的高也是这边上的中线的等腰三角形不一定是等边三角形,错误;④有一个角是60°,且是轴对称的三角形是等边三角形,正确.故选:C.8.【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,,∴{a+1>0①2a−3<0②解不等式①得,a>﹣1,,解不等式②得,a<32,所以,不等式组的解集是﹣1<a<32故选:B.10.【解答】解:∵在△ABC中,∠C=60°,AD是BC边上的高,∴∠DAC=90°﹣∠C=90°﹣60°=30°,∵∠AFB=90°,EF=2,∴AE=2EF=4,∵点E为AD的中点,∴DE=AE=4,∵∠C=60°,∠BFC=180°﹣90°=90°,∴∠EBD=30°,∴BE=2DE=8,∴BF=BE+EF=8+2=10,故选:D.11.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,{∠ABP=∠EBPBP=BP∠APB=∠EPB,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×12=6,故选:C.12.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=4+6+9=19,∴CD的最大值为19,故选:B.二.填空题13.【解答】解:∵点A(m,﹣3),B(﹣2,n)关于y轴对称,∴m=2,n=﹣3,∴2m+3n=2×2+3×(﹣3)=﹣5.故答案为:﹣514.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.15.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=1×110°=55°.216.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n﹣1.故答案是:2n﹣1.三.解答题17.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.18.解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.19.解:(1)S△ABC=3×4−12×2×2−12×1×4−12×2×3=12﹣2﹣2﹣3=5.故答案为:5;(2)如图,△A′B′C′即为所求;(3)如图,点P即为所求.20.解:(1)∵AE是BC边上的高,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=3,则EH=12AE=32、AH=32,∴S△ADF=12×3×32=334.21.解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.22.解:(1)如图1,连接AP,则 S△ABC=S△ABP+S△APC∴12BC•AM=12AB•PD+12AC•PF即12BC•h=12AB•h1+12AC•h2又∵△ABC是等边三角形∴BC=AB=AC,∴h=h1+h2;(2)点P在△ABC内时,h=h1+h2+h3,理由如下:如图2,连接AP、BP、CP,则 S△ABC=S△ABP+S△BPC+S△ACP∴12BC•AM=12AB•PD+12AC•PE+12BC•PF即12BC•h=12AB•h1+12AC•h2+12BC•h3又∵△ABC是等边三角形,∴BC=AB=AC.∴h=h1+h2+h3;点P在△ABC外时,h=h1+h2﹣h3.理由如下:如图3,连接PB,PC,PA由三角形的面积公式得:S△ABC=S△PAB+S△PAC﹣S△PBC,即12BC∙AM=12AB•PD+12AC•PE−12BC•PF,∵AB=BC=AC,∴h1+h2﹣h3=h,即h1+h2﹣h3=h.23.解:(1)由题意,t×1+12=2t,解得:t=12,∴当t=12时,M,N两点重合,此时两点在点C处重合;(2)结论:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形.理由:由(1)知12秒时M、N两点重合,恰好在C处,如图,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,{∠C=∠B∠AMC=∠ANB,AC=AB∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,∵CM=NB,∴y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,当运动时间为12秒或16秒时,AM=AN.24.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.。

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)一、选择题(每小题3分,共30分)1.(2022独家原创)下图是天气预报中的图形,其中是轴对称图形的为( )A BC D2.(2022独家原创)如图,在△ABC中,∠BAC=75°,∠ACB=35°,AC=8,∠ABC的平分线BD交边AC于点D,则AD+BD的长为( )A.10B.8C.6D.43.(2020湖南益阳中考)如图,在△ABC中,AC的垂直平分线交AB于点D,交AC于点E,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°4.(2021河北石家庄二十八中期中)如图,△ABC中,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形( )A.0个B.1个C.2个D.3个5.如图,在棋盘中建立直角坐标系xOy,现将A,O,B三颗棋子分别放置在(-2,2),(0,0),(1,0)处.如果在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,则满足条件的棋子P的位置的坐标不正确的是( )A.(-2,3)B.(-3,2)C.