2011年浙江省高考数学文科卷解析版

合集下载

2011年全国统一高考真题数学试卷(文科)(大纲版)(含答案解析版)

2011年全国统一高考真题数学试卷(文科)(大纲版)(含答案解析版)

2011年全国统一高考数学试卷(文科)(大纲版)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)3.(5分)设向量、满足||=||=1,•=﹣,|+2|=()A..B.C.、D..4.(5分)若变量x、y满足约束条件,则z=2x+3y的最小值为()A.17B.14C.5D.35.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b36.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.57.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.98.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.19.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种10.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.11.(5分)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4B.C.8D.12.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1﹣x)10的二项展开式中,x的系数与x9的系数之差为:.14.(5分)已知a∈(π,),tanα=2,则cosα=.15.(5分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为.16.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=.三、解答题(共6小题,满分70分)17.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,(Ⅰ)求B;(Ⅱ)若A=75°,b=2,求a,c.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.20.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.21.(12分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)证明:曲线y=f(x)在x=0处的切线过点(2,2);(Ⅱ)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.22.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.2011年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}【考点】1H:交、并、补集的混合运算.【专题】11:计算题.【分析】先根据交集的定义求出M∩N,再依据补集的定义求出∁U(M∩N).【解答】解:∵M={1,2,3},N={2,3,4},∴M∩N={2,3},则∁U(M∩N)={1,4},故选:D.【点评】本题考查两个集合的交集、补集的定义,以及求两个集合的交集、补集的方法.2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)【考点】4R:反函数.【专题】11:计算题.【分析】由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注明反函数的定义域(即原函数的值域).【解答】解:∵y=(x≥0),∴x=,y≥0,故反函数为y=(x≥0).故选:B.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)设向量、满足||=||=1,•=﹣,|+2|=()A..B.C.、D..【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】11:计算题.【分析】由|+2|==,代入已知可求【解答】解:∵||=||=1,•=﹣,|+2|===故选:B.【点评】本题主要考查了向量的数量积性质的基本应用,属于基础试题4.(5分)若变量x、y满足约束条件,则z=2x+3y的最小值为()A.17B.14C.5D.3【考点】7C:简单线性规划.【专题】31:数形结合.【分析】我们先画出满足约束条件的平面区域,然后求出平面区域内各个顶点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值.【解答】解:约束条件的平面区域如图所示:由图可知,当x=1,y=1时,目标函数z=2x+3y有最小值为5故选:C.【点评】本题考查的知识点是线性规划,其中画出满足约束条件的平面区域是解答本题的关键.5.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b3【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b 推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.6.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5【考点】85:等差数列的前n项和.【专题】11:计算题.,S k,将S k+2﹣S k=24转化为关于k 【分析】先由等差数列前n项和公式求得S k+2的方程求解.【解答】解:根据题意:S k+2=(k+2)2,S k=k2∴S k﹣S k=24转化为:+2(k+2)2﹣k2=24∴k=5故选:D.【点评】本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.7.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.9【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】56:三角函数的求值.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选:C.【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.8.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.1【考点】MK:点、线、面间的距离计算.【专题】11:计算题.【分析】根据线面垂直的判定与性质,可得AC⊥CB,△ACB为直角三角形,利用勾股定理可得BC的值;进而在Rt△BCD中,由勾股定理可得CD的值,即可得答案.【解答】解:根据题意,直二面角α﹣l﹣β,点A∈α,AC⊥l,可得AC⊥面β,则AC⊥CB,△ACB为Rt△,且AB=2,AC=1,由勾股定理可得,BC=;在Rt△BCD中,BC=,BD=1,由勾股定理可得,CD=;故选:C.【点评】本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.9.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种【考点】D3:计数原理的应用.【专题】11:计算题.【分析】本题是一个分步计数问题,恰有2人选修课程甲,共有C42种结果,余下的两个人各有两种选法,共有2×2种结果,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,∵恰有2人选修课程甲,共有C42=6种结果,∴余下的两个人各有两种选法,共有2×2=4种结果,根据分步计数原理知共有6×4=24种结果故选:B.【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.10.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.【考点】3I:奇函数、偶函数;3Q:函数的周期性.【专题】11:计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.11.(5分)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4B.C.8D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】圆在第一象限内,设圆心的坐标为(a,a),(b,b),利用条件可得a 和b分别为x2﹣10x+17=0 的两个实数根,再利用韦达定理求得两圆心的距离|C1C2|=•的值.【解答】解:∵两圆C1、C2都和两坐标轴相切,且都过点(4,1),故圆在第一象限内,设两个圆的圆心的坐标分别为(a,a),(b,b),由于两圆都过点(4,1),则有=|a|,|=|b|,故a和b分别为(x﹣4)2+(x﹣1)2=x2的两个实数根,即a和b分别为x2﹣10x+17=0 的两个实数根,∴a+b=10,ab=17,∴(a﹣b)2=(a+b)2﹣4ab=32,∴两圆心的距离|C1C2|=•=8,故选:C.【点评】本题考查直线和圆相切的性质,两点间的距离公式、韦达定理的应用,属于基础题.12.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.【解答】解:∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=∴圆N的半径为则圆的面积为13π故选:D.【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1﹣x)10的二项展开式中,x的系数与x9的系数之差为:0.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数分别取1;9求出展开式的x的系数与x9的系数;求出两个系数的差.=(﹣1)r C10r x r【解答】解:展开式的通项为T r+1所以展开式的x的系数﹣10x9的系数﹣10x的系数与x9的系数之差为(﹣10)﹣(﹣10)=0故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知a∈(π,),tanα=2,则cosα=﹣.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】先利用α的范围确定cosα的范围,进而利用同脚三角函数的基本关系,求得cosα的值.【解答】解:∵a∈(π,),∴cosα<0∴cosα=﹣=﹣故答案为:﹣【点评】本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号.15.(5分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题;31:数形结合;35:转化思想.【分析】根据题意知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,解三角形即可求得结果.【解答】解:连接DE,设AD=2易知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,在△RtADE中,由于DE=,AD=2,可得AE=3∴cos∠DAE==,故答案为:.【点评】此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.16.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=6.【考点】KC:双曲线的性质.【专题】16:压轴题.【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.【解答】解:不妨设A在双曲线的右支上∵AM为∠F1AF2的平分线∴=又∵|AF1|﹣|AF2|=2a=6解得|AF2|=6故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.三、解答题(共6小题,满分70分)17.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.【考点】88:等比数列的通项公式;89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】设出等比数列的公比为q,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n项和的公式即可.【解答】解:设{a n}的公比为q,由题意得:,解得:或,当a1=3,q=2时:a n=3×2n﹣1,S n=3×(2n﹣1);当a1=2,q=3时:a n=2×3n﹣1,S n=3n﹣1.【点评】此题考查学生灵活运用等比数列的通项公式及前n项和的公式化简求值,是一道基础题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,(Ⅰ)求B;(Ⅱ)若A=75°,b=2,求a,c.【考点】HU:解三角形.【专题】11:计算题.【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得cosB的值,进而求得B.(Ⅱ)利用两角和公式先求得sinA的值,进而利用正弦定理分别求得a和c.【解答】解:(Ⅰ)由正弦定理得a2+c2﹣ac=b2,由余弦定理可得b2=a2+c2﹣2accosB,故cosB=,B=45°(Ⅱ)sinA=sin(30°+45°)=sin30°cos45°+cos30°sin45°=故a=b×==1+∴c=b×=2×=【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【考点】C5:互斥事件的概率加法公式;CN:二项分布与n次独立重复试验的模型.【专题】5I:概率与统计.【分析】(I)设该车主购买乙种保险的概率为P,由相互独立事件概率公式可得P(1﹣0.5)=0.3,解可得p,先求出该车主甲、乙两种保险都不购买的概率,由对立事件的概率性质计算可得答案.(II)该地的3位车主中恰有1位车主甲、乙两种保险都不购买,是一个n次独立重复试验恰好发生k次的概率,根据上一问的结果得到该地的一位车主甲、乙两种保险都不购买的概率,代入公式得到结果.【解答】解:(I)设该车主购买乙种保险的概率为p,根据题意可得p×(1﹣0.5)=0.3,解可得p=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8(II)每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率P=C31×0.2×0.82=0.384.【点评】本题考查互斥事件的概率公式加法公式,考查n次独立重复试验恰好发生k次的概率,考查对立事件的概率公式,是一个综合题目.20.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】11:计算题;14:证明题.【分析】(1)利用线面垂直的判定定理,即证明SD垂直于面SAB中两条相交的直线SA,SB;在证明SD与SA,SB的过程中运用勾股定理即可(Ⅱ)求AB与平面SBC所成的角的大小即利用平面SBC的法向量,当为锐角时,所求的角即为它的余角;当为钝角时,所求的角为【解答】(Ⅰ)证明:在直角梯形ABCD中,∵AB∥CD,BC⊥CD,AB=BC=2,CD=1∴AD==∵侧面SAB为等边三角形,AB=2∴SA=2∵SD=1∴AD2=SA2+SD2∴SD⊥SA同理:SD⊥SB∵SA∩SB=S,SA,SB⊂面SAB∴SD⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则A(2,﹣1,0),B(2,1,0),C(0,1,0),作出S在底面上的投影M,则由四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB 为等边三角形知,M点一定在x轴上,又AB=BC=2,CD=SD=1.可解得MD=,从而解得SM=,故可得S(,0,)则设平面SBC的一个法向量为则,即取x=0,y=,z=1即平面SBC的一个法向量为=(0,,1)又=(0,2,0)cos<,>===∴<,>=arccos即AB与平面SBC所成的角的大小为arcsin【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.21.(12分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)证明:曲线y=f(x)在x=0处的切线过点(2,2);(Ⅱ)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;16:压轴题.【分析】(Ⅰ)求出函数f(x)在x=0处的导数和f(0)的值,结合直线方程的点斜式方程,可求切线方程;(Ⅱ)f(x)在x=x0处取得最小值必是函数的极小值,可以先通过讨论导数的零点存在性,得出函数有极小值的a的大致取值范围,然后通过极小值对应的x0∈(1,3),解关于a的不等式,从而得出取值范围【解答】解:(Ⅰ)f′(x)=3x2+6ax+3﹣6a由f(0)=12a﹣4,f′(0)=3﹣6a,可得曲线y=f(x)在x=0处的切线方程为y=(3﹣6a)x+12a﹣4,当x=2时,y=2(3﹣6a)+12a﹣4=2,可得点(2,2)在切线上∴曲线y=f(x)在x=0的切线过点(2,2)(Ⅱ)由f′(x)=0得x2+2ax+1﹣2a=0 (1)方程(1)的根的判别式①当时,函数f(x)没有极小值②当或时,由f′(x)=0得故x0=x2,由题设可知(i)当时,不等式没有实数解;(ii)当时,不等式化为a+1<<a+3,解得综合①②,得a的取值范围是【点评】将字母a看成常数,讨论关于x的三次多项式函数的极值点,是解决本题的难点,本题中处理关于a的无理不等式,计算也比较繁,因此本题对能力的要求比较高.22.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【考点】9S:数量积表示两个向量的夹角;KH:直线与圆锥曲线的综合.【专题】15:综合题;16:压轴题;35:转化思想.【分析】(1)要证明点P在C上,即证明P点的坐标满足椭圆C的方程,根据已知中过F且斜率为﹣的直线l与C交于A、B两点,点P满足,我们求出点P的坐标,代入验证即可.(2)若A、P、B、Q四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);∴+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)∴p的坐标为(﹣,﹣1)代入①方程成立,所以点P在C上.(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.设线段AB的中点坐标为(,),即(,),则过线段AB的中点且垂直于AB的直线方程为:y﹣=(x﹣),即y=x+;③∵P关于点O的对称点为Q,故0(0.0)为线段PQ的中点,则过线段PQ的中点且垂直于PQ的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2=,y1+y2=1∴A,B也是在圆⑤上的.∴A、P、B、Q四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.。

2011年高考新课标卷文科数学试题(解析版)

2011年高考新课标卷文科数学试题(解析版)

