抛物线经典性质总结91182 (1)
(完整版)抛物线的性质归纳及证明
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p)图6与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 228p = ⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。
抛物线性质总结
抛物线性质总结抛物线是一种基本的二次曲线,具有许多独特和有趣的性质,广泛应用于数学、物理和工程学中。
在这篇文章中,我将总结抛物线的性质,并探讨其在不同领域的应用。
首先,抛物线有一个明显的对称性质,称为轴对称性。
这意味着抛物线关于它的顶点对称。
顶点是抛物线的最高点或最低点,具体取决于开口方向。
对于标准形式的抛物线y=ax^2+bx+c,顶点的横坐标为x=-b/2a,纵坐标为y=c-b^2/4a。
因此,通过确定顶点,我们可以轻松找到抛物线的对称轴,并进行描绘和计算。
其次,抛物线的开口方向也是一个重要的性质。
当a>0时,抛物线开口向上,最低点是顶点;当a<0时,抛物线开口向下,最高点是顶点。
这种开口方向的不同导致了抛物线在几何图形、力学和光学等领域的多样应用。
例如,在建筑设计中,我们使用抛物线拱门来支撑大型建筑物的重量,因为抛物线拱门能够将力很好地分散到支撑结构上。
而在摄影和光学领域,抛物线镜头被广泛应用于望远镜、天文学观测仪器等设备中,因为它能提供更好的焦点和图像质量。
另一个重要的性质是抛物线的焦点性质。
抛物线上的每个点到焦点的距离与到抛物线直线轴的距离相等。
焦点是与抛物线曲线最紧密相关的点,并且在物理学、信号处理和通信系统中具有广泛的应用。
抛物线的焦点性质使得我们能够将信号或能量汇集在一个焦点上,从而实现聚焦效果。
抛物面天线、卫星接收器等设备都利用了这一性质。
另外,抛物线还具有切线性质。
对于任意一点P(x, y)上的抛物线,它的切线与抛物线在该点处的曲线相切。
这一性质使得我们可以了解抛物线在不同点的变化趋势,并且在微积分和优化问题中有广泛应用。
例如,在物理学中,我们可以利用抛物线切线的斜率计算物体在该点的速度和加速度,从而更好地理解运动的变化。
此外,抛物线还有一些其他有趣的性质,如焦半径和离心率。
焦半径是焦点到抛物线上的任意一点的距离,而离心率则描述了抛物线的扁平程度。
这些性质对于研究抛物线的形状、特征和应用都有重要意义。
应用题抛物线的性质
应用题抛物线的性质抛物线是数学中经常出现的一种曲线形状,具有许多有趣的性质和应用。
本文将探讨抛物线的性质,并介绍一些实际中常见的应用。
一、抛物线的定义与性质抛物线是平面上的一条曲线,其定义可以用平面几何的语言来描述,也可以用二次函数的方程来表示。
一般来说,抛物线是由一个定点(焦点)和一条定直线(准线)确定的。
抛物线的性质如下:1. 对称性:抛物线具有对称轴的对称性。
对称轴是通过抛物线的焦点和准线垂直平分的直线。
任意一点到对称轴的距离相等。
2. 焦点与准线的关系:焦点到准线的距离等于焦距的两倍。
焦点和准线之间的距离被称为焦距。
3. 顶点坐标:抛物线的顶点为对称轴与抛物线的交点,也是抛物线的最高(或最低)点。
顶点的坐标可以通过方程求解得到。
二、抛物线的应用1. 抛物线的建筑设计:抛物线在建筑设计中有着广泛的应用。
比如,在设计圆顶建筑如圆顶体育馆或穹顶教学楼时,常常使用抛物线形状,因为抛物线形状能够均匀分散压力,提高建筑的稳定性。
2. 抛物线的发射轨迹:物体受到重力的作用下,竖直向上抛出时,其轨迹是一个抛物线。
这一性质在火箭发射、炮弹发射等领域有着广泛的应用。
利用抛物线轨迹,可以计算出物体的落点、最远射程等信息。
3. 抛物线的碰撞轨迹:在台球游戏中,当一个球以一定的速度和角度撞向另一个球时,其碰撞轨迹可以用抛物线来描述。
利用抛物线的性质,可以预测球的行进路线,帮助玩家制定击球策略。
4. 抛物线的光学:在凹面镜和抛物面反射器中,采用的镜面形状正是抛物线。
因为抛物面反射器能够使平行光线聚焦到一个点上,具有集光效果。
