4.3 复化求积公式
复化求积公式
复化求积公式复化求积公式是计算定积分的一种常用方法。
它的基本思想是将区间分成多个小区间,用每个小区间上的函数近似代替原函数,然后将这些小区间的近似结果相加得到总的近似结果。
这个方法的优点是能够适用于各种函数类型,而且在计算机上也可以很方便地实现。
具体来说,我们可以将区间[a, b]均匀地分成n个小区间,每个小区间的长度都为Δx = (b-a)/n。
然后我们在每个小区间上选择一个点xi(可以是小区间的左端点、右端点、中点等)作为代表,然后计算这些小区间上的函数值f(xi)。
这样我们就得到了n个高度为f(xi)的矩形,它们的面积就是Δx * f(xi)。
将这n个矩形的面积相加,就得到了近似的定积分的结果。
单个小区间的近似结果可以表示为Δx * f(xi)。
为了得到更精确的结果,我们可以进一步增加小区间的数量,即取n趋向于无穷大的极限。
这样,我们就可以得到复化求积公式的一般形式:∫[a, b] f(x) dx ≈ Δx/2 * [f(x0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(xn)]其中,Δx = (b-a)/n,x0 = a,xn = b,xi 是每个小区间上的代表点。
复化求积公式的精确度与小区间的数量n有关,通常情况下,n越大,近似结果越精确。
但是同时也需要注意,小区间的数量过大会导致计算量过大,需要更多的时间和计算资源。
复化求积公式在实际应用中有很重要的作用,特别是在数值计算和科学工程领域。
通过这个方法,我们可以近似地计算各种复杂的函数的定积分,例如概率密度函数、信号处理中的卷积运算等。
同时,复化求积公式也为数值积分提供了一种计算机实现的思路,可以通过编程语言实现自动计算定积分的功能。
总之,复化求积公式是计算定积分的一种重要方法,通过将区间分成多个小区间,用每个小区间上的函数近似代替原函数,并将这些小区间结果相加,从而获得近似结果。
它在实际应用中具有广泛的适用性和指导意义,为求解各种复杂问题提供了一种有效的数值计算方法。
复化求积公式的算法及其应用
复化求积公式的算法及其应用复化求积公式是数值计算方法中重要的一种技术,用于近似计算函数的积分值。
该方法通过将积分区间等分为多个小区间,并在每个小区间上使用求积公式来估计函数在该区间上的积分值。
本文将介绍复化求积公式的算法及其应用。
一、复化求积公式算法1.复化梯形求积公式复化梯形求积公式是复化求积公式中最简单的一种,其基本思想是将积分区间等分为若干个小区间,然后在每个小区间上使用梯形求积公式计算积分值,最后将所有小区间的积分值相加得到最终的积分值。
算法步骤:1)将积分区间[a,b]等分为n个小区间,每个小区间的长度为h=(b-a)/n。
2) 在每个小区间上使用梯形求积公式计算积分值,即Ii=h/2*(f(xi)+f(xi+1)),其中xi=a+i*h,i=0,1,2,...,n-13)将所有小区间的积分值相加得到最终的积分值,即I≈I0+I1+I2+...+In-12. 复化Simpson求积公式复化Simpson求积公式是一种更为精确的复化求积公式,它通过在每个小区间上使用Simpson求积公式来计算积分值,从而提高了计算精度。
算法步骤:1)将积分区间[a,b]等分为n个小区间,每个小区间的长度为h=(b-a)/n。
2) 在每个小区间上使用Simpson求积公式计算积分值,即Ii=h/6*(f(xi)+4f(xi+h/2)+f(xi+h)),其中xi=a+i*h,i=0,1,2,...,n-13)将所有小区间的积分值相加得到最终的积分值,即I≈I0+I1+I2+...+In-1二、复化求积公式应用1.数学分析中的数值积分计算,用于计算函数的定积分值。
2.物理学中的积分计算,用于计算物理量的平均值或总量。
3.统计学中的积分计算,用于计算概率密度函数的面积值。
4.工程学中的积分计算,用于计算工程问题中的各种积分量。
5.金融学中的积分计算,用于计算金融衍生品的价格或价值。
总结:复化求积公式是一种重要的数值计算方法,在数学、物理、统计、工程、金融等领域中有广泛的应用。
复化求积公式
2 定理7 定理 若 f ( x ) ∈ C [a , b ] , 则复化梯形公式的余项为
说明: ) ( 式说明复化梯形公式的余项收敛于零的速度与 说明: 1)(3.3)式说明复化梯形公式的余项收敛于零的速度与 h2收敛于零的速度相同,即余项等 于O(h2)。 收敛于零的速度相同, 。 导数值)确定 (2)余项可由端点的函数值 导数值 确定。 )余项可由端点的函数值(导数值 确定。 3、复化中矩求积公式 (推导类似复化梯形公式) 、 推导类似复化梯形公式) x 1 x 1 x3 上采用中矩形公式, 在 [ x i −1 , x i ]上采用中矩形公式, n− 2 2 2 b − a xi xi −1 + xi , 记h = xn =b x = ∫xi−1 f ( x)dx ≈ h ⋅ f ( 2 ), a=x0 x1 x2 n i = 1,2,L, n 所以
即
∫
b
a
n −1 x i ) + f (b) 2 i =1 2
记
= Tn
( 3 .1)
下面考虑余项,先从每个小区间上考虑余项, 下面考虑余项,先从每个小区间上考虑余项,因为每个小区 间上是N- 公式中当 公式中当n=1时的梯形公式。 时的梯形公式。 间上是 -C公式中当 时的梯形公式
n n
所以 − h∑ f ′′(ξ i ) = −∑ O( h2 ) + f ′(a ) − f ′(b) → f ′(a) − f ′(b), (h → 0),
n
i =1 i =1
即 − h∑ f ′′(ξi ) → f ′(a) − f ′(b) (h →0)。
i=1
#
− (b − a)h2 ∫a f ( x)dxb − Tn = 12 f ′′(ξ ), a < ξ < b, ( 3 . 2 ) ∫a f ( x)dx − Tn → 1 ( f ′(a) − f ′(b)), h → 0。 及渐近估计式 ( 3 .3 ) 2 12 h
4-3复化求积公式
1 n1 min f ( x ) f ( k ) max f ( x ) a xb a xb n k 0
故存在 [a , b] 使
1 n1 f ( ) f ( k ) n k 0
所以复化梯形公式的积分余项为
h3 RTn I Tn nf ( ) 12 ba 2 h f ( ) 12 3 b a [a , b] f ( ) 2 12n
由此解得
n 6616.67
2
所以
n 79
即至少要把区间[1,2]分为79等份。
对本例题的进一步思考:h是否越小越好?