2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。

2011年高考全国数学试卷(新课标)-文科(含详解答案)

2011年高考全国数学试卷(新课标)-文科(含详解答案)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年浙江省高考数学文科卷解析版

2011年浙江省高考数学文科卷解析版

2011年浙江省高考数学文科卷解析版一、选择题:本大题共10小题,每小题5分,共50分. (1)若{1},{1}P x x Q x x =<>,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆(2)若复数1z i =+,为虚数单位,则(1)i z +⋅=A .13i +B .33i +C .3i -D .3【答案】 A【解析】:22(1)1(1)z z z z i i +⋅=+=+++2112i i i =++++112113i i i =+++-=+ (3)若实数x ,y 满足不等式组250,270,0,0,x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩则3x +4y 的最小值是A .13B .15C .20D .28【答案】 A【解析】:作出可行域,25032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得, m i n334113z A =⨯+⨯=故选 (4)若直线不平行于平面a ,且l a ∉,则A .a 内的所有直线与异面B .a 内不存在与平行的直线C .a 内存在唯一的直线与平行D .a 内的直线与都相交 【答案】 B 【解析】:直线不平行于平面a ,l a ⊄所以与a 相交(5)在A B C ∆中,角,,A B C 所对的边分.若c o s s i n aA b B =,则2s i n c o s c o s AA B +=A .-12B .12C . -1D .1(6)若,a b 为实数,则 “0<ab <1”是“b <a1”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 (7)几何体的三视图如图所示,则这个几何体的直观图可以是【答案】 B 【解析】:A ,C 与正视图不符,D 与俯视图不符(8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是A .110B .310C .D .910【答案】 D【解析】:无白球的概率是3335110c c =,∴至少有1个白球的概率为19111010p -=-=(9)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线 222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于两点,若1C恰好将线段A B 三等分,则(A )2132a=(B )2a 13 (C )212b=(D )2b =2(10)设函数()()2,,f x a x b x c a b c R =++∈,若1x =-为函数()2f x e 的一个极值点,则下列图象不可能为()y f x =的图象是【答案】 D 【解析】:()2f x a x b '=+,令()()xg x f x e=则()()()x x g x fx e f x e ''=+()(())xf x fx e '=+ 22(2)[(2)()]x xa xb a x b xc e a x a b x b c e =++++=++++,因为1x =-为函数()g x 的一个极值点,所以1x =-是2(2)()0a x ab x bc ++++=的一个根,即2(2)(1)()0(2)4()0a a b b c a b a b c ++-++=⎧⎨=+-+>⎩于是0a cb =⎧⎨≠⎩,()12f a b ca b -=-+=-,22244(2)(2)b a c b a b a b a =-=-=-+ ()120f a b -=-=则0= 故A 、B 可能;对于D ,()120f a b -=->,,则0b >于是0< 出现矛盾,不可能,故选D 0< 出现矛盾,不可能,故选D二、填空题:本大题共7小题,每小题4分,共28分.(11)设函数k4()1f x x =+ ,若()2f a =,则实数a =____________ 【答案】1- 【解析】:421211a a a=⇒-=⇒=-- (12)若直线250x y -+=与直线260xm y +-=互相垂直,则实数m =___________ 【答案】 【解析】:121212,,12k k k k m==-∴⋅=- 直线互相垂直,,即12()1,12m m⋅-=-∴=(13)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测3000名学生在该次数学考试中成绩小于60分的学生数是___600__________(14)某程序框图如图所示,则该程序运行后输出的k 的值是___________.(15)若平面向量α、β 满足11αβ=≤,且以向量α、β为邻边的平行四边形的面积为12,则α和β的夹角 θ的取值范围是_________________.(16)若实数,x y 满足221x y x y ++=,则的最大值是___________.【答案】233【解析】::222221()1()()12x y xy x y x y x y x y +++=⇒+-=⇒+-≤233x y ⇒+≤ (17)若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =___________.【答案】4【解析】:2(4)()3n na n n =+则112(1)(5)()2(1)(5)323(4)(4)()3n n n n n n a n n a nn nn ++++++==++ 于是22(1)(5)3(4)10n n n n n ++-+=-+令2100n -+>得1010n -<<,则11n na a +>, 时递增,令2n -三、解答题,共72分.解答应写出文字说明、证明过程或演算步骤.(18)(本题满分14分)已知函数()s i n()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像,如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23PRQ π∠=,求A 的值.【命题意图】本题主要考查三角函数的图象与性质、三角运算等基础知识. 【解析】(Ⅰ)解:由题意得,2 6.3T ππ== 因为(,)s i n ()3PA y A x πϕ=+在的图象上, 所以sin (,)1.3πϕ+=又因为02πϕ<<,所以6πϕ= (Ⅱ)解:设点Q 的坐标为0(,)x A - 由题意可知03362x πππ+=,得04,(4,)x QA =-所以连接PQ ,在2,3P R Q P R Q π∆∠=中,由余弦定理得22222229(94)1c o s .2229R P R Q P Q A A A P R Q R P R Q A A+-++-+∠===-⋅⋅+解得又0,3.A A >=所以(19)(本题满分14分)已知公差不为0的等差数列}{n a 的首项为)(R a a ∈,且11a ,21a ,41a 成等比数列. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)对*N n ∈,试比较n a a a a 2322221...111++++与11a 的大小.【命题意图】本题主要考查等差、等比数列的概念以及通项公式,等比数列的求和公式等基础知识,同时考查运算求解能力及推理论证能力. 【解析】(Ⅰ)解:设等差数列{}n a 的公差为d ,由题意可知2214111()a a a =⋅ 即2111()(3)ad a a d +=+,从而21ad d = 因为10,.d d aa ≠==所以故通项公式.n a na =(Ⅱ)解:记22222111,2n n nn T a a a a a =+++= 因为所以211(1())111111122()[1()]1222212nn n nT a aa -=+++=⋅=--从而,当0a >时,11n T a <;当110,.n a T a <>时(20)(本题满分14分)如图,在三棱锥PA B C -中,A BA C=,D 为B C 的中点,P O ⊥平面ABC ,垂足O 落在线段A D 上. (Ⅰ)证明:A P ⊥B C ; (Ⅱ)已知8B C =,4P O =,3A O =,2O D =,求二面角B A P C --的大小. 【命题意图】本题主要考查空间线线、线面、面面位置关系,二面角等基础知识,同时考查空间想象能力和推理论证能力..【解析】(Ⅰ)证明:由AB=AC ,D 是BC 中点,得A DB C ⊥,又P O ⊥平面ABC ,得P OB C ⊥ 因为P O A D O ⋂=,所以B C ⊥平面PAD ,故.B C P A ⊥(Ⅱ)解:如图,在平面P AB 内作B M P A ⊥于M ,连CM . 因为,B C P AP A ⊥⊥得平面BMC ,所以AP ⊥CM .故B M C ∠为二面角B —AP —C 的平面角.在222,41,41R t A D B A B A D B D A B ∆=+==中得在222R t P O D P O O D ∆=+中,P D ,在R t P D B ∆中,222P B P D B D=+, 所以222236,6.P B P O O D B D P B =++==得在222,25,5.R t P O A P A A O O P P A ∆=+==中得又222122c o s ,s i n 233P A P B A B B P A B P A P A P B +-∠==∠=⋅从而故s i n 42B M P B B P A =∠=,同理42.G M =因为222B M MC B C +=所以90B M C ∠=︒即二面角B —AP —C 的大小为90.︒(21)(本小题满分15分)设函数ax x x a x f +-=22ln )(,0>a (Ⅰ)求)(x f 的单调区间;(Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数.【命题意图】本题主要考查函数的单调性、导数运算法则、导数应用等基础知识,同时考查抽象概括、推理论证能力. 【解析】(Ⅰ)解:因为22()l n .0f x a x x a x x =-+>其中 所以2()(2)()2a xa xa f x xa x x-+'=-+=-由于0a >,所以()f x 的增区间为(0,)a ,减区间为(,)a +∞(Ⅱ)证明:由题意得,(1)11,f a c a c =-≥-≥即 由(Ⅰ)知()[1,]f x e 在内单调递增,要使21()[1,]e f x e x e -≤≤∈对恒成立,只要222(1)11,()f a e f e a e a e e =-≥-⎧⎨=-+≤⎩,解得.a e = (22)(本小题满分15分)如图,设P 是抛物线1C :2x y =上的动点.过点P 做圆2C1)3(:22=++y x 的两条切线,交直线:3y =-于两点.(Ⅰ)求2C的圆心到抛物线 1C准线的距离.(Ⅱ)是否存在点P ,使线段A B 被抛物线1C 在点P 处得切线平分,若存在,求出点P的坐标;若不存在,请说明理由.【命题意图】本题主要考查抛物线几何性质,直线与抛物线、直线与圆的位置关系,同时考查解析几何的基本思想方法和运算求解能力.满分15分. 【解析】(Ⅰ)解:因为抛物线C 1的准线方程为:14y =-所以圆心M 到抛物线C 1准线的距离为:111|(3)|.44---=(Ⅱ)解:设点P 的坐标为200(,)x x ,抛物线C 1在点P 处的切线交直线于点D . 再设A ,B ,D 的横坐标分别为,,A B C x x x 过点200(,)P x x 的抛物线C 1的切线方程为:20002()y x xxx -=- (1)当01x =时,过点P (1,1)与圆C 2的切线P A 为:151(1)8y x -=- 可得17,1,1,215A B D A B Dx x x x x x =-==-+≠ 当10-=x 时,过点P (—1,1)与圆C 2的切线P A 为:151(1)8y x -=- 可得DB A D B A x x x x x x 2,1,1517,1≠+==-= 17,1,1,215A B D A B Dx x x x x x =-==-+≠ 所以2010x -≠设切线P A ,PB 的斜率为12,k k ,则2010:()P A y x k x x -=- (2) 2020:()P B y x k x x -=- (3)将3y =-分别代入(1),(2),(3)得22200000012011333(0);;(,0)2D A B x x x x x x x x x k k x k k -++=≠=-=--≠从而20012112(3)().A B x x x x k k +=-++ 又201021|3|11x k x k -++=+,即22222010010(1)2(3)(3)10x kxx k x --+++-= 同理,22222020020(1)2(3)(3)10x kxx k x --+++-=所以12,k k 是方程222220000(1)2(3)(3)10x k xx k x --+++-=的两个不相等的根, 从而 222000121222002(3)(3)1,.11xx x k k kk x x ++-+=⋅=--因为02x x x B A =+所以2201201203111112(3)(),.x x x k k x k k x --++=+=即从而2002202(3)1(3)1x x x x +=+-,进而得44008,8x x ==± 综上所述,存在点P 满足题意,点P 的坐标为4(8,22).±。

2011年(浙江卷)文数

2011年(浙江卷)文数

2011年普通高等学校招生全国统一考试(浙江卷)数 学 (文科)参考公式:如果事件A B 、互斥,那么 球的表面积公式P(A +B)=P(A )+P(B) 24S R π=如果事件A B 、相互独立,那么 其中R 表示球的半径⋅⋅P(A B)=P(A )P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k kn kn nP k C P P k n -=-=⋅⋅⋅选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给也的四个选项中,只有一项是符合题目要求的。

1. 若{1},{1}P x x Q x x =<>-,则( )A. P Q ⊆B. Q P ⊆C. R P Q ⊆ðD. R Q P ⊆ð2. 若复数1z i =+,i 为虚数单位,则(1)z z +⋅=( )A. 13i +B. 33i +C. 3i -D. 33. 若实数x ,y 满足不等式组2502700,0x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩,则34x y +的最小值是( )A. 13B. 15C. 20D. 284. 若直线l 不平行于平面α,且l α⊄,则( )A α内的所有直线与l 异面B α内不存在与l 平行的直线C α内存在唯一的直线与l 平行D α内的直线与l 都相交5. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c .若cos sin a A b B =,则2sin cos cos A A B += ( )A. 12-B. 12C. 1-D. 16. 若,a b 为实数,则“01ab <<”是“1b a<”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充分必要条件D 既不充分也不必要条件7 几何体的三视图如图所示,则这个几何体的直观图可以是( )8. 从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.9109 已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 来两点.若1C 恰好将线段AB 三等分,则( ) A. 2132a =B. 213a =C. 212b = D. 22b =10 设函数()()2,,f x ax bx c a b c =++∈R ,若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )A BCD正视图侧视图俯视图第7题图x y-1 O xxx yy y OO O -1-1 -1非选择题部分 (共100分)二、填空题:本大题共7小题,每小题4分,共28分。