(-2,-2)D.(0,-1)6.(2020湖北宜昌中考)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是( )A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线7.(2020山东济南期末)如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD的长为( )A.1.5B.2C.3D.48.如图,在△ABC中,AB=AC,∠C=70°,△AFG与△ABC关于直线DE成轴对称,∠CAE=10°,连接BF,则∠ABF的度数是( )A.30°B.35°C.40°D.45°第8题图第9题图9.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB的长为半径画弧,再以点C为圆心,AC 的长为半径画弧,两弧交于点D,连接AD,与CB的延长线交于点E.下列结论错误的是( )A.CE垂直平分ADB.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形10.(2021河南郑州模拟)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列选项中结论错误的是( )A.EF=BE+CFB.∠BOC=90°+12∠AC.点O到△ABC各边的距离相等D.设OD=m,AE+AF=n,则S△AEF=mn二、填空题(每小题3分,共24分)11.(2021山东淄博中考)在直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位得到点A2,则点A2的坐标为.12.(2022独家原创)如图,在3×3的方格图中,将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形共有个.13.(2022黑龙江齐齐哈尔三中期中)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.14.(2019湖南永州中考)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF= .15.(2021江苏苏州中考)如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B= °.16.(2022安徽芜湖一中期末)如图,已知点D、E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为.17.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按如图所示的方式折叠,则图中阴影部分是三角形.18.(2021四川绵阳模拟)如图,∠BOC=60°,点A是OB的反向延长线上的一点,OA=10 cm,动点P从点A出发沿AB以2 cm/s的速度移动,动点Q从点O出发沿OC以1 cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t= 时,△POQ是等腰三角形.三、解答题(共46分)19.(2019广西中考)(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.20.(6分)如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.21.(2022浙江温州期末)(8分)如图,在△ABC中,AB=AC,点E,F在边BC上,BE<BF.已知BE=CF.(1)求证:△ABE≌△ACF;(2)若点D在AF的延长线上,AD=AC,∠BAE=30°,∠BAD=75°,求证:AB∥DC.22.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF, BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=44°时,求∠DEF的度数.23.(2018浙江绍兴中考)(8分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.24.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形?参考答案1.C根据轴对称图形的定义可知,选项A中的图形不是轴对称图形,选项B中的图形不是轴对称图形,选项C中的图形是轴对称图形,选项D中的图形不是轴对称图形.故选C.2.B在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°-∠BAC-∠ACB=70°,∵BD平分∠ABC,∴∠DBC=1∠ABC=35°,2∴∠DBC=∠ACB,∴BD=CD,∴AD+BD=AD+CD=AC=8.故选B.3.B∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°-∠A-∠ACB=180°-50°-100°=30°,故选B.4.D图中共有等腰三角形3个.∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,故选D.5.B满足条件的点P的位置如图所示,点P的坐标为(-2,3)或(3,2)或(-2,-2)或(0, -1),故选B.6.A设直线l与FG交于点O(图略),∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=GH+OG,即EO=OH,∴l为线段EH的垂直平分线,故选项A正确;∵EO≠OQ,∴l不是线段EQ的垂直平分线,故选项B错误;∵FO≠OH,∴l不是线段FH的垂直平分线,故选项C错误;∵l为直线,直线没有垂直平分线,∴EH不能平分直线l,故选项D错误.故选A.7.B ∵∠DBC=60°,∠C=90°,∴∠BDC=90°-60°=30°,∴BD=2BC=2×1=2, ∵∠C=90°,∠A=15°,∴∠ABC=90°-15°=75°, ∴∠ABD=∠ABC-∠DBC=75°-60°=15°, ∴∠ABD=∠A,∴AD=BD=2.