前面介绍的复化求积公式对提高精度是行之 有效的,但使用前必须给出合适的步长h。
h太小则计算量增加
误差有积累,更需计算稳定
h太大则精度不满足
(收敛性)
计算方案:事先估计法 变步长(事后估计) 自适应步长法
2.系数Ak >0,满足 Ak b a ,故方法是稳定的.
k 0
n
三、例题
x
0
f(x)
1 0.9973978
ቤተ መጻሕፍቲ ባይዱ
sin x 举例 对于函数 f ( x ) x , 1/8
试利用下表计算积分
I
1 sin
1/4
3/8 1/2 5/8 3/4 7/8
0.9896158
0.9767267 0.9588510 0.9361556 0.9088516 0.8771925
3*. 复化柯特斯公式 如果将每个小区间[xk,xk+1]四等分,内分点 依次记为 xk 1 , xk 1 , xk 3 ,
4 2 4
则相应地可得复化柯特斯公式。
第五讲 复化求积公式
四、自动选取积分步长
事前确定步长的问题 (1) 高阶导数的估计往往是很困难的; (2) 这种估计往往是很保守的,得到的n往往偏大。 为了改正上述缺点,实际常采用“事后估计法” “事后估计法”的基本思想是 (1) 求数值积分时,将区间逐次分半; (2) 利用前后两次的计算结果来判断误差是否满足精度要求, 从而确定n. 下面以复化梯形公式为例来介绍这种步长逐次减半求积法
1 h n1 T f (x ), n k1 2 2 2k0
如何根据Tn和T2n来确定误差是否满足要求?
(ba ) 2 I Tn ( h f ) 1 2 ba h 2 I T2n ( ( ) f ) 1 2 2
则有
如果二阶导数在区 间[a,b]上变化不大
n 1
R (Tn )
复化simpson公式的截断误差
( 4 ) 若 函 数 f ( x )[ 在 a ,] b 上 连 续 , 则
ba 4 (4) h5 (4) hf ( ) R ( S n ) f ( k ) I Sn 2 8 8 0 8 8 0 k0 2
0 . 9 4 6 0 8 3 2
1 1 C2 [ 7 f( 0 ) [ 3 2 f( x 1) 1 2 f( x 2) 3 2 f( x 3) ] k k k 1 8 0 k 0 4 4 4
1 4 f( x 7 f( 1 ) ] k)
k 1
1
0 . 9 4 6 0 8 3 0
n 1 h [ 7 f ( x ) 3 2 f ( x ) 1 2 f ( x ) 3 2 f ( x ) 7 f ( x ) ] k 1 2 3 k 1 k k k 9 0 k 0 4 4 4
利用数值积分公式求解积分方程 分别用复化求积公式和高斯型求积公式
利用数值积分公式求解积分方程分别用复化求积公式和高斯
型求积公式
数值积分方法通常用于求解无法解析求解的定积分问题,其中复化求积公式和高斯型求积公式是两种常见的数值积分方法。
1. 复化求积公式:
复化求积公式是通过将积分区间等分成多个小区间,并在每个小区间上采用简单的数值积分公式来逼近原积分问题。
常见的复化求积公式包括梯形法则和Simpson法则。
梯形法则:将积分区间[a, b]等分成n个小区间,每个小区间
用梯形面积的方法求解,然后将各个小区间的积分结果相加得到最终的积分近似值。
Simpson法则:将积分区间[a, b]等分成n个小区间,每个小区
间用Simpson公式求解,然后将各个小区间的积分结果相加得到最终的积分近似值。
2. 高斯型求积公式:
高斯型求积公式是通过将积分区间映射为[-1, 1]上的积分问题,然后通过选取合适的节点和权重,将原积分问题转化为有限个加权节点的求和问题。
常见的高斯型求积公式包括Gauss-Legendre公式和Gauss-Hermite公式。
Gauss-Legendre公式:适用于求解定义在[-1, 1]区间上的定积
分问题,根据节点个数的不同,可以得到不同阶数的Gauss-Legendre公式。
Gauss-Hermite公式:适用于求解定义在整个实数轴上的定积分问题,通过选取合适的节点和权重,将原积分问题转化为有限个加权节点的求和问题。
总结:复化求积公式适用于一般的定积分问题,可以通过合理选择划分区间和数值积分公式来提高数值积分的精度。
而高斯型求积公式通常适用于具有特殊形式或定义域的定积分问题,可以通过选取合适的节点和权重来获得较高的数值积分精度。
4.3 复化求积公式
点,将新增加的分点处的函数值从求和记号中分离出来,就有:
b a
n1
n1
T2n
4n
f
(a)
2
k 1
f
(xk )
2
k 0
f
( xk 1
2
)
f
(b)
1 2
h 2
f
(a)
n1
2
k 1
f
(xk )
f
(b)
h 2
n k 0
0
1/4
例4.14 对于函数 f (x) sin x x
试用数据表应用复化梯形法计算积分
1 sin x
I ( f ) 0 x dx
2/4
x 0 1/8
解 将区间[0,1]划分为n=8等分,h=1/8, 应 2/8
用复化梯形法求得
3/8
T8
h 2
f
7
(a) 2
k 1
f
(xk )
x
k
1
)
2
f
( xk 1)]
xk
x k1
x k 1
2
b
n1
f (x)dx
xk1 f (x)dx
a
x k 0 k
4 4
xk 1 xk 6
m1 f
k0
xk
4f
(
x
k
1
)
2
f
( xk 1 )
4
4
4
称Sn为复化 Simpson公式
数值计算方法 复化求积公式 - 复化求积公式
nn
(t
0 j0
j )dt
jk
柯
特点: 插值型的、节点等距
特 斯
存在问题: 节点较多时,高次插值的不稳定导致高阶N-
公
K
式
解决办法公:式的复不化稳求定积。
复化求积法:区间分成若干子区间,在每个子区间上用低 阶求积公式。
N=1时的牛-柯公式
1
梯 形 公 式 T b a f a f b
牛 顿 -
xk1 xk
f
( x )dx
h[ 2
f
(xk )
f
(
xk
1
)]
h3 12
f ''(k )
k [ xk , xk1]
求和可得
I
b
n1
f (x)dx
xk1 f ( x )dx
a
k0 xk
h 2
n1
[
k0
f
(
xk
)
f ( xk1)]
Rn ( f )
2
记
Tn
h 2
n1 k0
[
f
(
xk
)
f ( xk1)]
b
lim
n
T
n
a
f ( x)dx,
复 化
事实上
h n1
Tn
2
[
k0
f
(
xk
)
Hale Waihona Puke f ( xk1 )]梯 形 公
1 b a n1
ba n
2 n
f (xk )
k0
n
f ( xk ).