2011年浙江高考数学文科试卷带详解

2011年浙江高考数学文科试卷带详解

2011年浙江高考数学文科试卷带详解2011年普通高等学校招生全国统一考试(浙江卷)数 学 (文科)一、选择题:每小题5分,共50分.在每小题给的四个选项中,只有一项是符合题目要求的. 1.若{1},={1}P x x Q x x =<>,则( ) A.P Q⊆ B.Q P ⊆ C.P Q⊆RD.Q P⊆R【测量目标】集合间的基本关系.【考查方式】集合的表示(描述法),求集合的包含关系.【参考答案】D【试题解析】{1}P x x =< ∴{}|1P x x =R≥,又∵={1}Q x x >,∴Q P⊆R,故选D2.若复数1iz =+,i为虚数单位,则(1)z z +=( ) A.13i + B.33i + C.3i - D.3【测量目标】复数代数形式的四则运算.【考查方式】给出复数乘法形式,考查复数的四则运算.【参考答案】A【试题解析】∵1i z =+,∴(1)(2i)(1i)13i z z +=++=+ 3.若实数,x y 满足不等式组2502700,0x y x y x y +-⎧⎪+-⎨⎪⎩≥≥≥≥ ,则34x y +的最小值是 ( ) A.13 B.15 C.20D.28【测量目标】线性规划求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最小值. 【参考答案】A【试题解析】可行域如图所示联立⎩⎨⎧=-+=-+072052y x y x ,解之得⎩⎨⎧==13y x ,∴当y x z 43+=过点(3,1)时,有最小值13. 4.若直线l不平行于平面α,且l α∉,则( )A.α内存在直线与异面B. α内不存在与l 平行的直线C.α内存在唯一的直线与l 平行D. α内的直线与l 都相交【测量目标】直线与平面的位置关系.【考查方式】本题主要考查线线,线面平行关系的转化,考查空间想象能力能力以及推理论证能力. 【参考答案】B【试题解析】在α内存在直线与l 相交,所以A 不正确;若α存在直线与l 平行,又∵α⊄l , 则有lα,与题设相矛盾,∴B正确C 不正确;在α内不过l 与α交点的直线与l 异面,D 不正确.5.在ABC △中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=()A.- 12B. 12 C. -1 D. 1【测量目标】正弦定理.【考查方式】根据正弦定理把边关系转化为正弦关系,再根据22sincos 1B B +=转化求出结果.【参考答案】D【试题解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin coscos sin 222=+=+B B B A A .6.若,a b为实数,则“01ab <<”是“1b a<”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】充分必要条件.【考查方式】主要考查了命题的基本关系、充分必要条件的判断,考查了学生的推理论证能力. 【参考答案】D【试题解析】当10<<ab ,0,0<<b a 时,有a b 1>,反过来ab 1<,当0<a 时,则有1>ab ,∴“10<<ab ”是“ab 1<”的既不充分也不必要条件. 7.几何体的三视图如图所示,则这个几何体的直观图可以是 ( )A B C D【测量目标】空间几何体的三视图.【考查方式】通过由几何体的三视图还原直观图,采用排除法排除选项,考查学生的空间想象能力. 【参考答案】B【试题解析】由正视图可排除A ,C ;由侧视图可判断该该几何体的直观图是B.8.从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 ( )A .110 B.310 C.35 D.910【测量目标】古典概型的基本计算.【考查方式】考查古典概型及其概率公式,涉及组合数的应用. 【参考答案】D【试题解析】由古典概型的概率公式得:3335C 9=1C 10P -=.9.已知椭圆22122:1x y C a b+=(0a b >>)与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与12C C 的长度为直径的圆相交于,A B两点.若1C 恰好将线段AB三等分,则( )A.2a =132B.2a =13C.2b =12D.2b =2 【测量目标】椭圆、双曲线的标准方程、直线与椭圆相交方程.【考查方式】根据直线与椭圆关系列出方程求解. 【参考答案】C 【试题解析】由双曲线222:14y C x -=知渐近线方程为y=2x ±(步骤1)又∵椭圆与双曲线有公共焦点 ∴椭圆方程可化为222222(5)=+5b xb y b b ++() (步骤2)联立直线与椭圆方程消y 得:2222(5)520b b x b +=+ (步骤3)又∵1C 将线段AB 2222(5)21225203b b ab ++=+ (步骤4)解之得212b=. (步骤5)10.设函数()()2,,f x ax bx c a b c =++∈R ,若1x =-为函数()e xf x 的一个极值点,则下列图象不可能为()y f x =的图象是( )A B CD【测量目标】二次函数图象、函数极值.【考查方式】本题主要根据学生对函数解析式的理解来考查二次函数图象的变化,以函数解析式为载体考查学生的识图能力、抽象概括能力以及应用知识.【参考答案】D【试题解析】设()()e xF x f x =,∴2()e()e ()e (2)xx x F x f x f x ax b ax bx c ''=+=++++ .(步骤1)又∵1x =-为()e xf x 的一个极值点,∴ 2(1)e ()0F a c '-=-+=,即a c =. (步骤2)∴22244bac b a ∆=-=-. (步骤3)当=∆0时,b=2a ±,即对称轴所在直线方程为=1x ±; 当0∆>时,12b a>,即对称轴所在直线方程应大于1或小于-1. (步骤4)二、填空题:本大题共7小题,每小题4分,共28分.11.设函数4()1f x x=+ ,若()2f a =,则实数a=________________________.【测量目标】函数求值.【考查方式】把2带入解析式求出对应a 的值. 【参考答案】1【试题解析】∵4()21f a a==+,∴1a =. 12.若直线与直线250x y -+=与直线260x my +-=互相垂直,则实数m =_____________________ 【测量目标】直线与直线的位置关系.【考查方式】根据两条直线垂直关系,利用平面坐标列出式子求出m 值. 【参考答案】1【试题解析】∵直线250x y -+=与直线260x my +-=垂直,∴1220m ⨯-=,即1m =.13.某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某此数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是_____________________.【测量目标】频率分布直方图.【考查方式】根据每个分段频率=每个柱形体积求出频率,然后求出学生数.【参考答案】600【试题解析】该次数学考试中成绩小于60分的学生的频率是(0.002+0.006+0.012)⨯10=0.2,0.2⨯3000=600 14.某程序框图如图所示,则该程序运行后输出的k的值是.【测量目标】选择结构、循环结构的程序框图. 【考查方式】根据程序框图的逻辑结构求出k 值. 【参考答案】5【试题解析】3k =时,34a ==64,43b ==84,a b <;4k =时,44a ==256,44b ==256,a b =;5k =时,54a ==2564⨯,45b ==625,a b >.15.若平面向量α、β 满足11=,≤αβ,且以向量α、β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是____________________________. 【测量目标】平面向量在平面几何中的应用. 【考查方式】根据向量数量积几何意义、11=,≤αβ列出不等式求解.【参考答案】π5,π66⎡⎤⎢⎥⎣⎦【试题解析】 由题意得:1sin 2θ=αβ,∵11=,≤αβ∴11sin 22θ=≥β,又∵()0,πθ∈,∴π5π[,]65θ∈. 16.若实数,x y 满足221x y xy ++=,则x y +的最大值是______________.【测量目标】基本不等式.【考查方式】根据二元一次不等式逐步推导求出最值,考查了考生的逻辑推导能力. 【参考答案】332 【试题解析】 ∵221xy xy ++= ∴2()1x y xy +-=,即22()12x y x y +⎛⎫+- ⎪⎝⎭≤,∴24()3x y +≤,23x y +≤. 17.若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k=_______________.【测量目标】二项式定理.【考查方式】根据最大项大于前一项、后一项列出不等式组求出k 值. 【参考答案】4【试题解析】 设最大项为第k项,则有1122(4)()(1)(5)()3322(4)()(1)(3)()33k k k k k k k k k k k k +-⎧+++⎪⎪⎨⎪+-+⎪⎩≥≥,∴2210290k k k ⎧⎨--⎩≥≤210110110k k ⎧⎪⇒⎨-+⎪⎩≥≤≤=4k ⇒.三、解答题:本大题共5小题,共72分.18.(本题满分14分)已知函数π()sin()3f x A x ϕ=+,x ∈R ,0A >,π02ϕ<<.()y f x =的部分图象,如图所示,P 、Q分别为该图象的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),2π3PRQ ∠=,求A 的值. 【测量目标】三角函数的图象及性质、余弦定理.【考查方式】根据三角函数基本定义求出周期,把P 点坐标带入解析式得到ϕ的值;根据余弦定理列出关于A 的方程式求出A 值.【试题解析】(Ⅰ)解:由题意得,2π6π3T == (步骤1)因为(1,)P A 在πsin()3y A x ϕ=+的图象上. 所以πsin() 1.3ϕ+= (步骤2) 又因为π02ϕ<<, 所以π6ϕ=. (步骤3) (Ⅱ)解:设点Q 的坐标为0,x A -(). 由题意可知0ππ3π362x +=,得04x=,所以(4,)Q A -.(步骤4) 连接PQ,在PRQ△中,2π=3PRQ ∠.(步骤5) 由余弦定理得22222221cos 22239RP RQ PQ PRG RP RQ A +-∠===-+解得2A =3. 又A >0,所以A =3. (步骤6)19.(本题满分14分)已知公差不为0的等差数列{}na 的首项(),a a ∈R 且124111,,a a a成等比数列. (Ⅰ)求数列{}na 的通项公式;(Ⅱ)对n ∈+N ,试比较2322221111,n a aa a ++++与11a 的大小.【测量目标】等差数列的通项、等比数列的前n 项和. 【考查方式】根据等比数列基本性质,把等差数列中3项均转化为1a kd +形式代入求出d ;化简为等比数列前n 项和比较大小. 【试题解析】(Ⅰ)解:设等差数列{}na 的公差为d ,由2214111()a a a =得2111()(3)a d a a d +=+.从而21a d d =. (步骤1)因为0d ≠,所以1d a a == 故通项公式.nana = (步骤2) (Ⅱ)解:记2222111,nnTa a a =++因为22aa=,111=a a. ∴211(1())111111122()[1()].1222212nn n n T a a a -=+++==-- (步骤3)所以,当a >0时,11nT a<;当a <0时,11nT a >. (步骤4)20.(本题满分14分)如图,在三棱锥P ABC=,-中,AB ACD为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(Ⅰ)证明:AP⊥BC;(Ⅱ)已知8BC=,4AO=,2PO=,3--OD=.求二面角B AP C 的大小.【测量目标】空间立体中点、线、面的之间的位置关系,二面角.【考查方式】先证明线面垂直,由线面垂直得到线线垂直;根据勾股定理,证明所求二面角为直角.【试题解析】(Ⅰ)证明:由AB AC=,D为BC的中点,得⊥.AD BC又PO⊥平面ABC,得PO BC⊥. (步骤1)因为PO AD O=,所以BC⊥平面PAD故BC PA⊥. (步骤2)(Ⅱ)解:如图,在平面PAB 内作BM PA ⊥于M ,连CM . 因为BC PA ⊥.得AP ⊥平面BMC .所以AP CM ⊥. 故∠BMC 为二面角B AP C --的平面角. (步骤3) 在Rt ADB △中,222AB AD BD ===41,得AB41.在Rt POD △中, 222PD PO OD =+.在Rt PDB △中, 222PB PD BD =+.所以222236PB PO OD BD =++=,得6PB =. (步骤4) 在Rt POA △中,222PA AO OP =+=25,得5PA =. (步骤5)又2221cos 23PA PB AB BPA PA PB +-∠==,从而22sin BPA ∠=所以sin 42BM PB BPA =∠=. 同理42CM = (步骤6) 因为222BMMC BC +=所以90BMC ∠=即二面角B AP C --的小为90. (步骤7) 21.(本题满分15分)设函数22()ln ,0f x a x xax a =-+>(I )求()f x 的单调区间(II )求所有实数a ,使2e 1()ef x -≤≤对[]1e x ∈,恒成立.注:e 为自然对数的底数.【测量目标】函数的单调性、导函数的基本概念. 【考查方式】根据导函数求出单调区间;根据2e 1()ef x -≤≤列出不等式组求出a .【试题解析】(Ⅰ)解:因为22()ln f x ax x ax=-+,其中0x >,所以2()(2)()2a x a x a f x x a x x-+'=-+=-. (步骤1)由于0a >,所以()f x 的增区间为(0)a ,,减区间为(+)a ∞,(步骤2) (Ⅱ)证明:由题意得, (1)11f a c =--≥,即a c ≥. (步骤3)由(Ⅰ)知()f x 在[]1e x ∈,恒成立,要使2e 1()ef x -≤≤对[]1e x ∈,恒成立,只要222(1)1e 1(e)e e ef a f a a =--⎧⎨=-+⎩≥≤,解得e a =. (步骤4)22.(本大题满分15分)如图,设P 为抛物线1C :2xy=上的动点.过点P 做圆2C :22(3)1xy ++=的两条切线,交直线l:3y =-于,A B 两点.(Ⅰ)求2C 的圆心M 到抛物线 1C 准线的距离. (Ⅱ)是否存在点P ,使线段AB 被抛物线1C 在点P 处得切线平分,若存在,求出点P 的坐标;若不存在,请说明理由.【测量目标】点、直线、抛物线、圆的位置关系与标准方程.【考查方式】根据抛物线标准方程列出准线方程,然后求出2C 到准线距离;根据题意列出方程,把各点坐标代入证明结果是否成立.【试题解析】(Ⅰ)解:由题意可知,抛物线1C 的准线方程为:14y =-. 所以圆心M 到抛物线1C 准线的距离为111|(3)|.44---= (步骤1)(Ⅱ)解:设点P 的坐标为2x x (,),抛物线1C 在点P 处的切线交直线l 于点D . 再设,,A B D 的横坐标分别为,,ABDx x x .过点20(,)P x x 的抛物线1C 的切线方程为:20002().y x x x x -=- (1) (步骤2)当01x =时,过点P (1,1)与圆2C 的切线PA 为:151(1)8y x -=-.可得171,,1,215AB D A B D x x x x x x =-==-+≠.所以210x-≠. (步骤3)设切线PA 、PB 的斜率为12,k k ,则2010:(),PA y x k x x -=-(2)2020:(),PB y x k x x -=-(3) (步骤4)将3y =-分别代入(1),(2),(3),得22200000012012333(0),,(,0)2D A B x x x x x x x x x k k x k k -++=≠=-=-≠从而20012112(3)()A B x x x x k k +=-++. (步骤5)20102111k =+即22222010010(1)2(3)(3)10xk x x k x --+++-=.同理22222020020(1)2(3)(3)10xk x x k x --+++-= . (步骤6)所以12,k k 是方程222220000(1)2(3)(3)10xk x x k x --+++-=的两个不相等的根,从而20012202(3)1x x k k x ++=-, 2201220(3)11x k k x +-=-. (步骤7)因为02AB x x x +=所以220001203112(3)(),x x x k k x --++=即12111k k x +=. (步骤8)从而20022002(3)1(3)x x x x +=+.进而得44008,8.x x ==±综上所述,存在点P 满足题意,点P 的坐标为24(8,2)±. (步骤9)。