故选B.8.C ∵△AFG 与△ABC 关于直线DE 成轴对称,∴△AFG ≌△ABC,∠GAE=∠CAE=10°,∴∠GAF=∠CAB,AB=AF,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠GAF=∠BAC=40°,∴∠BAF=40°+10°+10°+40°=100°,∵AB=AF,∴∠ABF=∠AFB=40°.故选C.9.D 由题意可得CA=CD,BA=BD,∴直线CB 是AD 的垂直平分线,即CE 垂直平分AD,故A 选项结论正确;∵AC=DC,CE ⊥AD,∴∠ACE=∠DCE,即CE 平分∠ACD,故B 选项结论正确;∵DB=AB,∴△ABD 是等腰三角形,故C 选项结论正确;∵AD 与AC 不一定相等,∴△ACD 不一定是等边三角形,故D 选项结论错误.故选D.10.D ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O, ∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF ∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC, ∴∠EOB=∠OBE,∠FOC=∠OCF, ∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF, 故A 选项结论正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故B 选项结论正确;过点O 作OM ⊥AB 于M,ON ⊥BC 于N,连接OA,如图,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴ON=OD=OM,∴点O 到△ABC 各边的距离相等,故C 选项结论正确;∵OD=m,∴ON=OD=OM=m,∴S △AEF =S △AOE +S △AOF =12AE ·OM+12AF ·OD=12OD ·(AE+AF)=12mn,故D 选项结论错误.故选D.11.(0,-2)解析∵点A(3,2)关于x轴的对称点为A1,∴A1(3,-2),∵将点A1向左平移3个单位得到点A2,∴点A2的坐标为(0,-2).12.3解析将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形有3个,如图.13.12解析∵D为BC的中点,且BC=6,∴BD=12BC=3,由折叠的性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=9+3=12.14.4解析过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,DE⊥OA,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.15.54解析∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12×72°=36°,在Rt△ABC中,∠C=90°,∴∠B=90°-36°=54°.16.6解析如图,连接CE交AD于点F,连接BF,∵△ABC是等边三角形,∴BF=CF,∴BF+EF=CF+EF=CE,此时BF+EF的值最小,最小值为CE的长,∵D、E分别是△ABC中BC、AB边的中点,∴AD=CE,∵AD=6,∴CE=6,∴BF+EF的最小值为6.17.等边解析∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,根据题意知点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI,∴阴影部分是等边三角形,故答案为等边.或1018.103解析分情况讨论:①当点P在OA上时,如图所示,△POQ是等腰三角形,PO=QO;∵PO=AO-AP=(10-2t)cm,OQ=t cm,.∴10-2t=t,解得t=103②当点P在射线OB上时,如图所示,△POQ是等腰三角形.∵∠BOC=60°,∴等腰△POQ是等边三角形,∴PO=QO.∵PO=AP-AO=(2t-10)cm,OQ=t cm,∴2t-10=t,解得t=10.故当t=103或t=10时,△POQ是等腰三角形.19.解析(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)A1(2,3),A2(-2,-1).20.解析如图,延长AD交BC的延长线于点E.∵∠A=30°,∠B=90°,∴∠E=60°,AE=2BE,∵∠ADC=120°,∴∠EDC=60°,∴△EDC是等边三角形.设CD=CE=DE=x,∵AD=4,BC=1,∴AE=x+4,BE=x+1,∴2(x+1)=x+4,解得x=2,∴CD=2.21.证明(1)∵AB=AC,∴∠ABE=∠ACF,在△ABE 和△ACF 中,{AB =AC,∠ABE =∠ACF,BE =CF,∴△ABE ≌△ACF(SAS).(2)∵△ABE ≌△ACF,∴∠CAF=∠BAE=30°,∵AD=AC,∴∠ADC=∠ACD=75°,∴∠BAD=∠ADC,∴AB ∥CD.22.解析 (1)证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE 和△ECF 中,{BE =CF,∠DBE =∠ECF,BD =CE,∴△DBE ≌△ECF(SAS),∴DE=EF,∴△DEF 是等腰三角形.(2)∵△DBE ≌△ECF,∴∠BDE=∠CEF,∠BED=∠CFE,∵∠A+∠B+∠C=180°,∠A=44°,∴∠B=12×(180°-44°)=68°,∴∠BDE+∠BED=112°,∴∠BED+∠CEF=112°,∴∠DEF=180°-112°=68°.23.