k 1
式 的 收
lim
第二节复化求积公式和龙贝格求积公式
Tn )
对于复化辛蒲生公式、柯特斯公式可以类似得到
I
S2n
1 42 1(S2n
Sn )
1 I C2n 43 1 (C2n Cn )
不足
收敛速度慢
应用步长逐次减半得到的复化梯形值、复化 辛蒲生值、复化柯特斯值与精确值的比较
I
T2n
1 4 1(T2n
Tn )
n1
Sn (
f
)
6
f
(a)
4
k0
f
(
x
k
1 2
)
2
k
1
f
( xk )
f
(b)
复化梯形公式(n
=
8),h
1 8
0.946083070367
T8 (
f
)
1
2
8
f
(0)
2
f
1 (
)
8
f
(
1 )
4
3 f( )
8
f
(1) 2
f (5) 8
f
(3) 4
f
(
7 8
)
f
(1)
0.945692
复化辛蒲生公式(n
=
4),h
1 4
S4 (
f
)
1 64
f
(0)
4
f (1) 8
f
(3) 8
f
(5) 8
复化求积公式
复化求积公式复化求积复化求积是数值计算中一种常用的数值积分方法,用于近似计算函数的定积分。
1. 方法介绍复化求积的基本思想是将要求解的定积分区间划分为若干个小区间,并对每个小区间采用数值积分方法进行近似计算,最后将各小区间的积分结果相加得到整个定积分的近似值。
2. 公式列表以下是复化求积的常用公式:矩形公式矩形公式是最简单的复化求积公式,将每个小区间近似为一个矩形,并取矩形的高度为该小区间上函数值的平均值。
矩形公式的表达式如下:∫[a, b] f(x) dx ≈ (b - a) * (f(a) + f(b)) / 2其中,a和b为积分区间的上下限。
梯形公式梯形公式是复化求积中常用的公式,将每个小区间近似为一个梯形,并取梯形的高度为该小区间上函数值的平均值。
梯形公式的表达式如下:∫[a, b] f(x) dx ≈ (b - a) * (f(a) + f(b)) / 2其中,a和b为积分区间的上下限。
辛普森公式辛普森公式是复化求积中精度更高的公式,将每个小区间近似为一个二次曲线,并取二次曲线的高度为该小区间上函数值的平均值。
辛普森公式的表达式如下:∫[a, b] f(x) dx ≈ (b - a) * (f(a) + 4 * f((a + b) / 2) + f(b)) / 6其中,a和b为积分区间的上下限。
3. 示例说明以求解函数f(x) = x^2在区间[0, 1]上的定积分为例,通过复化求积方法进行近似计算。
矩形公式计算将区间[0, 1]划分为n个小区间,每个小区间的宽度为h = (1 - 0) / n。
利用矩形公式计算每个小区间的积分值,然后将所得结果相加。
∫[0, 1] x^2 dx ≈ (1 - 0) * (f(0) + f(1)) / 2= (1 - 0) * (0^2 + 1^2) / 2= 1/2梯形公式计算同样将区间[0, 1]划分为n个小区间,每个小区间的宽度为h = (1 - 0) / n。
复化求积公式课程设计
复化求积公式课程设计一、课程目标知识目标:1. 理解复化求积公式的概念和基本原理;2. 掌握复化求积公式的推导过程;3. 学会运用复化求积公式解决数值积分问题;4. 能够分析复化求积公式的误差来源及改进方法。
技能目标:1. 培养学生运用数学软件或计算器进行复化求积运算的能力;2. 提高学生解决实际数值积分问题的计算技巧;3. 培养学生将复化求积公式应用于其他数学及物理问题的能力。
情感态度价值观目标:1. 培养学生对数学学习的兴趣和热情,增强自信心;2. 培养学生团队合作精神,学会倾听、交流、分享;3. 培养学生严谨的科学态度,敢于面对和克服困难;4. 培养学生运用数学知识解决实际问题的意识和责任感。
课程性质:本课程属于数学学科,以高中数学知识为基础,重点讲解复化求积公式及其应用。
学生特点:学生具备一定的数学基础,具有较强的逻辑思维能力和抽象思维能力。
教学要求:通过本课程的学习,使学生能够掌握复化求积公式的推导和应用,提高解决实际问题的能力,同时培养良好的情感态度价值观。
在教学过程中,注重理论与实践相结合,充分调动学生的积极性,激发学生的学习兴趣。
教学设计和评估将围绕课程目标的实现进行,确保学生达到预期学习成果。
二、教学内容1. 引入数值积分的概念,回顾牛顿-莱布尼茨公式及其局限性;2. 讲解复化求积公式的原理,包括复合梯形公式、复合辛普森公式等;3. 详细推导复化求积公式的过程,并通过示例展示其应用;4. 分析复化求积公式的误差,探讨提高精度和稳定性的方法;5. 介绍数学软件(如MATLAB、Python等)在复化求积运算中的应用;6. 结合实际案例,让学生运用复化求积公式解决具体数值积分问题;7. 总结复化求积公式在数学及物理领域中的应用,拓展学生视野。
教学内容安排和进度:第一课时:回顾数值积分概念,引入复化求积公式;第二课时:讲解复化求积公式原理,进行公式推导;第三课时:分析误差来源,提高精度和稳定性方法;第四课时:数学软件在复化求积运算中的应用;第五课时:实际案例分析与讨论;第六课时:总结复化求积公式应用,拓展学生视野。
复化求积公式的算法及其应用
摘要在数值计算中,低阶牛顿柯特斯求积方法存在很多缺陷,从余项公式可以看出其要求提高求积公式的代数精度,必须增加结点个数,会导致插值多项式出现龙格现象,且数值稳定性不能保证.基于以上原因,我们往往采用复化求积方法,此方法不仅可以克服以上缺点而且便于在计算机上实现,值得研究和学习.在本课程设计中,我们首先从复化求积公式的思想引入,然后详细介绍复化梯形求积公式、复化辛普森求积公式和复化柯特斯求积公式的推导过程和相关性质,再对三种求积公式进行比较和总结,其次画出三种求积公式的流程图,最后通过求解例题写出三种求积算法的程序设计.关键词复化求积算法;流程图;程序设计目录引言 (1)第一章复化求积算法 (2)§1.1复化求积公式 (2)§1.1复化求积公式的思想 (3)§1.2复化求积公式的构造 (3)§1.2复化梯形求积公式 (3)§1.2.1复化梯形求积公式的推导过程 (3)§1.2.2复化梯形求积公式的性质 (3)§1.3复化辛普森求积公式 (4)§1.3.1复化辛普森求积公式的推导过程 (4)§1.3.2复化辛普森求积公式的性质 (4)§1.4复化柯特斯求积公式 (5)§1.4.1复化柯特斯求积公式的推导过程 (5)§1.4.2复化柯特斯求积公式的性质 (5)§1.5三种复化求积公式的比较及总结 (6)第二章复化求积公式算法的流程图及其应用 (9)§2.1 流程图 (9)§2.2 应用 (12)参考文献 (15)附录A (16)附录B (17)附录C (18)引言积分计算在分析数学领域里是个古老的问题,在数值分析中已被广泛应用.