5. 抛物线的电磁波聚焦:抛物面拟似的天线,在通信和雷达领域中广泛使用。
抛物面天线能够将电磁波聚焦到一个点上,提高信号接收效果。
总结:抛物线是一种常见的曲线形状,在几何学、物理学、工程学和日常生活中都有着广泛的应用。
它的对称性、焦点与准线的关系以及顶点坐标等性质使得该曲线在各个领域发挥着重要的作用。
(完整版)抛物线常用性质总结
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。
结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。
则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
高中抛物线性质总结
高中抛物线性质总结高中数学中,抛物线是一种重要的二次曲线,具有许多重要的性质。
在学习和理解抛物线的过程中,我们需要研究和掌握这些性质。
本文将总结和介绍高中抛物线的一些重要性质。
首先,抛物线的定义对于理解它的性质至关重要。
抛物线是由一系列平面上满足特定关系的点组成的图形。
它的定义方程可以写成y=ax^2+bx+c的形式,其中a、b和c是实数,且a不等于零。
根据a的正负和b的零或非零,抛物线可以有不同的形状。
第一个要介绍的性质是抛物线的焦点和准线。
抛物线上的所有点到焦点的距离与到准线的距离相等。
这个性质被称为焦准性质,是抛物线最重要的性质之一。
焦点和准线的位置可以通过抛物线的定义方程来确定,其中焦点的坐标可以用a和b表示,准线的方程是x=-b/2a。
第二个要介绍的性质是抛物线的对称性。
抛物线的定点坐标是它的开口朝上或者朝下的端点,被称为顶点。
抛物线以顶点为中轴线对称,也就是说,如果点P(x, y)在抛物线上,那么点P'(-x, y)也在抛物线上。
这个性质可以用定义方程来证明。
第三个要介绍的性质是抛物线的切线和法线。
抛物线上的任意一点P(x, y)处的切线是过点P且与抛物线相切的直线。
切线的斜率等于抛物线在该点的导数。
法线是与切线垂直的直线,它的斜率等于切线的斜率的负倒数。
第四个要介绍的性质是抛物线的拐点。
抛物线在顶点处有一个拐点,也就是说,抛物线在开口朝上或者朝下端点处的切线是水平的。
第五个要介绍的性质是抛物线的焦直径性质。
对于抛物线上的任意一点P(x, y),它到焦点的距离等于它到准线的距离的二倍。
这个性质可以用定义方程和几何性质来证明。
第六个要介绍的性质是抛物线的判别式。
通过判别式可以判断给定的二次方程是否表示一条抛物线,并且可以确定抛物线的开口朝上还是朝下。
判别式的符号取决于二次方程的系数。
如果判别式大于零,那么抛物线开口朝上;如果判别式小于零,那么抛物线开口朝下;如果判别式等于零,那么二次方程表示一条抛物线。
抛物线性质和知识点总结
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
抛物线知识点范文
抛物线知识点范文抛物线是一种经典的二次曲线,具有许多重要的数学和物理应用。
它的形状引人注目,其性质和方程式是学习数学的重要组成部分。
本文将介绍抛物线的定义、性质、方程式、焦点和直径、坐标系变换、最速下降问题、抛物线的应用等知识点。
1.定义:抛物线是一个平面曲线,其定义为到一个定点(焦点)和到一条定直线(准线)的距离的大小总是相等。
准线上的点称为焦点。
2.性质:-对称性:抛物线具有轴对称性,即任意一点P关于焦点和准线的投影点O的距离相等。
-切线性质:抛物线上的切线与过焦点F的直线垂直。
-焦半径性质:抛物线上任意一点到焦点的距离等于该点到准线的垂直距离。
-图形性质:抛物线上的点与焦距的比例等于与准线的垂直距离与焦距的比例的平方,即PF/FD=PD/FD^2-集中性:抛物线上的所有点都在焦点和准线之间。
3. 方程式:一般来说,抛物线的标准方程式为y = ax^2 + bx + c (其中a, b, c为常数,a≠0)。
这是一个二次函数,图像是一个关于y 轴对称的开口向上的曲线。
-当a>0时,抛物线开口向上,最低点为顶点。
-当a<0时,抛物线开口向下,最高点为顶点。