解析 (1)当∠A 为顶角时,∠B=12×(180°-80°)=50°, 当∠A 为底角时,若∠B 为顶角,则∠B=180°-80°-80°=20°, 若∠B 为底角,则∠B=∠A=80°,∴∠B 的度数为50°或20°或80°.(2)分两种情况:①当90≤x<180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x<90时,若∠A 为顶角,则∠B=(180−x 2)°,若∠A 为底角,则∠B=x °或∠B=(180-2x)°,∴当180−x 2≠180-2x 且180−x 2≠x 且180-2x ≠x,即x ≠60时,∠B 有三个不同的度数.综上,当0<x<90且x ≠60时,∠B 有三个不同的度数.24.解析 (1)证明:∵△AOB,△CBD 都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC 和△ABD 中,{OB =AB,∠OBC =∠ABD,CB =DB,∴△OBC ≌△ABD(SAS),∴OC=AD.(2)点C 在运动过程中,∠CAD 的度数不会发生变化.理由如下: ∵△AOB 是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC ≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°.(3)∵∠OAB=∠BAD=60°,∴∠OAE=180°-60°-60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰, ∵A(1,0),∴OA=1,∵∠OEA=30°,∴AE=2OA=2,∴AC=AE=2,∴OC=OA+AC=1+2=3,∴当点C 的坐标为(3,0)时,以A,E,C 为顶点的三角形是等腰三角形.。

人教版数学八年级上册 第十三章 13.1.1 轴对称 同步练习 (含答案)

人教版数学八年级上册 第十三章 13.1.1 轴对称 同步练习 (含答案)

人教版数学八年级上册第十三章13.1 轴对称同步练习一、选择题1.下列银行标志中,是轴对称图形的是()A.徽商银行B.中国建设银行C.交通银行D.中国银行2. 如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.①C.①D.①3. 如图,若①ABC与①A'B'C'关于直线MN对称,BB'交MN于点O,则下列说法不一定正确的是()A.AC=A'C'B.BO=B'O C.AA'①MN D.AB=B'C' 4. 下列图形中,不是轴对称图形的是( )5. 在平面直角坐标系中,作点A(3,4)关于x轴的对称点A′,再将点A′向左平移6个单位长度,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3)C.(-3,4) D.(-3,-4)6. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()7. 已知,如图,点P关于OA、OB的对称点分别是P1,P2,线段P1P2分别交OA、OB于D、C,P1P2=6cm,则①PCD的周长为()A.3cm B.6cm C.12cm D.无法确定8. 如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条9. 将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()二、填空题10. 如图所示的4组图形中,左右两个图形成轴对称的是第________组(填序号).11.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.12. 如图是某时刻在镜子中看到准确时钟的情况,则实际时间是13.在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有(只填序号)14. 若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n= .15. 如图,①ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.16. 如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为E,F,G,H的四个图形,则剪前与剪后拼接的图形的对应关系是:A与________对应,B与________对应,C与________对应,D与________对应.三、解答题17. 如图,在平面直角坐标系中,(1)描出A(-4,3)B(-1,0)C(-2,3)三点.(2)△ABC的面积是(3)作出△ABC关于x轴的对称图形.18.小强拿几张正方形的纸(如图4①),沿虚线对折一次得到图②,再沿虚线对折一次得到图③,然后用剪刀沿图④中不同位置的虚线剪去中心的一块,请参照例图,在后面的正方形中画出图④的纸片打开后的形状.(不写作法,保留作图痕迹)19. 图中的两个图形关于某条直线对称,根据图中提供的条件求出x,y的值.20. 如图,Rt①ABC的顶点A,B,C关于直线MN的对称点分别为A',B',C',其中①A=90°,AC=8 cm,点C,B,A'在同一条直线上,且A'C=12 cm.(1)求①A'B'C'的周长;(2)求①A'CC'的面积.21. 如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(﹣3,2).请按要求分别完成下列各小题:(1)把①ABC向下平移4个单位得到①A1B1C1,画出①A1B1C1,点A1的坐标是;(2)画出①ABC关于y轴对称的①A2B2C2;点C2的坐标是;(3)求①ABC的面积.22. 如图,直线AD和CE是①ABC的两条对称轴,AD和CE相交于点O,OD 与OE有什么数量关系?请说明理由.23.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.人教版数学八年级上册第十三章13.1 轴对称同步练习--参考答案一、选择题1.