但在计算机上却不能像在分析数学中那样,用原函数[满足)()('x f x F =的函数)(x F 就是函数)(x f 的原函数]计算积分.这是因为在实际问题中,函数关系往往是用列表数据或曲线给出的.即使知道了函数的表达式,求其一个原函数并非一个简单问题.许多函数难以用初等函数表示(如2,/sin x e x x -等).在计算机上,通常利用函数的若干个离散值,以代数运算近似计算积分值,这类近似计算法称为数值积分法.设给定区间],[b a 上的函数)(x f .需要建立计算积分dx x f f I ba ⎰=)()(的近似方法.数值积分的基本思想是试图用一个简单又易于积分的函数逼近)(x f ,以计算积分)(f I .显然插值多项式是一个很好的选择,因为插值多项式可由)(x f 的若干值构造出来,其积分很容易计算.为此,需将],[b a 分为n 等分n i x x i i ,,2,1],,[1 =+,其中b x x x x a n =<<<<=+1321 .分割步长h ,因此,1,3,2,/)1(1+=-+=n i h i x x i 对应的函数值)()(,),(),()(121b f x f x f x f a f n ==+ .显然)(f I 可以表示为所有小区间上各函数的积分的和,即)()(1f I f I ni i ∑==其中 dx x f I i ix x i ⎰+=1)(通常把为每个)(f I i 建立的计算公式简称为求积公式,而把)(f I 建立的求积公式称为复化求积公式.由于在实际计算时,不宜使用高阶的牛顿——柯特斯公式,但若积分区间较大,单独用一个低阶的牛顿——柯特斯公式来计算积分的近似值,显然精度不好,为了提高数值求积的精确度,可利用积分对区间的可加性来解决这个问题,这就是通常采用的复合求积法.而且使用这种方法之后,求积公式的收敛性和稳定性也得到了改善.第一章 复化求积算法牛顿—柯特斯公式的求积余项表明,求积节点n 越大,对应的求积公式精度越高,但由于牛顿—柯特斯公式在8>n 时数值不稳定,因此不能用增加求积节点数的方法来提高计算精度.实用中常将求积区间],[b a 分成若干个小区间,然后在每个小区间上采用数值稳定的牛顿—柯特斯公式求小区间上的定积分,最后把所有小区间上的计算结果相加来作为原定积分的近似值.采用这种方法构造的求积公式就称为复合求积公式.复合求积公式具有计算简单且可以任意逼近所求定积分值的特点,这是牛顿—柯特斯公式一般做不到的.常用的复合求积公式有复合梯形求积公式和复合辛普森求积公式以及复合柯特斯求积公式.以下我们将从三种复化求积算法的构造、余项、稳定性、收敛性等几方面进行讨论,并写出相应的流程图以及应用中所涉及到的算法的程序设计.§1.1复化求积公式§1.1.1 复化求积公式的思想n 很大时,牛顿——柯特斯求积公式出现了不稳定、不收敛现象,往往使用低阶牛顿——柯特斯求积公式,误差比较大,故将],[b a 若干等分,在每个子区间上反复使用低阶牛顿——柯特斯公式,进行累加.而构造出来的新的求积公式,称之为复化求积公式.在构造求积公式的过程中,我们将求积区间],[b a 进行等距细分:n i nab ia x i ,,1,0, =-+=,在每个小区间],[1i i x x -上用相同的“基本”求积公式(如梯形公式;中矩形公式;左(右)矩形公式或辛普森公式)计算出dx x f i i x x ⎰-1)(的近似值i S .§1.1.2 复化求积公式的的构造将定积分⎰ba dx x f )(的区间],[b a 划分为n 等分,各节点为kh a x k +=,n k ,,1,0 =,nab h -=,在子区间)1,,1,0](,[1-=+n k x x k k 上使用牛顿——柯特公式,将],[1+k k x x 分割为l 等份,步长为l h,节点为1,,2,,+=+++k k k k k x llhx l h x l h x x记121,,,,++++=k ll k lk lk k x xxxx为在],[1+k k x x 上作)(x f 的l 阶牛顿——柯特斯求积公式.∑∑⎰=++=+=-=≈+li li k l i li k li l i k k k i x x xf C h xf C x x I dx x f k)(0)(1)()()()()(1由积分区间的可加性,可得nli k n k li l i n k k l n k k k baI xf C h I dxx f dx x f ==≈=+-==-=-=+∑∑∑∑⎰⎰)()()(100)(1)(11§1.2 复化梯形求积公式§1.2.1 复化梯形求积公式的的推导过程将积分区间],[b a 划分等分,步长nab h -=,求积节点kh a x k +=,n k ,,1,0 =在每个小区间)1,,1,0](,[1-=+n k x x k k 上应用梯形公式)]()([2)(11++≈⎰+k k x x x f x f hdx x f k k然后将它们累加求和,作为所求积分I 的近似值.])()(2)([2)]())()()((2)([2)]()([2)()(11121011011∑∑∑⎰⎰---+-=-=++=+++++=+≈==+n i k n n k k n k n k x x bab f x f a f hx f x f x f x f x f hx f x f hdx x f dx x f I k k记n T )]()(2)([211b f x f a f hn i k ++=∑-=式为复化梯形求积公式,下标n 表示将区间n 等分,若把区间n 2等分,在每个小区间上仍用梯形求积公式,则可得到n n T T ,2和n H 间的关系为:)(212n n n H T T +=其中∑=--+=nk n nab k a f h H 1]2)12([ §1.2.2复化梯形求积公式的性质性质1.1复化梯形求积公式余项当)(x f 在],[b a 上有连续的二阶导数,则复化梯形公式的余项:)(12)()(''2ηf h a b T dx x f R n ba T --=-=⎰ ],[b a ∈η 性质1.2稳定性若],[,)(''b a x M x f ∈≤,则有估计式M na b R nT 2312)(-≤ 复化梯形求积公式的系数均大于零,且满足a b nh n hA ni i -==+-+=∑=]1)1(21[2因此,复化梯形求积公式的计算过程是数值稳定的.性质1.3收敛性可证复化梯形求积公式是收敛的. 性质1.4代数精度定义1.1 若积分⎰b adx x f )(的数值积分公式⎰badx x f )()(0k nk k x f A ∑=≈对于任意一个次数不高于m 次的多项式都精确成立,且存在一个1+m 次多项式使之不精确成立,则称该数值积分公式的代数精度为m .可证复化梯形求积公式的代数精度为2.