4.焦点和直径:-焦点:抛物线的焦点是指离准线和对称轴相等距离的点。
焦点与顶点的距离称为焦距。
-直径:抛物线的直径是指通过焦点的直线,且与该直线平行的对称轴称为抛物线的直径。
5.坐标系变换:可以通过坐标系的平移和旋转将抛物线的方程式转化为更简单的形式。
通过平移和旋转将抛物线的顶点移到坐标原点来简化方程式的形式。
6.最速下降问题:抛物线曲线上的点到焦点的距离最短。
这个性质被应用于物理学和工程学中的最优问题,如最短路径问题和最速下降问题。
7.抛物线的应用:-物理学中的抛物线轨迹:当物体在重力作用下发生自由落体运动时,其轨迹是一个抛物线。
-工程学中的抛物面反光器:抛物面反光器是一种能够将入射光汇聚到一个焦点的反射器,应用于车灯、太阳能收集器等设备。
抛物线知识点总结_高三数学知识点总结
抛物线知识点总结_高三数学知识点总结
抛物线是数学中的一种曲线,其形状像一个弯曲的弧形。
在高三数学中,我们学习了
抛物线的相关知识,包括定义、性质、方程、图像、焦点和准线等。
下面是抛物线的知识
点总结。
一、定义和性质:
1. 抛物线是平面解析几何的一个曲线,定义为动点P到定点F 的距离等于动点到定
直线l的距离的平方,即PF=PM^2,其中F为焦点,l为准线,M为动点P的投影点。
2. 抛物线对称轴是准线的垂直平分线,焦点到抛物线对称轴的距离称为焦距。
3. 抛物线的顶点是抛物线与对称轴的交点,对称轴的方程为x=h,其中h为顶点的横坐标。
二、方程和图像:
1. 抛物线的一般方程为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
2. 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 抛物线的顶点坐标为(-b/2a,f) ,其中f为抛物线的最小值或最大值,当a>0时,f为最小值,当a<0时,f为最大值。
4. 抛物线与y轴的交点为y轴截距,即(0,c)。
三、焦点和准线:
1. 抛物线的焦点坐标为(F,0),其中F为焦距。
2. 抛物线的焦点到顶点的距离等于焦点到准线的距离,即PF=pl,其中P为抛物线上的任意一点,l为准线的斜率。
四、其他知识:
1. 抛物线的标准方程为y^2=4ax,其中a为焦距的一半。
2. 抛物线的参数方程为x=t,y=2at^2,其中t为参数。
3. 抛物线的弧长公式为L=∫sqrt(1+(dy/dx)^2)dx,其中∫为积分符号。
抛物线的性质与方程解析
抛物线的性质与方程解析抛物线是数学中一种常见的曲线,具有许多独特的性质和方程解析。
本文将重点探讨抛物线的性质以及如何通过方程解析抛物线的特征。
一、抛物线的性质1. 对称性:抛物线关于其焦点轴的对称性是其最基本的性质。
抛物线上任意一点与焦点的距离相等于该点到焦点轴的垂直距离。
这种对称性使得抛物线在很多实际问题中具有重要应用,如天文学、物理学等。
2. 焦点和直线的关系:抛物线上的每一点到焦点的距离等于该点到准线的垂直距离。
焦点是抛物线的一个重要属性,影响着抛物线的形状和位置。
3. 切线和法线:抛物线上的任意一点的切线与该点到焦点的连线垂直相交于准线。
这个性质使得我们可以利用切线和法线求解抛物线的各种问题。
二、抛物线的方程解析抛物线可以通过不同的方程来表示,以下是几种常见的形式:1. 顶点形式:设抛物线的顶点为(Vx, Vy),则抛物线的顶点形式方程可以表示为: y = a(x - Vx)² + Vy。
其中,a为控制抛物线开口方向和大小的参数。
2. 标准形式:标准形式方程是最简单、最常用的表示抛物线的形式。
标准形式方程为:y = ax² + bx + c,其中a、b、c为常数,分别控制抛物线的形状、位置和与x轴的交点。
3. 参数方程:通过参数方程可以描述抛物线上各个点的坐标。
常见的参数方程有:x = at²,y = 2at。
这种表示方式更适用于描述抛物线的轨迹和运动。
4. 对称方程:对称方程利用焦点和准线来表示抛物线。
一个常见的对称方程为:(x - p)² = 4a(y - q),其中(p, q)表示焦点的坐标,a为常数。
通过这些方程解析,我们可以更好地理解抛物线的特征和性质。