2011全国高考文科数学试卷及答案完整版(全国卷)

2011全国高考文科数学试卷及答案完整版(全国卷)

2011年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U= U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ð , 则A .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.权向量a,b 满足 ,则1||||1,2a b a b ==⋅=-,则2a b +=ABCD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使 成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2 BCD .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种C .30种D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .14-C .14D .1211.11.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4 B.C .8D.12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N的面积为A .7πB .9πC .11πD .13π第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试卷上作答无效)13.(10的二项展开式中,x 的系数与x 9的系数之差为: .14.已知a ∈(3,2ππ),t a n 2,c o s αα=则=15.已知正方体ABCD —A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE与BC 所成角的余弦值为 。

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年浙江省高考数学试卷(文科)答案与解析

2011年浙江省高考数学试卷(文科)答案与解析

2011年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•浙江)若P={x|x<1},Q={x|x>1},则()A.P⊆Q B.Q⊆P C.∁R P⊆Q D.Q⊆∁R P【考点】集合的包含关系判断及应用.【专题】集合.【分析】利用集合的补集的定义求出P的补集;利用子集的定义判断出Q⊆C R P.【解答】解:∵P={x|x<1},∴C R P={x|x≥1},∵Q={x|x>1},∴Q⊆C R P,故选D.【点评】本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.2.(5分)(2011•浙江)若复数z=1+i,i为虚数单位,则(1+z)•z=()A.1+3i B.3+3i C.3﹣i D.3【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用两个复数代数形式的乘法法则,把(1+z)•z化简到最简形式.【解答】解:∵复数z=1+i,i为虚数单位,则(1+z)•z=(2+i)(1+i)=1+3i故选A.【点评】本题考查两个复数代数形式的乘法,以及虚数单位的幂运算性质.3.(5分)(2011•浙江)若实数x,y满足不等式组,则3x+4y的最小值是()A.13 B.15 C.20 D.28【考点】简单线性规划.【专题】不等式的解法及应用.【分析】我画出满足不等式组的平面区域,求出平面区域中各角点的坐标,然后利用角点法,将各个点的坐标逐一代入目标函数,比较后即可得到3x+4y的最小值.【解答】解:满足约束条件的平面区域如下图所示:由图可知,当x=3,y=1时3x+4y取最小值13故选A【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.4.(5分)(2011•浙江)若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【考点】直线与平面平行的性质;平面的基本性质及推论.【专题】空间位置关系与距离.【分析】根据线面关系的定义,我们根据已知中直线l不平行于平面α,且l⊄α,判断出直线l与α的关系,利用直线与平面相交的定义,我们逐一分析四个答案,即可得到结论.【解答】解:直线l不平行于平面α,且l⊄α,则l与α相交l与α内的直线可能相交,也可能异面,但不可能平行故B,C,D错误故选A【点评】本题考查线线、线面位置关系的判定,考查逻辑推理能力和空间想象能力.其中利用已知判断出直线l与α的关系是解答本题的关键.5.(5分)(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.若acosA=bsinB,则sinAcosA+cos2B=()A.﹣B.C.﹣1 D.1【考点】余弦定理;正弦定理.【专题】解三角形.【分析】利用三角形中的正弦定理,将已知等式中的边用三角形的角的正弦表示,代入要求的式子,利用三角函数的平方关系求出值.【解答】解:∵acosA=bsinB由正弦定理得sinAcosA=sinBsinB∴sinAcosA+cos2B=sin2B+cos2B=1故选D【点评】本题考查三角形中的正弦定理、余弦定理、三角函数的平方关系.6.(5分)(2011•浙江)若a,b为实数,则“0<ab<1”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;不等式的基本性质.【专题】简易逻辑.【分析】根据不等式的性质,我们先判断“0<ab<1”⇒“”与“”⇒“0<ab<1”的真假,然后结合充要条件的定义即可得到答案.【解答】解:若“0<ab<1”当a,b均小于0时,即“0<ab<1”⇒“”为假命题若“”当a<0时,ab>1即“”⇒“0<ab<1”为假命题综上“0<ab<1”是“”的既不充分也不必要条件故选D.【点评】本题考查的知识点是必要条件,充分条件与充要条件的判断,及不等式的性质,其中根据不等式的性质判断“0<ab<1”⇒“”与“”⇒“0<ab<1”的真假,是解答本题的关键.7.(5分)(2011•浙江)几何体的三视图如图所示,则这个几何体的直观图可以是()A.B.C.D.【考点】空间几何体的直观图;简单空间图形的三视图.【专题】立体几何.【分析】A、C选项中正视图不符合,D答案中侧视图不符合,由排除法即可选出答案.【解答】解:A、C选项中正视图不符合,A的正视图为,C的正视图为D答案中侧视图不符合.D答案中侧视图为故选B【点评】本题考查空间几何体的三视图,考查空间想象能力.8.(5分)(2011•浙江)从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】用间接法,首先分析从5个球中任取3个球的情况数目,再求出所取的3个球中没有白球即全部红球的情况数目,计算可得没有白球的概率,而“没有白球”与“3个球中至少有1个白球”为对立事件,由对立事件的概率公式,计算可得答案.【解答】解:根据题意,首先分析从5个球中任取3个球,共C53=10种取法,所取的3个球中没有白球即全部红球的情况有C33=1种,则没有白球的概率为;则所取的3个球中至少有1个白球的概率是.故选D.【点评】本题考查古典概型的计算,注意至多、至少一类的问题,可以选用间接法,即借助对立事件的概率的性质,先求其对立事件的概率,进而求出其本身的概率.9.(5分)(2011•浙江)已知椭圆C1:=1(a>b>0)与双曲线C2:x2﹣=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则()A.a2=B.a2=3 C.b2= D.b2=2【考点】椭圆的简单性质;圆锥曲线的综合.【专题】圆锥曲线的定义、性质与方程.【分析】先由双曲线方程确定一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a,利用椭圆与双曲线有公共的焦点,得方程a2﹣b2=5;设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:;对称性知直线y=2x被C1截得的弦长=2x,根据C1恰好将线段AB三等分得:2x=,从而可解出a2,b2的值,故可得结论.【解答】解:由题意,C2的焦点为(±,0),一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a∴C1的半焦距c=,于是得a2﹣b2=5 ①设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:②,由对称性知直线y=2x被C1截得的弦长=2x,由题得:2x=,所以③由②③得a2=11b2④由①④得a2=5.5,b2=0.5故选C【点评】本题以椭圆,双曲线为载体,考查直线与圆锥曲线的位置关系,解题思路清晰,但计算有点烦琐,需要小心谨慎.10.(5分)(2011•浙江)设函数f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是()A.B.C.D.【考点】利用导数研究函数的单调性;函数的图象与图象变化.【专题】函数的性质及应用;导数的概念及应用.【分析】先求出函数f(x)e x的导函数,利用x=﹣1为函数f(x)e x的一个极值点可得a,b,c之间的关系,再代入函数f(x)=ax2+bx+c,对答案分别代入验证,看哪个答案不成立即可.【解答】解:由y=f(x)e x=e x(ax2+bx+c)⇒y′=f′(x)e x+e x f(x)=e x[ax2+(b+2a)x+b+c],由x=﹣1为函数f(x)e x的一个极值点可得,﹣1是方程ax2+(b+2a)x+b+c=0的一个根,所以有a﹣(b+2a)+b+c=0⇒c=a.法一:所以函数f(x)=ax2+bx+a,对称轴为x=﹣,且f(﹣1)=2a﹣b,f(0)=a.对于A,由图得a>0,f(0)>0,f(﹣1)=0,不矛盾,对于B,由图得a<0,f(0)<0,f(﹣1)=0,不矛盾,对于C,由图得a<0,f(0)<0,x=﹣>0⇒b>0⇒f(﹣1)<0,不矛盾,对于D,由图得a>0,f(0)>0,x=﹣<﹣1⇒b>2a⇒f(﹣1)<0与原图中f(﹣1)>0矛盾,D不对.法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立.故选:D.【点评】本题考查极值点与导函数之间的关系.一般在知道一个函数的极值点时,直接把极值点代入导数令其等0即可.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2011•浙江)设函数,若f(a)=2,则实数a=﹣1.【考点】函数的值.【专题】函数的性质及应用.【分析】将x=a代入到f(x),得到=2.再解方程即可得.【解答】解:由题意,f(a)==2,解得,a=﹣1.故a=﹣1.【点评】本题是对函数值的考查,属于简单题.对这样问题的解答,旨在让学生体会函数,函数值的意义,从而更好的把握函数概念,进一步研究函数的其他性质.12.(4分)(2011•浙江)若直线与直线x﹣2y+5=0与直线2x+my﹣6=0互相垂直,则实数m=1.【考点】直线的一般式方程与直线的垂直关系.【专题】直线与圆.【分析】求出两条直线的斜率;利用两直线垂直斜率之积为﹣1,列出方程求出m的值.【解答】解:直线x﹣2y+5=0的斜率为直线2x+my﹣6=0的斜率为∵两直线垂直∴解得m=1故答案为:1【点评】本题考查由直线方程的一般式求直线的斜率、考查两直线垂直斜率之积为﹣1.13.