下列银行标志中,是轴对称图形的是()A.徽商银行B.中国建设银行C.交通银行D.中国银行【答案】D2. 如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.①C.①D.①【答案】答案为:B3. 如图,若①ABC与①A'B'C'关于直线MN对称,BB'交MN于点O,则下列说法不一定正确的是()A.AC=A'C'B.BO=B'O C.AA'①MN D.AB=B'C'【答案】【解答】解:①①ABC与①A′B′C′关于直线MN对称,①AC=A′C′,AA′①MN,BO=B′O,故A、B、C选项正确,AB=B′C′不一定成立,故D选项错误,所以,不一定正确的是D.故选:D.4. 下列图形中,不是轴对称图形的是( )【答案】A5. 在平面直角坐标系中,作点A(3,4)关于x轴的对称点A′,再将点A′向左平移6个单位长度,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3)C.(-3,4) D.(-3,-4)【答案】D[解析] 点A(3,4)关于x轴的对称点A′的坐标为(3,-4),将点A′向左平移6个单位长度,得到点B(-3,-4).6. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()【答案】A7. 已知,如图,点P关于OA、OB的对称点分别是P1,P2,线段P1P2分别交OA、OB于D、C,P1P2=6cm,则①PCD的周长为()A.3cm B.6cm C.12cm D.无法确定【答案】B8. 如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条【答案】C9. 将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()【答案】答案为:B.二、填空题10. 如图所示的4组图形中,左右两个图形成轴对称的是第________组(填序号).【答案】(3)(4)11.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.【答案】答案为:4.12. 如图是某时刻在镜子中看到准确时钟的情况,则实际时间是【答案】答案为:4:40.13.在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有(只填序号)【答案】答案为:①②③④⑦.14. 若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n= .【答案】答案为:3.15. 如图,①ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.【答案】(2,3)[解析] ①①ABO是关于y轴对称的轴对称图形,①点A(-2,3)与点B关于y轴对称.①点B的坐标为(2,3).16. 如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为E,F,G,H的四个图形,则剪前与剪后拼接的图形的对应关系是:A与________对应,B与________对应,C与________对应,D与________对应.【答案】G E F H[解析] A剪开后是三个三角形,B剪开后是两个直角梯形和一个三角形,C剪开后是一个直角三角形和两个四边形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.三、解答题17. 如图,在平面直角坐标系中,(1)描出A(-4,3)B(-1,0)C(-2,3)三点.(2)△ABC的面积是(3)作出△ABC关于x轴的对称图形.【答案】(1)如图所示;(2)3;(3)如图所示18.小强拿几张正方形的纸(如图4①),沿虚线对折一次得到图②,再沿虚线对折一次得到图③,然后用剪刀沿图④中不同位置的虚线剪去中心的一块,请参照例图,在后面的正方形中画出图④的纸片打开后的形状.(不写作法,保留作图痕迹)【答案】解:如图所示:19. 图中的两个图形关于某条直线对称,根据图中提供的条件求出x,y的值.【答案】[解析] 因为两个图形关于某条直线对称,所以观察发现A和F,B和E,C和H,D和G分别是对称点,因此CD边与HG边是对应边,长度相等,①ADC和①FGH 是对应角,大小相等.解:x=①ADC=360°-40°-95°-110°=115°,y=HG=3.20. 如图,Rt①ABC的顶点A,B,C关于直线MN的对称点分别为A',B',C',其中①A=90°,AC=8 cm,点C,B,A'在同一条直线上,且A'C=12 cm.(1)求①A'B'C'的周长;(2)求①A'CC'的面积.【答案】解:(1)①Rt①ABC的顶点A,B,C关于直线MN的对称点分别为A',B',C',AC=8 cm,A'C=8cm,①AB=A'B',AC=A'C',①A'=①A=90°.①①A'B'C'的周长为A'C'+B'C'+A'B'=AC+A'C=12+8=20(cm).(2)由(1)得A'C'=AC=8 cm,①A'=90°,①①A'CC'的面积为12A'C·A'C'=12×12×8=48(cm2).21. 如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(﹣3,2).请按要求分别完成下列各小题:(1)把①ABC向下平移4个单位得到①A1B1C1,画出①A1B1C1,点A1的坐标是;(2)画出①ABC关于y轴对称的①A2B2C2;点C2的坐标是;(3)求①ABC的面积.【答案】解:(1)如图所示:由图可知A1(﹣3,﹣2).故答案为:A1(﹣3,﹣2);(2)如图所示:由图可知C2(5,3).故答案为:C2(5,3);(3)S①ABC=2×3﹣×2×1﹣×1×2﹣×1×3=6﹣1﹣1﹣=.22. 如图,直线AD和CE是①ABC的两条对称轴,AD和CE相交于点O,OD 与OE有什么数量关系?请说明理由.【答案】【解答】解:OD=OE.理由如下:①直线AD和CE是①ABC的两条对称轴,①AE=BE=AB,CD=BD=BC,CE①AB,AD①BC,而AB=BC,①AE=CD,在①AOE和①COD中,①①AOE①①COD(AAS),①OD=OE.23.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.【答案】解:(1)∵点A(2m+n,2),B (1,n﹣m),A、B关于x轴对称,∴,解得;(2)∵点A(2m+n,2),B (1,n﹣m),A、B关于y轴对称,∴,解得:.。