在实际问题中,根据抛物线的方程,我们可以进行求解、推导和应用。
三、抛物线的应用抛物线的性质和方程解析在许多领域中得到广泛应用,下面简单介绍几个应用场景。
1. 抛物物体运动轨迹分析:抛物线可以描述空中抛射物的运动轨迹,如抛出的石子、发射的炮弹等。
抛物线知识点归纳总结
抛物线知识点归纳总结一、抛物线的定义抛物线是平面上的一个几何图形,它的形状像一个弯曲的弧线,其数学定义为:所有到定点的距离等于到直线的距离的点构成的集合。
这个定点称为焦点,直线称为准线,通常用符号来表示抛物线,可以用二次方程来表示:y = ax^2 + bx + c,其中a、b、c为实数,a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点位于开口向上或者向下的一端,准线则位于抛物线的中轴线上。
焦点和准线的位置可以通过二次方程的系数a、b、c来确定。
2. 对称性:抛物线具有轴对称性,即抛物线的焦点和准线关于中轴线对称。
3. 焦点的坐标:抛物线的焦点的坐标可以通过二次方程的系数a、b、c来计算得出。
4. 定点的坐标:抛物线上最低点或者最高点称为定点,定点的坐标可以通过二次方程的顶点公式来计算得出。
5. 法线和切线:抛物线的切线是与抛物线相切的直线,而法线是与切线垂直的直线,它们具有一些特殊的性质和公式。
6. 焦距和焦半径:焦距是焦点到准线的距离,焦半径是焦点到抛物线顶点的距离,它们与抛物线的方程之间存在一些重要的关系。
7. 焦直和准直:焦直是焦点在准线上的投影轴,准直是准线在焦点上的投影轴,它们的位置和形状也与抛物线的方程有关。
8. 定义域和值域:抛物线的定义域和值域是指抛物线上的点的集合,它们与抛物线的方程形式、系数和图像的形态有关。
9. 开口方向:抛物线的开口方向是指向上或者向下,它与抛物线的二次方程的系数a的正负有关。
10. 直线与抛物线的位置关系:抛物线与直线的位置关系有相交、切线和相离三种情况,这与抛物线的方程和直线的方程有关。
三、抛物线的应用抛物线在日常生活和工程技术中有着广泛的应用,如抛物面反射天线、汽车大灯光束设计等。
同时,它也在物理学、天文学、工程学等领域有着重要的作用。
1. 抛物线的运动学应用:抛物线是物体在一个力场中运动的轨迹,它在各种自然和人造的运动中都有着广泛的应用,如抛物线轨道的运动、人造卫星的轨迹等。
抛物线性质总结
抛物线性质总结一、抛物线的定义和基本性质抛物线,是数学中一种经典的曲线。
它具有许多令人着迷的性质,在几何学和物理学等领域都有广泛的应用。
本文将总结抛物线的一些基本性质。
抛物线可由以下二次方程表示:y = ax² + bx + c。
其中a、b、c为实数,且a不等于0。
根据该方程,我们可以得出以下基本性质。
1. 对称性:抛物线是关于y轴对称的。
也就是说,对于任意点(x, y)在抛物线上,横坐标为-x的点(-x, y)同样也在抛物线上。
2. 顶点和焦点:抛物线的图像上存在一个顶点,其横坐标为-x₁ = -b / (2a),纵坐标为y₁ =c - b² / (4a)。
顶点是抛物线的最低点(对于a>0)或最高点(对于a<0)。
此外,抛物线还有一个重要的性质,就是焦点。
焦点是一个点,它到抛物线上任意一点的距离与该点到抛物线的直线称为“准线”的距离相等。
焦点的横坐标为-x₂ = -b / (2a),纵坐标为y₂ = c - (b² - 1) /(4a)。
3. 对称轴:抛物线的对称轴是过顶点且垂直于x轴的直线。
对称轴的方程为x = -b / (2a)。
对于对称轴上任意一点(x, y),其与顶点的距离等于该点到抛物线的任意一点的距离。
二、抛物线的拓展性质除了上述基本性质外,抛物线还有一些拓展性质,值得进一步探讨。
1. 切线与法线:沿着抛物线上的任意一点(x₀, y₀)绘制一条直线,使其与抛物线相切。
这条直线称为该点的切线。
切线的斜率等于抛物线在该点的导数。
类似地,通过抛物线上一点(x₀, y₀)作一个垂直于切线的直线,该直线称为该点的法线。
法线的斜率等于切线的负倒数。
2. 点到抛物线的距离:给定一个点(x, y)和一个抛物线,我们可以求出该点到抛物线的最短距离。