(4分)(2011•浙江)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是600.【考点】频率分布直方图.【专题】概率与统计.【分析】首先计算成绩小于60 的三个小矩形的面积之和,即成绩小于60 的学生的频率,再乘以3000即可.【解答】解:由频率分布直方图成绩小于60 的学生的频率为10(0.002+0.006+0.012)=0.2,所以成绩小于60分的学生数是3000×0,2=600故答案为:600【点评】本题考查频率分布直方图和由频率分布直方图估计总体的分布,考查识图能力.14.(4分)(2011•浙江)某程序框图如图所示,则该程序运行后输出的k的值是5.【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出k值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:第一圈k=3 a=43b=34第二圈k=4 a=44 b=44第三圈k=5 a=45 b=54此时a>b,退出循环,k值为5故答案为:5.【点评】对于流程图处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型⇒③解模.15.(4分)(2011•浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为,则α和β的夹角θ的范围是[30°,150°].【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】根据平行四边形的面积,得到对角线分成的两个三角形的面积,利用正弦定理写出三角形面积的表示式,表示出要求角的正弦值,根据角的范围写出符合条件的角.【解答】解:∵||||sinθ=∴sinθ=,∵||=1,||≤1,∴sinθ,∵θ∈[0,π]∴θ∈[30°,150°],故答案为:[30°,150°],或[],【点评】本题考查两个向量的夹角,考查利用正弦定理表示三角形的面积,考查不等式的变化,是一个比较简单的综合题目.16.(4分)(2011•浙江)若实数x,y满足x2+y2+xy=1,则x+y的最大值是.【考点】基本不等式.【专题】不等式的解法及应用.【分析】利用基本不等式,根据xy≤把题设等式整理成关于x+y的不等式,求得其范围,则x+y的最大值可得.【解答】解:∵x2+y2+xy=1∴(x+y)2=1+xy∵xy≤∴(x+y)2﹣1≤,整理求得﹣≤x+y≤∴x+y的最大值是故答案为:【点评】本题主要考查了基本不等式.应熟练掌握如均值不等式,柯西不等式等性质.17.(4分)(2011•浙江)若数列中的最大项是第k项,则k=4.【考点】数列的函数特性.【专题】点列、递归数列与数学归纳法.【分析】求数列的最大值,可通过做差或做商比较法判断数列的单调性处理.【解答】解:令,假设=≥1,则2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,又n是整数,即n≤3时,a n+1>a n,当n≥4时,a n+1<a n,所以a4最大.故答案为:4.【点评】本题考查数列的最值问题,利用做差或做商比较法判断数列的单调性是求数列最值的常用方式.三、解答题(共5小题,满分72分)18.(14分)(2011•浙江)已知函数,x∈R,A>0,.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及φ的值;(Ⅱ)若点R的坐标为(1,0),,求A的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】(I)由已知函数,我们易求出函数的最小正周期,又由P的坐标为(1,A),我们易构造出一个关于φ的三角方程,结合解三角方程即可求出φ值.(II)根据(I)的结论及R的坐标,和,利用余弦定理我们易构造出一个关于A的方程,解方程即可得到A的值.【解答】解:(I)由题意得,T==6∵P(1,A)在函数的图象上∴=1又∵∴φ=(II)由P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A),结合(I)可知点Q的坐标为(4,﹣A)连接PQ,在△PRQ中,∠PRQ=可得,∠QRX=,作QM⊥X轴于M,则QM=A,RM=3,所以有tan===∴A=【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数的周期性及其求法,其中根据已知中条件构造关于参数A,φ是解答本题的关键.19.(14分)(2011•浙江)已知公差不为0的等差数列{a n}的首项a1(a1∈R),且,,成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对n∈N*,试比较与的大小.【考点】数列与不等式的综合;数列的求和;等比数列的性质.【专题】等差数列与等比数列.【分析】(Ⅰ)由,,成等比数列,利用等比数列的性质及等差数列的通项公式列出关于首项和公差的方程,根据公差d不为0,解得公差d与首项相等,然后根据首项和公差写出数列的通项公式即可;(Ⅱ)设T n=与根据(Ⅰ)中求得的通项公式表示出,然后利用等比数列的前n项和的公式求出T n,即可比较出两者的大小关系.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,由题意可知=×,即(a1+d)2=a1(a1+3d),从而a1d=d2,因为d≠0,所以d=a1,故a n=nd=na1;(Ⅱ)记T n=++…+,由a n=na1,得=2n a1,则T n=++…+=()=(1﹣),∴T n﹣=(1﹣)﹣=(﹣),从而,当a1>0时,T n<;当a1<0时,T n>.【点评】此题考查学生掌握等比数列的性质,利用运用等比数列的通项公式及前n项和的公式化简求值,是一道中档题.20.(14分)(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(Ⅰ)证明:AP⊥BC;(Ⅱ)已知BC=8,PO=4,AO=3,OD=2.求二面角B﹣AP﹣C的大小.【考点】与二面角有关的立体几何综合题;空间中直线与直线之间的位置关系;二面角的平面角及求法.【专题】空间位置关系与距离;空间角;立体几何.【分析】(I)由题意.因为PO⊥平面ABC,垂足O落在线段AD上所以BC⊥PO.有AB=AC,D为BC的中点,得到BC⊥AD,进而得到线面垂直,即可得到所证;(II)有(I)利用面面垂直的判定得到PA⊥平面BMC,再利用二面角的定义得到二面角的平面角,然后求出即可.【解答】解:(I)由题意画出图如下:由AB=AC,D为BC的中点,得AD⊥BC,又PO⊥平面ABC,垂足O落在线段AD上,得到PO⊥BC,∵PO∩AD=O∴BC⊥平面PAD,故BC⊥PA.(II)如图,在平面PAB中作BM⊥PA于M,连接CM,∵BC⊥PA,∴PA⊥平面BMC,∴AP⊥CM,故∠BMC为二面角B﹣AP﹣C的平面角,在直角三角形ADB中,;在直角三角形POD中,PD2=PO2+OD2,在直角三角形PDB中,PB2=PD2+BD2,∴PB2=PO2+OD2+BD2=36,得PB=6,在直角三角形POA中,PA2=AO2+OP2=25,得PA=5,又cos∠BPA=,从而.故BM=,∵BM2+MC2=BC2,∴二面角B﹣AP﹣C的大小为90°.【点评】(I)此问考查了线面垂直的判定定理,还考查了线面垂直的性质定理;(II)此问考查了面面垂直的判定定理,二面角的平面角的定义,还考查了在三角形中求解.21.(15分)(2011•浙江)设函数f(x)=a2lnx﹣x2+ax,a>0,且f(1)≥e﹣1.(Ⅰ)求f(x)的单调区间(Ⅱ)求所有的实数a,使e﹣1≤f(x)≤e2对x∈[1,e]恒成立.注:e为自然对数的底数.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(Ⅰ)直接利用导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减来求f(x)的单调区间即可.(Ⅱ)先利用(Ⅰ)的结论求出f(x)在[1,e]上的最值,把原不等式转化为比较f(x)在[1,e]上的最值与两端点值之间的关系即可求所有的实数a.【解答】解:(Ⅰ)因为f(x)=a2lnx﹣x2+ax,其中x>0.所以f'(x)=﹣2x+a=﹣.由于a>0,所以f(x)的增区间为(0,a),f(x)的减区间为(a,+∞).(Ⅱ)证明:由题得,f(1)=a﹣1≥e﹣1,即a≥e,由(Ⅰ)知f(x)在[1,e]内单调递增要使e﹣1≤f(x)≤e2对x∈[1,e]恒成立,只要解得a=e.【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.22.(15分)(2011•浙江)如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=﹣3于A,B两点.(Ⅰ)求C2的圆心M到抛物线C1准线的距离.(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.【考点】圆锥曲线的综合;抽象函数及其应用;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)先求出抛物线C1准线的方程,再利用点到直线距离的求法求出C2的圆心M 到抛物线C1准线的距离即可.(Ⅱ)先设抛物线C1在点P处的切线交直线l于点D,线段AB被抛物线C1在点P处的切线平分即为x A+x B=2X D.设出过点P做圆C2x2+(y+3)2=1的两条切线PA,PB,与直线y=﹣3联立,分别求出A,B,D三点的横坐标,代入x A+x B=2X D.看是否能解出点P,即可判断出是否存在点P,使线段AB被抛物线C1在点P处的切线平分.【解答】解:(Ⅰ)因为抛物线C1准线的方程为:y=﹣,所以圆心M到抛物线C1准线的距离为:|﹣﹣(﹣3)|=.(Ⅱ)设点P的坐标为(x0,x02),抛物线C1在点P处的切线交直线l与点D,因为:y=x2,所以:y′=2x;再设A,B,D的横坐标分别为x A,x B,x D,∴过点P(x0,x02)的抛物线C1的切线的斜率k=2x0.过点P(x0,x02)的抛物线C1的切线方程为:y﹣x02=2x0(x﹣x0)①当x0=1时,过点P(1,1)且与圆C2相切的切线PA方程为:y﹣1=(x﹣1).可得x A=﹣,x B=1,x D=﹣1,x A+x B≠2x D.当x0=﹣1时,过点P(﹣1,1)且与圆C2的相切的切线PB的方程为:y﹣1=﹣(x+1).可得x A=﹣1,x B=,x D=1,x A+x B≠2x D.所以x02﹣1≠0.设切线PA,PB的斜率为k1,k2,则:PA:y﹣x02=k1(x﹣x0)②PB:y﹣x02=k2(x﹣x0).③将y=﹣3分别代入①,②,③得(x0≠0);;(k1,k2≠0)从而.又,即(x02﹣1)k12﹣2(x02+3)x0k1+(x02+3)2﹣1=0,同理(x02﹣1)k22﹣2(x02+3)x0k2+(x02+3)2﹣1=0,所以k1,k2是方程(x02﹣1)k2﹣2(x02+3)x0k+(x02+3)2﹣1=0的两个不等的根,从而k1+k2=,k1•k2=,因为x A+x B=2X D..所以2x0﹣(3+x02)()=,即=.从而,进而得x04=8,.综上所述,存在点P满足题意,点P的坐标为(,2).【点评】本题是对椭圆与抛物线,以及直线与椭圆和抛物线位置关系的综合考查.在圆锥曲线的三种常见曲线中,抛物线是最容易的,而双曲线是最复杂的,所以一般出大题时,要么是单独的椭圆与直线,要么是椭圆与抛物线,直线相结合.这一类型题目,是大题中比较有难度的题.。