人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案

人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案

人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案一、选择题1.下列体育图标是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点与点关于轴对称,则的值分别为()A.3,2 B.C.2,3 D.3.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°4.如图,AD是等边的中线,AE=AD,则的度数为()A.30°B.20°C.25°D.15°5.如图,在中,AB=AC,的垂直平分线交于点D,交于点E,若,则()A.B.C.D.6.在中,边,的垂直平分线分别交于点M,G(如图),连,AG.若.则的周长为()A.28 B.30 C.32 D.347.如图,在四边形刚好是中点,P、Q分别是线段上的动点,则的最小值为()A.12 B.15 C.16 D.188.如图,在中,的垂直平分线与的外角平分线交于点D,于点E,交的延长线于点F,则下列结论:①;②;③;④若,CE=4,则,其中一定成立的有()A.1个B.2个C.3个D.4个二、填空题9.已知,点O在三角形内,且,则的度数是度.10.在△ABC 中, , 的垂直平分线与AC 所在的直线相交所得锐角为 ,则∠B= .11.如图的周长为18,且,于D,的周长为12,那么的长为.12.如图,与关于直线对称,延长交于点,当°时,.13.如图,中,平分交于点D,过点A作交的延长线于点E.若,的周长为,的面积为,则.三、解答题14.如图,在直角坐标系中,的位置如图所示,请完成下列问题:⑴分别写出点A,点C的坐标;⑵作出关于x轴的对称图形,并写出的坐标为▲.⑶求的面积;⑷在y轴上找一点P,使最小.15.如图,在中,已知点在线段的反向延长线上,过的中点作线段交的平分线于,交于,且 .(1)求证:是等腰三角形:(2)若,求的长.16.如图,在中,AB=AC,点是边上的中点,连结,平分交于点,过点作交于点.(1)若,求的度数;(2)求证:.17.以点A为顶点作两个等腰直角三角形,其中,AB=AC,如图所示放置,D在AC边上,连接BD,CE.(1)求证:;(2)延长BD,交CE于点F,求的度数.18.如图,在中,AB=AC,过点作于点,过点作于点,与交于点,连接.(1)求证:;(2)若,求的度数.参考答案:1.A2.D3.C4.D5.C6.D7.D8.D9.11010.11.312.3613.414.解:⑴由图形可知:;⑵如下图,作点A、B、C关于y轴对称的点的坐标特征得到,连接即为所求;;(-2,-3)⑶由题意可知:的面积;⑷如(2)图,作点B关于x轴的对称点,连接交x轴于P点两点之间线段最短最小点P即为所求.15.(1)证明:平分是等腰三角形.(2)解:是的中点.在和中.16.(1)解:∵∴∵为的中点,∴,即,∴;(2)证明:∵平分∴∵∴∴∴.17.(1)解:∵,都是等腰直角三角形∴∴∴(2)解:∵∴∵∴∴∴18.(1)证明:∵∴∴∴∴∴(2)解:∵∴∵∴∴由(1)得:∴∴。

人教版八年级上册数学第13章《轴对称》测试题【含答案】

人教版八年级上册数学第13章《轴对称》测试题【含答案】

一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版2020年八年级数学上册第十三章轴对称检测卷1
一、选择题(每题3分,共30分)
1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有()
A.1个 B.2个 C.3个 D.4个
2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是().
A、21:10
B、10:21
C、10:51
D、12:01
3.如图是屋架设计图的一部分,其中∠A=30°,点D是斜梁AB的中点,BC、DE垂直于横梁AC,AB=16m,则DE的长为().
A、8 m
B、4 m
C、2 m
D、6 m
4.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于().
A、90°
B、 75°
C、70°
D、 60°
5.已知点P在线段AB的中垂线上,点Q在线段AB的中垂线外,则( )
A、PA+PB>QA+QB
B、PA+PB<QA+QB
D、PA+PB=QA+QB D、不能确定
6.下列说法正确的个数有()
⑴等边三角形有三条对称轴⑵四边形有四条对称轴⑶等腰三角形的一边长为4,另一边长为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角
A 、 1个 B、 2个 C、 3个 D、 4个
7.将一张长方形纸片只折一次,使得折痕平分这个长方形的面积,这样的折纸方法共有()
A、2种
B、4种
C、6种
D、无数种
8.如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点、,连接
1
P
2
P
交OA于M,交OB于N,若=6,则△PMN的周长为( ).1
P
2
P
1
P
2
P
A、4
B、5
C、6
D、7
第2题图第3题图第4题图
F
E
D
C
B
A
9.如图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) .