这个最短距离等于点到抛物线的准线的距离。
要计算点(x, y)到抛物线的最短距离,我们可以使用以下公式:d = |y - (ax² + bx + c)| / √(a² + 1)。
抛物线性质总结一
抛物线性质总结(一)一、抛物线定义:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。
其中定点叫抛物线的焦点,定直线叫抛物线的准线。
首先,建立坐标系,过定点FI做垂直于准线的直线,以此为X轴,以定点与准线的之间线段的中垂线为y轴,设点P (x,y) ,Fl(p∕2,0),准线方程x=p∕2 根据定义,J(xg)2 + y2 = x + E(x-^)2 + y2=(x+∣)22-px + y = pxy2 = 2px (p > 0)这就是焦点在X轴,开口向右的抛物线的标准式,其它类型的同理二、抛物线性质:1、过定点C (2小0)的直线与抛物线交于A 、B 两点,则OALoB 证明: 设抛物线方程为y? = 2px,点A 坐标为(x∣ ,y∣ ),点B 坐标为(X2,y2) 因点A 、B 都在抛物线上,因此Yi 2 = 2px∣ y 22 = 2P x 2 同时,直线AB 又过定点C(2p,0) 因此,% —0 = y2 ~°V 2 y 2以∙⅛f∙⅛ = 2p(yf) ¾z ^(y 2-yι) = 2p(y 1-y 2) 2pYiY 2 =-4P 2于是 (yιy 2)2=i6p 4即 (2px 1 2px 2)=16p 44p 2x 1x 2 = 16p 4x 1x 2 = 4p 2≠M X 1X 2 + y 1y 2=4p 2 + ( - 4p 2>=0又OA ∙ OB=X 1X 2 + y l y 2因止匕OA ∙ OB=O即 OA ± OB证毕X 1 — 2p X 2 — 2p -2py 1 =y 2x 1 -2py 2 -y 2χι =2p(y∣ -y 2)Yi x y∣χ的圆与准线相切。
证明:设抛物线方程为V=2px,点A 坐标为(x ∣,y)点B 坐标为(Xι,yJ 因点A 、B 都在抛物线上 因此,y l 1 2=2px 1, y 22=2px 2设以线段AB 为直径的圆的圆心为C (x 3,y 3)π,l X 1 + X, V 1 + V,则X,~^∙,y 3 =力力 2 2因此,圆心到准线的距离为d = χ3 +片=产同时,以线段AB 为直径的圆的半径为r= '”一,2' +(x∣ — J),,即应互KΞ迂ΞΞ瓦i^2px 1 -2y 1y 2 +2px 2 +x 12 -2x 1x 2 +x 2:=y2×1-yy 2y ∣χ2-yιχ1 =^(y1-y 2)y ⅜^y ⅛ = 2cyι^y ^¾^-(y 2-y 1)=⅞(yι-y 2) 2p 2Yiy 2=-P 2于是,χ∕2=*⅛=邑代入r 的表达式,得^2px 1+2p j +2px 2+x 12-∙^- + J2px,+p 2 +2px 2 + x l 2+^- + X 22 r =-2 _ √(x 1 +X 2+p)2 Γ T2r=x I +x 1+p =d 2因此,准线与圆相切 证毕2因线段AB 过抛物线的焦点吗,。
抛物线常用性质总结
抛物线常用性质总结抛物线是二次方程的图像,其常见形式为y = ax^2 + bx + c,其中a,b,c是实数常数且a不等于零。
抛物线有许多重要的性质和特点,以下是一些常用的总结和解释。
1. 对称性:抛物线具有轴对称性。
如果抛物线的方程是y = ax^2 + bx + c,轴对称线的方程将是x = -b/2a。
这意味着抛物线关于垂直于x 轴、通过x = -b/2a的直线对称。
2.最高点或最低点:如果a大于零,则抛物线开口向上,且没有最大值。
如果a小于零,则抛物线开口向下,且没有最小值。
抛物线的顶点或底点即为其最高或最低点。
3. 判别式:抛物线的判别式可以帮助我们确定它的性质。
判别式D = b^2 - 4ac表示了二次方程的解的性质。
如果D大于零,则抛物线与x 轴有两个交点,说明它有两个实根。
如果D等于零,则抛物线与x轴有一个交点,说明它有一个实根。