2011年全国高考文科数学试题及答案(含解析)-全国2

2011年全国高考文科数学试题及答案(含解析)-全国2

绝密★使用完毕前 2011年6月7日15:00~17:00 あ★珍爱★ゑ2011年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B •=• 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径P ()(1)(0,1,2,,)k k n k n n k C p p k n -=-=L一、选择题(1)设集合}4,3,2,1{=U ,}3,2,1{=M ,}4,3,2{=N ,则=)(N M C u I(A ){}12, (B ){}23,(C ){}2,4 (D ){}1,4 (2)函数0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量b a ,满足21,1-=•==b a b a 则2a b += (A )2 (B )3 (C )5 (D )7(4)若变量x 、y 满足约束条件6321x y x y x +⎧⎪-≤⎨⎪≥⎩p ,则y x z 32+=的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k =(A ) 8 (B ) 7 (C ) 6 (D ) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (8)已知直二面角βα--l , 点,α∈A ,l AC ⊥ C 为垂足,,β∈B l BD ⊥,D为垂足,若2=AB , 1==BD AC ,则CD=( )(A )2 (B )3 (C ) 2 (D ) 1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A )12种 (B )24种 (C )30种 (D )36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A ) -12 (B )1 4- (C )14 (D )12 (11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A )4 (B )42 (C )8 (D )82(12)已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A )7π (B )9π (C )11π (D )13π绝密★使用完毕前 2011年6月7日15:00~17:00 あ★珍爱★ゑ2011年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2011年浙江高考数学试题(文科)

2011年浙江高考数学试题(文科)

20111年10月5日风和日丽重阳节浑浑噩噩的过完了十一黄金周的前五天,充斥的无非是睡觉,扑克,电影,原来的计划是去旅游,旅游周立波这样说;“旅游无非是从自己活腻的地方到别人活腻的地方。

”想了想说的也有道理。

也说不出为什么就蹦出了一个写电子日记的想法,呵呵,我希望我能坚持下去,把它作为我的一个习惯。

同样今天是重阳节,可是遍插茱萸少的不只是一个人,今天有给妈妈打电话,每次能听出她的心情,今天她是高兴的。

希望每天他们都高兴吧!文档收集自网络,仅用于个人学习希望明天过得和前五天有所不同,呵呵!2011年10月6日《西风烈》充斥着戈壁,硬汉,血腥,暴力,最后还是邪恶与正义的斗争。

身手好只是其一,少不了的还有毅力,责任,智慧和友谊。

“命运是后悔可以改变的吗?”最后一句中国也能拍出这样的片子不容易,我喜欢!嘿嘿!最后我看得挺感动的,那就是警察。

那就是男人。

那就是心里的信念,好好珍惜现在的。

也许在下一秒他就会失去。

文档收集自网络,仅用于个人学习2011年10月7日(十一长假最后一天)我承认我过了一个颓废的十一,过的我只剩下睡觉,怎么说一,没有钱。

二,没人陪。

所以我选择一个人。

这个理由是不是很蛋疼?不知道为什么我又想改变一下自己,变会高中的我,每天看各种的书,各种睡觉,为什么我来到了这个不适合我的大学,我现在有点接受不了她了。

不说她了说就蛋疼。

文档收集自网络,仅用于个人学习最近我和一个我们部大一的女生走得很近,也许会有下文,我也不知道这是对还是错,我好想也有顾虑,唉,这也是一件蛋疼的是!文档收集自网络,仅用于个人学习当你做对的时候没有人回记得你,当你做错的时候,连呼吸都是错的。

错就错吧,但是最好不要错过。

谁让咱们年轻那,是吧?文档收集自网络,仅用于个人学习2011年10月8日突降大雨呀,今天的毛概课,就是催眠曲,最后还说要和我们互动,你以为你是明星啊,唉。

我的运气不好,午打球下巴被打到了,现在还在疼啊!呜呜,以后不打篮球了。

2011年全国高考文科数学试题及答案(含解析)-全国2

2011年全国高考文科数学试题及答案(含解析)-全国2

绝密★使用完毕前 2011年6月7日15:00~17:00 あ★珍爱★ゑ2011年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合}4,3,2,1{=U ,}3,2,1{=M ,}4,3,2{=N ,则=)(N M C u(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)权向量b a ,满足21,1-=∙==b a b a 则2a b +=(A (B (C (D(4)若变量x 、y 满足约束条件6321x y x y x +⎧⎪-≤⎨⎪≥⎩,则y x z 32+=的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2,224k k S S +-=,则k =(A ) 8 (B ) 7 (C ) 6 (D ) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (8)已知直二面角βα--l , 点,α∈A ,l AC ⊥ C 为垂足,,β∈B l BD ⊥,D 为垂足,若2=AB ,1==BD AC ,则CD=( )(A )2 (B )3 (C ) 2 (D ) 1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A )12种 (B )24种 (C )30种 (D )36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A ) -12 (B )1 4- (C )14 (D )12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A )4 (B) (C )8 (D)(12)已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A )7π (B )9π (C )11π (D )13π 绝密★使用完毕前 2011年6月7日15:00~17:00 あ★珍爱★ゑ2011年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2011年全国统一高考数学试卷(文科)(新课标)(含解析版)

2011年全国统一高考数学试卷(文科)(新课标)(含解析版)

22.( 10 分)如图, D,E 分别为△ ABC的边 AB,AC 上的点,且不与△ ABC 的顶点重合.已知 AE
第 3 页(共 15 页)
的长为 m, AC的长为 n, AD, AB的长是关于 x 的方程 x2﹣ 14x+mn=0 的两个根. (Ⅰ)证明: C,B,D,E 四点共圆; (Ⅱ)若∠ A=90°,且 m=4, n=6,求 C, B, D, E 所在圆的半径.
A.120
B.720
C.1440
D.5040
6.(5 分)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可
能性相同,则这两位同学参加同一个兴趣小组的概率为(

A.
B.
C.
D.
7.(5 分)已知角 θ的顶点与原点重合, 始边与 x 轴的正半轴重合, 终边在直线 y=2x上,则 cos2 θ= ()
【考点】 K4:椭圆的性质. 【专题】 11:计算题. 【分析】 根据椭圆的方程,可得 a、b 的值,结合椭圆的性质,可得 c 的值,有椭圆的离心率公式,
计算可得答案.
【解答】 解:根据椭圆的方程
=1,可得 a=4,b=2 ,
则 c=
=2 ;
第 5 页(共 15 页)
则椭圆的离心率为 e= = , 故选: D. 【点评】 本题考查椭圆的基本性质: a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质
A.18
B.24
C. 36
D. 48
10.( 5 分)在下列区间中,函数 f(x)=ex+4x﹣3 的零点所在的区间为(

A.( , )
B.(﹣ ,0)
C.(0, )

2011年普通高等学校招生全国统一考试文科数学试题及答案详解

2011年普通高等学校招生全国统一考试文科数学试题及答案详解
2011 年普通高等学校招生全国统一考试文科数学试题及答案详解
2011 年普通高等学校招生全国统一考试(浙江卷) 数 学 (文科)
选择题部分(共 50 分)
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每小题给也的四个选 项中,只有一项是符合题目要求的。 (1) 若 P { x x 1}, Q{ x x 1} ,则
ex (2ax b ax2
bx c) ,
又∴ x 1为 f (x)ex 的一个极值点,
∴ F ( 1) e2 ( a c) 0 ,即 a c ,

b 2 4ac b 2 4a 2 ,
当 0 时, b 2a ,即对称轴所在直线方程为 x 1;

0 时, | b | 1 ,即对称轴所在直线方程应大于 1 或小于- 1.
2a
非选择题部分 (共 100 分) 考生注意事项
请用 0.5 毫米黑色墨水签字笔或钢笔将答案写在答题纸上,不能.答.在.试.题.卷.上.. 若需在答题纸上作图,可先使用铅笔作图,确定后必须使用黑色字迹的签字笔
或钢笔描黑 二、填空题:本大题共 7 小题,每小题 4 分,共 28 分。 (11)设函数 k f (x) 4 ,若 f (a) 2 ,则实数 a =________________________
p
1
C
3 3
C
3 5
9
.
10
(9)已知椭圆
C1 :
x2 a2
y2 b2
1 (a>b> 0)与双曲线 C2 : x2
y2 4
1 有公共的焦点,
C2 的一条渐近线与 C1C2 的长度为直径的圆相交于 A, B 两点 .若 C1 恰好将线段 AB 三