A 、20°
B 、 40°
C 、50°
D 、 60°
10.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ).A 、 B 、AD DH AH ≠=AD DH AH ==C 、 D 、DH AD AH ≠=AD
DH AH ≠≠二、填空题(每题3分,共24分)
11.等腰三角形是轴对称图形,其对称轴是_______________________________.12.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________.13.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 .14.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积是 ___ cm 2.
15.如图,在等边中,分别是上的点,且,则
ABC △D E ,AB AC ,AD CE =度.
BCD CBE ∠+∠=
16.如图:在△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF∥AB 交AE 的延长线于点F ,则DF 的长为 ;
17.在直角坐标系内,已知A 、B 两点的坐标分别为A (-1,1)、B (3,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是___________.
18.如图,在△ABC 中,∠ACB=900,∠B=300,BC=8,AD 是∠BAC 的平分线,若点P,Q 分别是
Rt B
M
N P 1A P 2
O
P 第8题图
第9题图第10题
M A
N
C
Q
P
B
N
M D C
H E
B
A
AD 和AC 上的动点,则PC+PQ 的最小值是 .
三、解答题(共46分)
19.(7分)如图,已知点M 、N 和∠AOB,求作一点P ,使P 到点M 、N 的距离相等, 且到∠AOB 的两边的距离相等.
20.(7分)(1)如图,
都在网格点上,请画出关于轴对称的
A B C ,,ABC △y (其中分别是的对应点,不写画法);A B C '''△A B C ''',,A B C ,,(2)直接写出三点的坐标:.
A B C ''',,(_____)(_____)(_____)A B C ''',,(3)求△ABC 的面积是多少?
21. (7分)已知:如图,中,ABC ∆AB
CD AC AB ⊥=,于D.
求证:。

DCB 2BAC ∠=∠
A
22.(8分)已知等腰三角形的周长是.
16cm
(1)若其中一边长为,求另外两边的长;
4cm
(2)若其中一边长为,求另外两边长.
6cm
23.(8分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD是否垂直?
为什么?
A
B
C D
E
F
24.(9分)如图:已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE=CD ,DM⊥BC,垂足为M ,求证:M 是BE 的中点.
参考答案
一、选择题: (每题3分,共24分)1.B 2. C 3.B 4.D 5.D , 6.B 7.D
8.C 9.B 10.B .
二、填空题: (每题3分,共30分)11-18 B C D C A D B D 三、解答题:(共46分)
19.解:如图,线段MN 的垂直平分线与∠AOB 平分线的交点,即为所求作的P 点.
20.(1)如图
(2) A′(2,3),B′(3,1),C′(-1,-2)(3) 5.5
21.证明:过点A 作于E ,,
BC AE ⊥AC AB = E
C M D
B
A
所以(等腰三角形的三线合一性质)BAC 2
1
21∠=
∠=∠
因为
90
B 1=∠+∠ 又,所以AB CD ⊥
90
CDB =∠ 所以(直角三角形两锐角互余)
90B 3=∠+∠ 所以(同角的余角相等)31∠=∠ 即DCB
2BAC ∠=∠23.解: AE⊥AD
理由如下: ∵AB=AC,BD=DC ∴∠C=∠B,AD⊥BC 又∵AE 平分∠FAB ∴∠FAE=∠BAE 又∵∠FAB=∠C+∠B ∴∠FAE=∠C ∴AE // BC ∴AE⊥AD 24.证明:连接BD
∵等边△ABC 中,D 是AC 的中点 ∴∠DBC=
∠ABC=×60°=30°212
1
∠ACB=60° 又∵CE=CD
∴∠E=∠CDE 又∵∠ACB=∠E+∠CDE ∴∠E=
∠ACB=30°2
1
∴∠DBC=∠E==30°
∴DB=DE 又∵DM⊥BC
∴M 是BE 的中点。

相关文档
最新文档