§1.3 复化辛普森求积公式§1.3.1 复化辛普森求积公式的的推导过程将积分区间],[b a 划分等分,记子区间],[1+k k x x 的中点为h x x k k 2121+=+在每个小区间上应用辛普森公式,则有))()(2)(4)((6)444(6)]()(4)([6)()(101121211223112101211011b f x f x f a f hf f f f f f f f f hx f x f x f hdxx f dx x f I n k n k k k n n n k k k n k n k x x bak k+++=+++++++++=++≈==∑∑∑∑⎰⎰-=-=+--++-=-=+其中h x xk k 2121+=+记 )]()(2)(4)([6111021b f x f x f a f hS n k k n k k n +++=∑∑-=-=+式为复化辛普森求积公式§1.3.2复化辛普森求积公式的性质性质1.5复化辛普森求积公式余项当)(x f 在],[b a 上有连续的四阶导数,复化辛普森公式的求积余项为:)(2880)()2(180)4(4)4(4ηηf h a b f h a b R S --=--= ],[b a ∈η 性质1.6稳定性同复化梯形求积公式,复化辛普森求积公式的系数均大于零,且满足总和为a b - 因此,复化辛普森求积公式的计算过程是数值稳定的.性质1.7收敛性可证复化辛普森求积公式是收敛的. 性质1.8代数精度可证复化辛普森求积公式的代数精度为4.§1.4 复化柯特斯求积公式§1.4.1 复化柯特斯求积公式的的推导过程将积分区间],[b a 划分等分,若把每个子区间],[1+k k x x 四等份,内点依次记为432141,,+++k k k xxx,同理可得复化柯特斯求积公式)](7)(14)(32)(12)(32)(7[9010101143211041b f x f x f x f x f a f hC n k n k n k k k k n k k n +++++=∑∑∑∑-=-=-=++-=+(1-1)其中h x xh x x h x x k k k k k k 43;21;41432141+=+=+=+++ 记(1-1)为复化柯特斯求积公式§1.4.2复化柯特斯求积公式的性质性质1.9复化柯特斯求积公式余项当)(x f 在],[b a 上有连续的四阶导数,复化柯特斯公式的求积余项为:)()4(945)(2)6(6ηf h a b R c --= ],[b a ∈η性质1.10稳定性同复化梯形求积公式,复化柯特斯求积公式的系数均大于零,且满足总和为a b - 因此,复化柯特斯求积公式的计算过程是数值稳定的.性质1.11收敛性可证复化柯特斯求积公式是收敛的. 性质1.12代数精度可证复化柯特斯求积公式的代数精度为6.§1.5 三种复化求积公式的比较及总结为了更形象的表述三种复化求积公式之间的关系,我们通过一个例子来进行比较例1.1使用各种复化求积公式计算定积分dx xxI ⎰=10sin 为简单起见,依次使用8阶复化梯形公式、4阶复化辛普森公式和2阶复化柯特斯公式,可得各节点的值如下表表1-1节点值94569086.0)]1()(2)0([161718=++=∑=f x f f T k k 94608331.0)]1()(2)(4)0([2413031214=+++=∑∑==+f x f x f f S k k k k 94608307.0)]1(7)(14)](32)(12)(32[)0(7[180111104342412=+++++=∑∑==+++f x f x f x f x f f C k k k k k k 比较三个公式的结果:精度最低 94569086.08=T 精度次高 94608331.04=S 精度最高 94608307.02=C原积分的精确值为6719460830703.0sin 10==⎰dx xxI . 我们知道,三种求积公式的余项分别如表1-2表1-2 复化梯形、辛普森、柯特斯求积公式的余项定义1.2对于复化求积公式n I 若存在0>p 及0≠c ,使其余项n I I -满足c h I I pnh =-→0lim则称复化求积公式n I 是p 阶收敛的 P 阶收敛性的意义:对于一个数值求积公式来说,收敛阶越高,近似值n I 收敛到真值dx x f ba ⎰)(的速度就越快.由于三种求积公式的余项分别是h 的2,4,6阶无穷小量 所以n n n C S T ,,趋于定积分I 的速度依次更快.从这三种求积公式的构造过程中可以看出,它们都属于机械求积公式,但不属于插值行和牛顿柯特斯公式.都具有稳定性和收敛性,且收敛速度一个比一个快,一个比一准确.在使用函数值个数相等的情况下,248,,C S T 的精度逐渐升高.第二章 复化求积公式算法的流程图及其应用§2.1 流程图1. 复化梯形求积公式图2.1 复化梯形求积公式算法的流程图Step1给出被积函数)(x f 、区间],[b a 端点b a ,和等分数n ; Step2求出,kh x k =nab h -=; Step3计算∑-=1)(),(),(n k k x f b f a f ;Step4得)]()()([211b f x f a f h T n k k n ++=∑-=2. 复化辛普森求积公式图2.2 复化辛普森求积公式算法的流程图Step1 给出被积函数)(x f 、区间],[b a 端点b a ,和等分数n ; Step2求出,kh x k =nab h -=; Step3计算∑∑-=+-=1211)(,)(),(),(n k k n k k xf x f b f a f ;Step4得)]()(2)(4)([6111021b f x f x f a f hS n k k n k k n +++=∑∑-=-=+3. 复化柯特斯求积公式图2.3 复化柯特斯求积公式算法的流程图Step1给出被积函数)(x f 、区间],[b a 端点b a ,和等分数n ;Step2求出,kh x k =nab h -=; Step3计算∑∑∑∑-=-=+-=+-=+11143121141)(,)(,)(,)(),(),(n k k n k k n k k n k k x f xf xf xf b f a f ;Step4得)](7)(14)(32)(12)(32)(7[9010101143211041b f x f x f x f x f a f hC n k n k n k k k k n k k n +++++=∑∑∑∑-=-=-=++-=+§2.2 应用例2.1.分别用复化梯形,复化辛普森,复化柯特斯公式计算函数32)(x x x f -=在区间]1,0[上的弧长S .(要求写出源程序和运行结果) *注 在],[b a 上的弧长dx x f S ba⎰+=2'))((11.