2011年全国统一高考数学试卷(文科)(大纲版)解析版

2011年全国统一高考数学试卷(文科)(大纲版)解析版

2011年全国统一高考数学试卷(文科)(大纲版)解析版参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合{1U =,2,3,4},{1M =,2,3},{2N =,3,4},则()(U MN =ð)A .{1,2}B .{2,3}C .{2,4}D .{1,4}【考点】1H :交、并、补集的混合运算 【专题】11:计算题【分析】先根据交集的定义求出MN ,再依据补集的定义求出()U MN ð.【解答】解:{1M =,2,3},{2N =,3,4},{2MN ∴=,3},则(){1U MN =ð,4},故选:D .【点评】本题考查两个集合的交集、补集的定义,以及求两个集合的交集、补集的方法.2.(5分)函数0)y x =…的反函数为( ) A .2()4xy x R =∈B .2(0)4x y x =…C .24()y x x R =∈D .24(0)y x x =…【考点】4R :反函数 【专题】11:计算题【分析】由原函数的解析式解出自变量x 的解析式,再把x 和y 交换位置,注明反函数的定义域(即原函数的值域). 【解答】解:20)y x x =…,24y x ∴=,0y …,故反函数为2(0)4xy x =….故选:B .【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)设向量a 、b 满足||||1a b ==,12a b =-,|2|(a b += )A. BC .D.【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算 【专题】11:计算题【分析】由222|2|(2)44a b a b a a b b +=+=++,代入已知可求 【解答】解:||||1a b ==,12ab =-,222|2|(2)44124a b a b a a b b +=+=++=-+故选:B .【点评】本题主要考查了向量的数量积 性质的基本应用,属于基础试题4.(5分)若变量x 、y 满足约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……,则23z x y =+的最小值为( )A .17B .14C .5D .3【考点】7C :简单线性规划 【专题】31:数形结合【分析】我们先画出满足约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……的平面区域,然后求出平面区域内各个顶点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值. 【解答】解:约束条件6321x y x y x +<⎧⎪--⎨⎪⎩……的平面区域如图所示:由图可知,当1x =,1y =时,目标函数23z x y =+有最小值为5 故选:C .【点评】本题考查的知识点是线性规划,其中画出满足约束条件的平面区域是解答本题的关键.5.(5分)下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+B .1a b >-C .22a b >D .33a b >【考点】29:充分条件、必要条件、充要条件 【专题】5L :简易逻辑【分析】利用不等式的性质得到1a b a b >+⇒>;反之,通过举反例判断出a b >推不出1a b >+;利用条件的定义判断出选项.【解答】解:1a b a b >+⇒>;反之,例如2a =,1b =满足a b >,但1a b =+即a b >推不出1a b >+, 故1a b >+是a b >成立的充分而不必要的条件. 故选:A .【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.6.(5分)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则(k =) A .8B .7C .6D .5【考点】85:等差数列的前n 项和 【专题】11:计算题【分析】先由等差数列前n 项和公式求得2k S +,k S ,将224k k S S +-=转化为关于k 的方程求解.【解答】解:根据题意:22(2)k S k +=+,2k S k = 224k k S S +∴-=转化为:22(2)24k k +-= 5k ∴=故选:D .【点评】本题主要考查等差数列的前n 项和公式及其应用,同时还考查了方程思想,属中档题.7.(5分)设函数()cos (0)f x x ωω=>,将()y f x =的图象向右平移3π个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A .13B .3C .6D .9【考点】HK :由sin()y A x ωϕ=+的部分图象确定其解析式 【专题】56:三角函数的求值 【分析】函数图象平移3π个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果. 【解答】解:()f x 的周期2T πω=,函数图象平移3π个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以23kππω=,k Z ∈.令1k =,可得6ω=.故选:C .【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.8.(5分)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,点B β∈,BD l ⊥,D 为垂足,若2AB =,1AC BD ==,则(CD = )A .2B CD .1【考点】MK :点、线、面间的距离计算 【专题】11:计算题【分析】根据线面垂直的判定与性质,可得AC CB ⊥,ACB ∆为直角三角形,利用勾股定理可得BC 的值;进而在Rt BCD ∆中,由勾股定理可得CD 的值,即可得答案.【解答】解:根据题意,直二面角l αβ--,点A α∈,AC l ⊥,可得AC ⊥面β, 则AC CB ⊥,ACB ∆为Rt △,且2AB =,1AC =,由勾股定理可得,BC在Rt BCD ∆中,BC 1BD =,由勾股定理可得,CD =; 故选:C .【点评】本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.9.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( ) A .12种B .24种C .30种D .36种【考点】3D :计数原理的应用 【专题】11:计算题【分析】本题是一个分步计数问题,恰有2人选修课程甲,共有24C 种结果,余下的两个人各有两种选法,共有22⨯种结果,根据分步计数原理得到结果. 【解答】解:由题意知本题是一个分步计数问题,恰有2人选修课程甲,共有246C =种结果, ∴余下的两个人各有两种选法,共有224⨯=种结果,根据分步计数原理知共有6424⨯=种结果 故选:B .【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.10.(5分)设()f x 是周期为2的奇函数,当01x 剟时,()2(1)f x x x =-,则5()(2f -=) A .12-B .14-C .14D .12【考点】3I :奇函数、偶函数;3Q :函数的周期性 【专题】11:计算题【分析】由题意得 51()(22f f -=- 1)()2f =-,代入已知条件进行运算.【解答】解:()f x 是周期为2的奇函数,当01x 剟时,()2(1)f x x x =-, ∴51()(22f f -=- 11)()222f =-=-⨯1(12- 1)2=-,故选:A .【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.11.(5分)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12||(C C =)A .4B .C .8D .【考点】1J :圆的标准方程 【专题】5B :直线与圆【分析】圆在第一象限内,设圆心的坐标为(,)a a ,(,)b b ,利用条件可得a 和b 分别为210170x x -+= 的两个实数根,再利用韦达定理求得两圆心的距离212||2()C C a b -的值.【解答】解:两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),故圆在第一象限内, 设两个圆的圆心的坐标分别为(,)a a ,(,)b b ,由于两圆都过点(4,1),||a ,||b =, 故a 和b 分别为222(4)(1)x x x -+-= 的两个实数根,即a 和b 分别为210170x x -+= 的两个实数根,10a b ∴+=,17ab =,22()()432a b a b ab ∴-=+-=,∴两圆心的距离212||()8C C a b -=,故选:C .【点评】本题考查直线和圆相切的性质,两点间的距离公式、韦达定理的应用,属于基础题.12.(5分)已知平面α截一球面得圆M ,过圆心M 且与α成60︒二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7πB .9πC .11πD .13π【考点】MJ :二面角的平面角及求法 【专题】11:计算题;16:压轴题【分析】先求出圆M 的半径,然后根据勾股定理求出求出OM 的长,找出二面角的平面角,从而求出ON 的长,最后利用垂径定理即可求出圆N 的半径,从而求出面积. 【解答】解:圆M 的面积为4π∴圆M 的半径为2根据勾股定理可知OM =过圆心M 且与α成60︒二面角的平面β截该球面得圆N30OMN ∴∠=︒,在直角三角形OMN 中,ON∴圆N 则圆的面积为13π 故选:D .【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)10(1)x -的二项展开式中,x 的系数与9x 的系数之差为: 0 . 【考点】DA :二项式定理 【专题】11:计算题【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数分别取1;9求出展开式的x 的系数与9x 的系数;求出两个系数的差.【解答】解:展开式的通项为110(1)r r rr T C x +=- 所以展开式的x 的系数10-9x 的系数10-x 的系数与9x 的系数之差为(10)(10)0---=故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知3(,)2a ππ∈,tan 2α=,则cos α= . 【考点】GG :同角三角函数间的基本关系 【专题】11:计算题【分析】先利用α的范围确定cos α的范围,进而利用同脚三角函数的基本关系,求得cos α的值.【解答】解:3(,)2a ππ∈, cos 0α∴<cos α∴==故答案为:【点评】本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号.15.(5分)已知正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线AE 与BC 所成的角的余弦值为23. 【考点】LM :异面直线及其所成的角【专题】11:计算题;16:压轴题;31:数形结合;35:转化思想【分析】根据题意知//AD BC ,DAE ∴∠就是异面直线AE 与BC 所成角,解三角形即可求得结果.【解答】解:连接DE ,设2AD = 易知//AD BC ,DAE ∴∠就是异面直线AE 与BC 所成角,在RtADE ∆中,由于DE =,2AD =,可得3AE = 2cos 3AD DAE AE ∴∠==,故答案为:23.【点评】此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.16.(5分)已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = 6 . 【考点】KC :双曲线的性质 【专题】16:压轴题【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径. 【解答】解:不妨设A 在双曲线的右支上AM 为12F AF ∠的平分线∴1122||||82||||4AF F M AF MF === 又12||||26AF AF a -== 解得2||6AF = 故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.三、解答题(共6小题,满分70分)17.(10分)设等比数列{}n a 的前n 项和为n S ,已知26a =,13630a a +=,求n a 和n S . 【考点】88:等比数列的通项公式;89:等比数列的前n 项和 【专题】54:等差数列与等比数列【分析】设出等比数列的公比为q ,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n 项和的公式即可. 【解答】解:设{}n a 的公比为q ,由题意得: 12116630a q a a q =⎧⎨+=⎩, 解得:132a q =⎧⎨=⎩或123a q =⎧⎨=⎩,当13a =,2q =时:132n n a -=⨯,3(21)n n S =⨯-; 当12a =,3q =时:123n n a -=⨯,31n n S =-.【点评】此题考查学生灵活运用等比数列的通项公式及前n 项和的公式化简求值,是一道基础题.18.(12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin sin sin a A c C C b B +=,(Ⅰ)求B ;(Ⅱ)若75A =︒,2b =,求a ,c . 【考点】HU :解三角形 【专题】11:计算题【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得cos B 的值,进而求得B .(Ⅱ)利用两角和公式先求得sin A 的值,进而利用正弦定理分别求得a 和c . 【解答】解:(Ⅰ)由正弦定理得222a c b +=, 由余弦定理可得2222cos b a c ac B =+-,故cos B =45B =︒(Ⅱ)sin sin(3045)sin30cos45cos30sin 45A =︒+︒=︒︒+︒︒故sin 1sin A a b B =⨯==sin2sinCc bB∴=⨯==【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【考点】5C:互斥事件的概率加法公式;CN:二项分布与n次独立重复试验的模型【专题】5I:概率与统计【分析】()I设该车主购买乙种保险的概率为P,由相互独立事件概率公式可得(10.5)0.3P-=,解可得p,先求出该车主甲、乙两种保险都不购买的概率,由对立事件的概率性质计算可得答案.()II该地的3位车主中恰有1位车主甲、乙两种保险都不购买,是一个n次独立重复试验恰好发生k次的概率,根据上一问的结果得到该地的一位车主甲、乙两种保险都不购买的概率,代入公式得到结果.【解答】解:()I设该车主购买乙种保险的概率为p,根据题意可得(10.5)0.3p⨯-=,解可得0.6p=,该车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2--=,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率10.20.8-=()II每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率1230.20.80.384P C=⨯⨯=.【点评】本题考查互斥事件的概率公式加法公式,考查n次独立重复试验恰好发生k次的概率,考查对立事件的概率公式,是一个综合题目.20.(12分)如图,四棱锥S ABCD-中,//AB CD,BC CD⊥,侧面SAB为等边三角形,2AB BC==,1CD SD==.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW :直线与平面垂直;MI :直线与平面所成的角 【专题】11:计算题;14:证明题【分析】(1)利用线面垂直的判定定理,即证明SD 垂直于面SAB 中两条相交的直线SA ,SB ;在证明SD 与SA ,SB 的过程中运用勾股定理即可(Ⅱ)求AB 与平面S B C 所成的角的大小即利用平面S B C 的法向量n A B 与间的夹角关系即可,当n AB 与间的夹角为锐角时,所求的角即为它的余角;当n AB 与间的夹角为钝角时,所求的角为,2n AB π<>-【解答】(Ⅰ)证明:在直角梯形ABCD 中, //AB CD ,BC CD ⊥,2AB BC ==,1CD =AD ∴==侧面SAB 为等边三角形,2AB = 2SA ∴= 1SD =222AD SA SD ∴=+ SD SA ∴⊥同理:SD SB ⊥ SASB S =,SA ,SB ⊂面SABSD ∴⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则(2A ,1-,0),(2B ,1,0),(0C ,1,0),作出S 在底面上的投影M ,则由四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形知,M 点一定在x 轴上,又2AB BC ==,1CD SD ==.可解得12MD =,从而解得SM =1(2S ,0则331(,1,),(,1,22SB SC =-=-设平面SBC 的一个法向量为(,,)n x y z = 则0SB n=,0SCn = 即302102x y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩ 取0x =,y =,1z = 即平面SBC 的一个法向量为(,,)(0n x y z ==,1) 又(0AB =,2,0)cosAB <,3||||7AB n n ABn >===AB ∴<,n >= 即AB 与平面SBC 所成的角的大小为【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.21.(12分)已知函数32()3(36)124()f x x ax a x a a R =++-+-∈ (Ⅰ)证明:曲线()y f x =在0x =处的切线过点(2,2);(Ⅱ)若()f x 在0x x =处取得极小值,0(1,3)x ∈,求a 的取值范围.【考点】6E :利用导数研究函数的最值;6H :利用导数研究曲线上某点切线方程 【专题】11:计算题;16:压轴题【分析】(Ⅰ)求出函数()f x 在0x =处的导数和(0)f 的值,结合直线方程的点斜式方程,可求切线方程;(Ⅱ)()f x 在0x x =处取得最小值必是函数的极小值,可以先通过讨论导数的零点存在性,得出函数有极小值的a 的大致取值范围,然后通过极小值对应的0(1,3)x ∈,解关于a 的不等式,从而得出取值范围【解答】解:(Ⅰ)2()3636f x x ax a '=++- 由(0)124f a =-,(0)36f a '=-,可得曲线()y f x =在0x =处的切线方程为(36)124y a x a =-+-, 当2x =时,2(36)1242y a a =-+-=,可得点(2,2)在切线上∴曲线()y f x =在0x =的切线过点(2,2)(Ⅱ)由()0f x '=得 22120x ax a ++-=⋯(1)方程(1)的根的判别式244(12)4(1(1a a a a =--=+++①当11a 剟时,函数()f x 没有极小值②当1a <或1a >时,由()0f x '=得12x a x a =--=-+故02x x =,由题设可知13a <-<()i 当1a >时,不等式13a <-没有实数解;()ii 当1a <时,不等式13a <-+<化为13a a +<<+,解得512a -<<综合①②,得a 的取值范围是5(,1)2-【点评】将字母a 看成常数,讨论关于x 的三次多项式函数的极值点,是解决本题的难点,本题中处理关于a 的无理不等式,计算也比较繁,因此本题对能力的要求比较高.22.(12分)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于A 、B 两点,点P 满足0OA OB OP ++=. (Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【考点】9S :数量积表示两个向量的夹角;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题;35:转化思想【分析】(1)要证明点P 在C 上,即证明P 点的坐标满足椭圆C 的方程2212y x +=,根据已知中过F 且斜率为l 与C 交于A 、B 两点,点P 满足0OA OB OP ++=,我们求出点P 的坐标,代入验证即可.(2)若A 、P 、B 、Q 四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设1(A x ,1)y ,2(B x ,2)y椭圆22:12y C x +=①,则直线AB 的方程为:1y =+②联立方程可得2410x --=,则12x x +,1214x x ⨯=-则1212)21y y x x +=++= 设1(P p ,2)p ,则有:10(A x =,1)y ,20(B x =,2)y ,10(P p =,2)p ;∴1200(A B x x +=+,12)(2y y +=,1);10(P p =,2)(00)(2p A B =-+=,1)-p ∴的坐标为(1)-代入①方程成立,所以点P 在C 上.(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.设线段AB 的中点坐标为12(2x x +,12)2y y +,即1)2,则过线段AB 的中点且垂直于AB 的直线方程为:12y x -=,即14y x =+;③ P 关于点O 的对称点为Q ,故0(0.0)为线段PQ 的中点,则过线段PQ 的中点且垂直于PQ 的直线方程为:y x =④;③④联立方程组,解之得:8x =,18y =③④的交点就是圆心1(O ,1)8,22221199||(((1)864r O P ==-+--=故过P Q 两点圆的方程为:22199(()864x y ++-=⋯⑤,把1y =+ ⋯②代入⑤,有122x x +=,121y y += A ∴,B 也是在圆⑤上的.A ∴、P 、B 、Q 四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.。