用复化梯形公式计算S 的过程:(1).写出变量说明表2-1 复化梯形求积公式程序设计的变量说明Step1 输入n ,nab h -=,被积函数0),(1=s x f ; Step2 for 1=k to 1-n ;{计算11)(s kh a f s →++} ))(2)((21b f s a f hs ++=;Step3 输出近似值s .(3) 写出源程序和运行结果(见附录A) 2.用复化辛普森公式计算S 的过程: (1).写出变量说明表2-2 复化辛普森求积公式程序设计的变量说明Step1:输入n ,nab h -=,被积函数0),(1=s x f 0,2=s ; Step2:for 1=i to 1-n ,2+=i i ;{计算11)2/*(s h i a f s →++} Step3:for 2=j to 1-n ,2+=j j ; {计算22)2/*(s h j a f s →++}))(24)((621b f s s a f hs +++=; Step4:输出近似值s .(3).写出源程序和运行结果(见附录B) 3.用复化柯特斯公式计算S 的过程: (1).写出变量说明表2-3 复化柯特斯求积公式程序设计的变量说明Step1输入n ,nab h -=,被积函数0),(1=s x f 0,2=s 0,3=s ; Step2 for 1=i to 1-n ,2+=i i ;{计算11)4/*(s h i a f s →++} Step3:for 2=j to 1-n ,4+=j j ; {计算22)4/*(s h j a f s →++} Step4: for 4=k to 2-n ,2+=k k ; {计算33)4/*(s h k a f s →++}))(141232)((90321b f s s s a f hs ++++=; Step5:输出近似值s .(3).写出源程序和运行结果(见附录C)根据运行结果可知,由三种复化求积公式求得的S 的值分别为064837.1、061199.1、061189.1,精度逐渐升高.参考文献[1] 薛毅,耿美英.数值分析[M]. 北京:北京工业大学出版社.2003年.[2] 刘长安.数值分析教程[M].西安:西北工业大学出版社.2005年.[3] 朝伦巴根,贾德彬.数值计算方法[M].北京:中国水利水电出版社.2007年.[4] 韩旭里,万中.数值分析与实验[M].北京: 科学出版社.2006年.[5] 林成森.数值分析[M].北京: 科学出版社.2007年.[6] 封建湖,车刚明,聂玉峰.数值分析原理. 北京: 科学出版社.2001年.附录A 1.复化梯形求积公式的程序设计:(1).源程序:#include<stdio.h>#include<math.h>double f(double x){double z;z=sqrt(1+pow((2*x-3*pow(x,2)),2));return z;}main(){ int n,k;float h;float a;float b;double s=0.0;double s1=0.0;double t;printf("Please input the deng fen ;"); scanf("%d",&n);printf("Please input qujian a ;");scanf("%f",&a);printf("Please input qujian b ;");scanf("%f",&b);h=(b-a)/n;for (k=1;k<n;k++){ t=a+k*h;s1=s1+f(t);}s=(h/2)*(f(a)+2*s1+f(b));printf("%f\n",s);}(2).运行结果:图1 复化梯形求积公式计算弧长结果附录B2.复化辛普森求积公式的程序设计:(1).源程序:#include<stdio.h>#include<math.h>double f(double x){double z;z=sqrt(1+pow((2*x-3*pow(x,2)),2));return z;}main(){ int n,i,j;float h;float a;float b;double s=0.0;double s1=0.0,s2=0.0;double t,l;printf("Please input the deng fen ;");scanf("%d",&n);printf("Please input qujian a ;");scanf("%f",&a);printf("Please input qujian b ;");scanf("%f",&b);h=(b-a)/n;for(i=1;i<8;i=i+2){t=a+i*h/2;s1=s1+4*f(t);}for(j=2;j<8;j=j+2){l=a+j*h/2;s2=s2+2*f(l);}s=(h/6)*(f(a)+s1+s2+f(b));printf("%f\n",s);}(2).运行结果:图2 复化辛普森求积公式计算弧长结果附录C3.复化柯特斯求积公式的程序设计:(1).源程序:#include<stdio.h>#include<math.h>double f(double x){double z;z=sqrt(1+pow((2*x-3*pow(x,2)),2));return z;}main(){int n,i,j,k;float h;float a;float b;double s=0.0;double s1=0.0,s2=0.0,s3=0.0;double t,l,m;printf("Please input the deng fen ;");scanf("%d",&n);printf("Please input qujian a ;");scanf("%f",&a);printf("Please input qujian b ;");scanf("%f",&b);h=(b-a)/n;for(i=1;i<8;i=i+2){t=a+i*h/4;s1=s1+32*f(t);}for(j=2;j<7;j=j+4){l=a+j*h/4;s2=s2+12*f(l);}for(k=4;k<6;k=k+2){m=a+k*h/4;s3=s3+14*f(m);}s=(h/90)*(7*f(a)+s1+s2+s3+7*f(b));printf("%f\n",s);}(2).运行结果:图3 复化柯特斯求积公式计算弧长结果19。
常用的复化求积公式有复化梯形公式和复化辛普森公式。
)
2
k 1
f
( xk ) f
(b)
称为复化辛普森公式。
类似于复化梯形公式余项的讨论,复化辛普森公式的 求积余项为
Rs
b a h4 2880
f
(4) ( )
a,b
显然,复化辛普森公式是收敛且稳定的.
复化求积公式的余项表明,只要被积函数f(x)及所涉及 的各阶导数在[a,b]上连续,那么复化梯形公式、复化辛普
n1
求出积分值Ik,然后将它们累加求和,用 I k 作为所求积分I
的近似值。
k 0
I
b
n1
f ( x)dx
a k0ቤተ መጻሕፍቲ ባይዱ
xk1 f ( x)dx n1 h
xk
k0 2
f ( xk ) f ( xk1)
h 2
f
(
x0
)
2(
f
(
x1
)
f (x2 ) ...
森公式所得近似值 Tn , Sn , Cn 的余项和步长的关系依次 为O(h2 ) 、O(h4 )、O(h6 ) 。因此当h→0 (即n→∞)时,Tn , Sn , Cn
都收敛于积分真值,且收敛速度一个比一个快。
例1 依次用n=8的复化梯形公式、n=4的复化辛普森公式计算
I
1 sin x dx
213等份时,用复化梯形公式计算误差不超过 1 105。
2
由于Tn 的求积系数为正,由定理2知复合梯形公式是稳定的.
4.3.2 复化辛普森公式及其误差
将积分区间[a,b]划分为n等分,记子区间 xk , xk1 的中点
求积公式
(4.10)
结束
这是用梯形面积近似代替曲边梯形的面积,对梯形公式的误差 估计有如下定理: 定理 4.1 设f(x)为二阶连续可微函数,则梯形求积公式的 余项为 (证明)
R1
即
b
a
ba (b a)3 f ( x)dx f ξ f (a) f (b).1 求积公式
数值积分
对定义在区间[a,b]上的定积分
I [ f ] f ( x)dx F (b) F (a)
a
b
以上公式多称为牛顿-莱布尼兹公式,F(x)为f(x)的原函数.但 有时原函数不能用初等函数表示,有时原函数又十分复杂,难 于求出或计算.如被积函数为:
f ( x) x , 左边
3
0 右边 (1) 0 1
1 3 3 4 3 3 1 3
3
f ( x) x , 左边
4
15 ( 1)5 5
4 4 4 2 4 1 2 5 右边 1 ( 1 ) 0 1 3 3 3 3
结束
h 2 h 2 h A2 t (t -1)dt . 2! 0 2 3 3
所以抛物形公式为
a
b
h ab f ( x)dx f (a) 4 f f (b) 3 2
(4.12)
其中h=(b-a)/2,上式也可写成:
a
b
ba a b f ( x)dx f (a) 4f f (b) 6 2
b b
(4.7)
f ( n1) ( ) Rn [ f ] ( x)dx (n 1)! a
b
(4.8)
数值分析实验 复化求积公式(改进版)
3
2
1 1 1 d x (2) 4 dx 2 2 0 x 1 1 x
(4) e xe x dx
2 1
2
实验要求 : (1) 若用复化梯形公式、 复化 Simpson 公式和复化 Gauss-Legendre 型 公式做计算,要求绝对误差限为 107 ,分别利用它们的余项 对每种算法做出步长的事前估计。 (2) 分别用复化梯形公式、 复化 Simpson 公式和复化 Gauss-Legendre 型公式作计算。 (3) 将计算结果与精确解做比较,并比较各种算法的计算量。
Rn ( f ) b a h 4 (4) (1 0)h 4 1 ( ) f ( ) 3(ln 3)4 = 10-7 4 180 2 180 2 2
ba 1 n 2457
所以
h ba 1 7.58 10-2 n n n 13.19
因此 取节点数 n=14 步长 h
xk 1
xk
f ( x) dx
b
a
f ( x) dx
h n 1 h h [ f (x 1 )+f ( x 1 )] k k 2 k 0 2 3 2 3 2 2
上式称为复化Gauss-Legendre I 型求积公式。 ba 于是当f ( x) C 4 [a, b],h 时,复化Gauss-Legendre I 型求积公式的余项表达式为 n (b a )h 4 (4) Rn ( f )= f ( ), [a, b] 4320
Rn ( f ) (b a) 2 '' (1 0)h2 2 1 h f ( ) 4e = 10-7 12 12 2
数值计算方法第五章第二节 复化求积公式
h Tk ( f ( xk ) f ( xk 1 )) 2
复化梯形公式为
n 1
k 0,1,
,n 1
n 1 h Tn Tk ( f (a ) f (b)) h f ( xk ) 2 k 0 k 1
数值分析
数值分析
截断误差分析:
h3 '' 在区间 xk , xk 1 上,Rk f (k ), k xk , xk 1 12 n1 n1 h3 '' 整体误差为 Rn Rk ( ) f (k ) 12 k 0 k 0
b a 1 n1 '' 利用 h 和 f (k ) f '' ( ) a, b n n k 0
得到复化梯形公式的截断误差是: b a 2 '' R(Tn ) h f ( ) O( h2 ) 12
数值分析
数值分析
2、复化Simpson公式
在每个小区间 xk , xk 1 上用Simpson公式 h Sk ( f ( xk ) 4 f ( x 1 ) f ( xk 1 )) k 6 2
n 1
复化Simpson公式为
h 2 n1 1 n1 Sn Sk ( f (a ) f (b)) h f ( x 1 ) h f ( xk ) k 6 3 k 0 3 k 1 k 0 2 n 1 1 2 Tn H n , 其中H n h f ( x 1 ) k 3 3 k 0 2
用复化梯形公式n至少取68,节点至少取n 1 69个。
数值分析
数值分析
例:当用复化梯形公式与复化辛卜生公式计算积分 1 1 x -4 0 e dx的近似值时,若要求误差不超过 2 10 , 问至少各取多少个节点?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
( xn1
h) 2
f
(b)]
b
h
n1
n1
a
f (x)dx
[ f (a) 4
6
j0
f
(x
j1 2
)
2
j 1
f (xj)
f (b)]
0
1/4
例4.14 对于函数 f (x) sin x x
试用数据表,应用复化Simpson求积公
式计算积分
1 sin x
4.3 复化求积公式
4.3. 1 复化梯形求积公式 4.3.2复化Simpson求积公式 4.3.3复化Cotes求积公式 4.3.4 收敛性
4.3.5误差的事后估计与步长的自动选择
由上面Newton-Cotes公式易见,当n 较大时不稳定. 因此,在实际应用中,为避免高次求积公式,往往采取复 化求积的方法,即:先将积分区间分成几个小区间,并在 每个小区间上利用低阶Newton-Cotes公式计算积分近似值 。然后对这些近似值求和,从而得所求积分的近似值。由 此得到一些具有更大实用价值的数值求积公式,统称为复 化求积公式。
min
1k n
f (k )
1 n
n k 1
f
(k )
max
1k n
f (k )
由中值定理知, (a,b),使得
f
( )
1 n
n k 1
f
(k )
RTn
h2 (b a) f
12
( )
(4.3.2)
(3)收敛性
从复化梯形求积公式的余项可知,与相应的NewtonCotes求积公式相比,复化求积公式一般不能提高代数精 度,但它们均具有收敛性.