2011年高考新课标卷文科数学试题(解析版)

2011年高考新课标卷文科数学试题(解析版)

2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =. (Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD 。

2011年浙江高考数学试题(文科)

2011年浙江高考数学试题(文科)

2011年浙江高考数学试题(文科)
一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给也的四个选项中,只有一项是符合题目要求的。

(1)若{1},{1}P x x Q x x ,则()
(A )P Q (B )Q P (C )R C P Q (D )R Q C P
(2)若复数1z i ,i 为虚数单位,则(1)i z ()
(A )13i (B )33i (C )3i (D )3
x +2y -5≥0
(3)若实数x ,y 满足不等式组 2x +y -7≥0,则3x :4y 的最小值是()
x ≥0,y ≥0
(A)13 (B)15 (C)20 (D)28
(4)若直线l 不平行于平面a ,且l a ,则()
(A) a 内存在直线与异面
(B) a 内不存在与l 平行的直线
(C) a 内存在唯一的直线与l 平行
(D) a 内的直线与l 都相交
(5)在ABC 中,角A,B,C,所对的边分别为a,b,c.若cos sin a A b B ,则2s i n c o s c o s A A B ()
(A)- 12(B) 1
2(C) -1 (D) 1
(6)若,a b 为实数,则“01ab ”是“1
b a ”的()
(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
(7)几何体的三视图如图所示,则这个几何体的直观图可以是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年浙江省高考数学文科卷解析版一、选择题:本大题共10小题,每小题5分,共50分. (1)若{1},{1}P x x Q x x =<>,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆(2)若复数1z i =+,i 为虚数单位,则(1)i z +⋅=A .13i +B .33i +C .3i -D .3【答案】 A【解析】:22(1)1(1)z z z z i i +⋅=+=+++2112i i i =++++112113i i i =+++-=+ (3)若实数x ,y 满足不等式组250,270,0,0,x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩则3x +4y 的最小值是A .13B .15C .20D .28【答案】 A【解析】:作出可行域,25032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得, min 334113z A =⨯+⨯=故选 (4)若直线l 不平行于平面a ,且l a ∉,则A .a 内的所有直线与异面B .a 内不存在与l 平行的直线C .a 内存在唯一的直线与l 平行D .a 内的直线与l 都相交 【答案】 B 【解析】:直线l 不平行于平面a ,l a ⊄所以l 与a 相交(5)在A B C ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=A .-12B .12C . -1D .1(6)若,a b 为实数,则 “0<ab <1”是“b <a1”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(7)几何体的三视图如图所示,则这个几何体的直观图可以是【答案】 B 【解析】:A ,C 与正视图不符,D 与俯视图不符(8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是A .110B .310C .35D .910【答案】 D【解析】:无白球的概率是3335110c c=,∴至少有1个白球的概率为19111010p -=-=(9)已知椭圆22122:1x y C ab+=(a >b >0)与双曲线 222:14yC x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段A B 三等分,则 (A )2132a =(B )2a =13 (C )212b =(D )2b =2(10)设函数()()2,,f x ax bx c a b c R =++∈,若1x =-为函数()2f x e 的一个极值点,则下列图象不可能为()y f x =的图象是【答案】 D【解析】:()2f x ax b '=+,令()()x g x f x e =则()()()x x g x f x e f x e ''=+()(())xf x f x e '=+22(2)[(2)()]x xax b ax bx c e ax a b x b c e =++++=++++,因为1x =-为函数()g x 的一个极值点,所以1x =-是2(2)()0ax a b x b c ++++=的一个根,即2(2)(1)()0(2)4()0a ab bc a b a b c ++-++=⎧⎨=+-+>⎩于是0a cb =⎧⎨≠⎩,()12f a b c a b -=-+=-,22244(2)(2)b ac b a b a b a =-=-=-+()120f a b -=-=则0= 故A 、B 可能;对于D ,()120f a b -=->,0a >,则0b >于是0< 出现矛盾,不可能,故选D二、填空题:本大题共7小题,每小题4分,共28分. (11)设函数k 4()1f x x =+ ,若()2f a =,则实数a =____________【答案】1- 【解析】:421211a a a=⇒-=⇒=--(12)若直线250x y -+=与直线260x my +-=互相垂直,则实数m =___________ 【答案】1 【解析】:121212,,12k k k k m==-∴⋅=- 直线互相垂直,,即12()1,12m m⋅-=-∴=(13)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测3000名学生在该次数学考试中成绩小于60分的学生数是___600__________(14)某程序框图如图所示,则该程序运行后输出的k 的值是___________.(15)若平面向量α、β 满足11αβ=≤,且以向量α、β为邻边的平行四边形的面积为12,则α和β的夹角 θ的取值范围是_________________.(16)若实数,x y 满足221x y xy ++=,则x y +的最大值是___________.3【解析】::222221()1()()12x y x y xy x y xy x y +++=⇒+-=⇒+-≤3x y ⇒+≤(17)若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =___________.【答案】4【解析】:2(4)()3nn a n n =+则112(1)(5)()2(1)(5)323(4)(4)()3n n n nn n a n n a n n n n ++++++==++于是22(1)(5)3(4)10n n n n n ++-+=-+令2100n -+>得n <<,则11n na a +>,4n <时递增,令2100n -+<得n >11n na a +<,4n ≥时递减,故4n =是最大项,即4k =三、解答题,共72分.解答应写出文字说明、证明过程或演算步骤.(18)(本题满分14分)已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像,如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A . (Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23P R Q π∠=,求A 的值.【命题意图】本题主要考查三角函数的图象与性质、三角运算等基础知识. 【解析】(Ⅰ)解:由题意得,2 6.3T ππ==因为(,)sin()3P A y A x πϕ=+在的图象上, 所以sin(,) 1.3πϕ+=又因为02πϕ<<,所以6πϕ=(Ⅱ)解:设点Q 的坐标为0(,)x A - 由题意可知03362x πππ+=,得04,(4,)x Q A =-所以连接PQ ,在2,3P R Q P R Q π∆∠=中,由余弦定理得2222221cos .22RP RQ PQPRQ RP RQ+-∠===-⋅解得23.A =又0,A A >=所以(19)(本题满分14分)已知公差不为0的等差数列}{n a 的首项为)(R a a ∈,且11a ,21a ,41a 成等比数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)对*N n ∈,试比较n aaaa 2322221...111++++与11a 的大小.【命题意图】本题主要考查等差、等比数列的概念以及通项公式,等比数列的求和公式等基础知识,同时考查运算求解能力及推理论证能力. 【解析】(Ⅰ)解:设等差数列{}n a 的公差为d ,由题意可知2214111()a a a =⋅即2111()(3)a d a a d +=+,从而21a d d = 因为10,.d d a a ≠==所以故通项公式.n a na =(Ⅱ)解:记22222111,2n nnn T a a a a a =+++= 因为所以211(1())111111122()[1()]1222212nn n n T a a a -=+++=⋅=--从而,当0a >时,11n T a <;当110,.n a T a <>时(20)(本题满分14分)如图,在三棱锥P A B C -中,A B A C =,D 为B C 的中点,P O ⊥平面ABC ,垂足O 落在线段A D 上.(Ⅰ)证明:A P ⊥B C ;(Ⅱ)已知8B C =,4P O =,3A O =,2O D =,求二面角B A P C --的大小. 【命题意图】本题主要考查空间线线、线面、面面位置关系,二面角等基础知识,同时考查空间想象能力和推理论证能力.. 【解析】(Ⅰ)证明:由AB=AC ,D 是BC 中点,得A D B C ⊥,又P O ⊥平面ABC ,得P O B C ⊥因为P O A D O ⋂=,所以B C ⊥平面PAD ,故.B C P A ⊥ (Ⅱ)解:如图,在平面PAB 内作BM PA ⊥于M ,连CM . 因为,BC PA PA ⊥⊥得平面BMC ,所以AP ⊥CM . 故B M C ∠为二面角B —AP —C 的平面角.在222,41,Rt AD B AB AD BD AB ∆=+==中得在222Rt POD PO OD ∆=+中,PD ,在R t P D B ∆中,222PB PD BD =+,所以222236, 6.PB PO O D BD PB =++==得在222,25, 5.Rt PO A PA AO O P PA ∆=+==中得又2221cos ,sin 233PA PB ABBPA BPA PA PB+-∠==∠=⋅从而故sin BM PB BPA =∠=GM = 因为222BMMCBC +=所以90B M C ∠=︒即二面角B —AP —C 的大小为90.︒(21)(本小题满分15分)设函数ax x x a x f +-=22ln )(,0>a (Ⅰ)求)(x f 的单调区间;(Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数.【命题意图】本题主要考查函数的单调性、导数运算法则、导数应用等基础知识,同时考查抽象概括、推理论证能力. 【解析】(Ⅰ)解:因为22()ln .0f x a x x ax x =-+>其中所以2()(2)()2ax a x a f x x a xx-+'=-+=-由于0a >,所以()f x 的增区间为(0,)a ,减区间为(,)a +∞(Ⅱ)证明:由题意得,(1)11,f a c a c =-≥-≥即 由(Ⅰ)知()[1,]f x e 在内单调递增,要使21()[1,]e f x e x e -≤≤∈对恒成立,只要222(1)11,()f a e f e a e ae e =-≥-⎧⎨=-+≤⎩,解得.a e = (22)(本小题满分15分)如图,设P 是抛物线1C :2x y =上的动点.过点P 做圆2C 1)3(:22=++y x 的两条切线,交直线l :3y =-于,A B 两点.(Ⅰ)求2C 的圆心M 到抛物线 1C 准线的距离.(Ⅱ)是否存在点P ,使线段A B 被抛物线1C 在点P 处得切线平分,若存在,求出点P 的坐标;若不存在,请说明理由.【命题意图】本题主要考查抛物线几何性质,直线与抛物线、直线与圆的位置关系,同时考查解析几何的基本思想方法和运算求解能力.满分15分. 【解析】(Ⅰ)解:因为抛物线C 1的准线方程为:14y =-所以圆心M 到抛物线C 1准线的距离为:111|(3)|.44---=(Ⅱ)解:设点P 的坐标为200(,)x x ,抛物线C 1在点P 处的切线交直线l 于点D . 再设A ,B ,D 的横坐标分别为,,A B C x x x 过点200(,)P x x 的抛物线C 1的切线方程为:20002()y x x x x -=-(1)当01x =时,过点P (1,1)与圆C 2的切线P A 为:151(1)8y x -=-可得17,1,1,215A B D A B D x x x x x x =-==-+≠当10-=x 时,过点P (—1,1)与圆C 2的切线P A 为:151(1)8y x -=-可得D B A D B A x x x x x x 2,1,1517,1≠+==-=17,1,1,215A B D A B D x x x x x x =-==-+≠所以2010x -≠设切线PA ,PB 的斜率为12,k k ,则2010:()PA y x k x x -=- (2) 2020:()PB y x k x x -=-(3)将3y =-分别代入(1),(2),(3)得22200000012011333(0);;(,0)2D A B x x x x x x x x x k k x k k -++=≠=-=--≠从而20012112(3)().A B x x x x k k +=-++2|3|1x k x -++=,即22222010010(1)2(3)(3)10x k x x k x --+++-=同理,22222020020(1)2(3)(3)10x k x x k x --+++-=所以12,k k 是方程222220000(1)2(3)(3)10x k x x k x --+++-=的两个不相等的根,从而 22200012122202(3)(3)1,.11x x x k k k k x x ++-+=⋅=--因为02x x x B A =+所以2200012123111112(3)(),.x x x k k x k k x --++=+=即从而20022002(3)1(3)1x x x x +=+-,进而得4008,x x == 综上所述,存在点P 满足题意,点P的坐标为(。

相关文档
最新文档