x
k
2
)
4
n 1
n 1
32 k 0
f
(
x
k
3
4
)
14
k 1
f (xk ) 7 f (b)]
xk
x k2
x k 1
4
x
k
i
4
xk
ih 4
(4.3.6)
复化Cotes公式的余项分别为:其中ξ∈[a,b]
Rc ( f )
b a
f
(x)dx
Cn
2(b a) 945
为避免这种重复计算,我们来分析新近似值T2n与原有近 似值Tn之间的关系。由复化梯形公式知:
T2n
h2n 2
[f
2n1
(a) 2
k 1
f
(xk )
f
(b)],
ba h2n 2n
注意到在2n分点
当k取偶数时,xk
即xk 为na分点k,b2k为na奇(数k时=1,,2x,…k 才…是2n新-1)增中加,的分
使误差不超过
,问各取多少个节点?
解:由复化梯形公式的误差公式,令
时,要
由此解得 由复化辛普森公式的误差公式,令
32(
f
(3) 8
f
( 7)) 14 f 8
(1) 7 2
f
(1)
1 [...] .... 180
4/8 0.9588510 5/8 0.9361556 6/8 0.9088516 7/8 0.8771925 1 0.8414709
例4.15分别用复化梯形公式和复化Simpson公式计算
定义
若一个积分公式的误差满足
lim
h0
R[ f hp
]
C
且C 0,
则称该公式是 p 阶收敛的。
显然,复化梯形公式是2 阶收敛的;
lim RTn h n 2
1 12
(b
a)
f
()
Tn
h 2
f
(a)
n1
2
k 1
f
(xk )
f
(b)
T2
1 2 T1
1 2
f ( 1 ) 0.9397933 2
T4
1 2
T2
1 4
f
1 4
f
3 4
0.9445135
T8
1 2
T4
1 8
f
1 8
f
3 8
f
5 8
f
7 8
h[ 6
f
n1
(a) 4
k 0
f
n1
(
x
k
1 2
)
2
k
1
f
(xk )
f
(b)], h
ba n
=
Sn
(4.3.4)
复化Simpson积分公式的几何意义
Sn (
f
)
h[ 6
(a)
4
f
(a
h) 2
2
f
(x2 )
4
f
( x2
h) 2
2
f
(xn1) 4
f
( xk 1
2
)
h ba n
1
h n1
2 Tn
2
k 0
f
(
x
k
1
)
2
(4.3.3)
由递推复化梯形公式 (也称为变步长梯形公式)可见,在 已计算出Tn 基础上再计算T2n时,只要计算n个新分点上的函 数值就行了,这与直接利用复化梯形公式相比,计算工作量 几乎节省一半。
补例:用复化梯形法的递推公式计算求积分值 到T8
f
(b)
4/8 5/8
1
8
2
f
7
(0) 2
k 1
f
k 8
f
(1)
6/8
0.9456909
7/8
1
3/4
1
f (x) 1
0.9973978 0.9896158 0.9767267 0.9588510 0.9361556 0.9088516 0.8771925 0.8414709
h6
f
(6) ( )
当 h 充分小时又有:
Rc (
f
)
2 945
h6[
f
(5) (b)
f
(5) (a)]
(4.3.7)
由此可知,复化Cotes公式是6阶收敛的;
0
例4.14 对于函数 f (x) sin x x
试用数据表,应用复化Cotes求积公式
计算积分
1 sin x
I ( f ) 0 x dx
Tn
h 2
f
n1
(a) 2
k 1
f
(xk )
f
(b)
复化梯形公式积分法的 几何意义是曲边梯形面积近 似地用许多小的细条梯形来 代替.(如右图)
从图中可以看出,n 越大,则h 越小,实际面积与近似面 积的差,即求积误差也就越小.
这与分段插值相类似,问题所不同的是分段插值函数是不 光滑的,而数值积分公式是对一个数的近似,不存在光滑和不 光滑的问题.
点,将新增加的分点处的函数值从求和记号中分离出来,就有:
b a
n1
n1
T2n
4n
f
(a)
2
k 1
f
(xk )
2
k 0
f
( xk 1
2
)
f
(b)
1 2
h 2
f
(a)
n1
2
k 1
f
(xk )
f
(b)
h 2
n k 0
n
(b a)h4 j1 f (4) ( j )
90 25
n
由闭区间上连续函数的介值性质可知在[a,b]上至少存在一点,
使
f (4) ( ) 1
n
n j 1
f (4) ( j )
I(
f
)
Sn (
f
)
ba 2880
h4
f
(4) ( ), a
b
0.9456909
与例4.14直接计算T8的结果一致。
2 复化Simpson求积公式
将积分区间[a,b]划分为n等份, h=(b-a)/n,
在每个子区间
上用 Simpson公式可
得
x
k
1
2
xk
1h 2
xk1 xk
f
(x) dx
xk 1 xk 6
[ f (xk ) 4 f
(
1
[
f
(
xk
1
)
f (xk )],
k 1, ..., n
b
n
f (x)dx
a k 1
xk xk 1