如果D小于零,则抛物线与x轴没有交点,说明它没有实根。
4.对于抛物线的每一个点(x,y),其关于轴对称线的对称点为(2p-x,y),其中p为抛物线上任意一点的横坐标。
这一性质可以用来确定抛物线上其他点的坐标。
5.零点:抛物线与x轴的交点称为零点或根。
零点可以通过解二次方程来求得。
如果判别式D大于零,那么二次方程有两个不同的实根;如果判别式D等于零,那么二次方程有一个实根;如果判别式D小于零,那么二次方程没有实根。
6.方向:抛物线的方向由二次项的系数a决定。
如果a大于零,抛物线开口向上;如果a小于零,抛物线开口向下。
7.垂直于x轴的焦点与准线:焦点与准线是抛物线的另外两个重要点。
焦点的坐标为(p,q+1/4a),其中p=-b/2a为抛物线的对称轴上任意一点的横坐标,q=c-b^2/4a为抛物线的对称轴上任意一点的纵坐标。
准线的方程为y=c-1/4a。
8.对称性性质的应用:由于抛物线的对称性,我们可以通过求解对称点的坐标来简化计算。
例如,如果我们已经求得抛物线上一个点(x,y)的坐标,那么我们也可以直接求解它关于对称轴的对称点(2p-x,y)。
抛物线知识点归纳总结
抛物线知识点归纳总结抛物线是高中数学中的一个重要概念,也是一种具有特殊性质的曲线。
在本文中,我们将对抛物线的定义、性质、方程及应用进行归纳总结。
一、定义抛物线是指平面上的一条曲线,它的几何定义是到定点距离与到定直线距离相等的点的轨迹。
具体来说,抛物线是以定点为焦点、定直线为准线的所有点的轨迹。
二、性质1. 对称性:抛物线关于准线对称。
2. 焦点和准线:焦点是抛物线上的凹点(开口向上的抛物线)或凸点(开口向下的抛物线),准线与抛物线相切于焦点。
3. 焦半径:抛物线上任意一点到焦点的距离称为焦半径,焦半径相等的点构成的线段称为焦径。
4. 直径:垂直于准线且通过焦点的线段称为直径。
5. 焦弦:与抛物线相交于两点且经过焦点的弦称为焦弦,焦弦的中点恰好是抛物线上的高点。
6. 切线:抛物线上任意一点处的切线与焦半径垂直。
7. 弦长公式:焦弦的弦长等于焦点到抛物线顶点的距离的两倍。
三、方程在平面直角坐标系中,一般式的抛物线方程形式为y=ax²+bx+c。
其中,参数a决定了抛物线的开口方向,当a大于0时,抛物线开口向上,当a小于0时,抛物线开口向下。
根据抛物线的特殊性质,我们可以得出以下常用的抛物线方程:1. 焦点在y轴上的抛物线方程:y²=4ax。
2. 焦点在x轴上的抛物线方程:x²=4ay。
3. 顶点在原点的抛物线方程:y²=4ax。
4. 顶点在坐标轴上的抛物线方程:x²=4ay。
四、应用抛物线在物理学、工程学、经济学等领域有广泛应用。
以下列举了几个常见的应用场景:1. 抛物线轨迹:在自然界中,很多物体的运动轨迹都可以用抛物线来描述,例如自由落体运动、抛射运动等。
2. 抛物天线:抛物面具有聚焦的特点,因此在通信工程中常用抛物天线来进行信号的发射和接收。
3. 抛物线反射:当光线或声波垂直照射到抛物面上时,会被反射到焦点上,因此抛物面常被用于反射镜和声学聚焦器的设计。
最全抛物线曲线性质总结
最全抛物线曲线性质总结抛物线是一种常见的二次曲线,具有很多特性和性质。
本文将总结抛物线的最全性质。
1. 定义抛物线是平面上所有到定点的距离与到定直线的距离相等的点所组成的曲线。
2. 方程抛物线的一般方程为:y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
3. 性质以下是抛物线的一些重要性质:对称性- 抛物线关于纵轴对称;- 如果a为正数,则抛物线开口朝上;如果a为负数,则抛物线开口朝下。
零点- 抛物线与x轴交点称为抛物线的零点;- 若抛物线有1个零点,则其为切线,即抛物线与x轴相切;- 若抛物线有2个零点,则其开口朝上;- 若抛物线无零点,则其不与x轴相交。
顶点- 抛物线的顶点即为最高点或最低点;- 顶点坐标为(-b/2a, f(-b/2a)),其中f(-b/2a)为抛物线在顶点横坐标处对应的纵坐标。
平行于坐标轴- 若b等于0,则抛物线与y轴平行;- 若a等于0,则抛物线与x轴平行。
开口方向- 由抛物线的系数a来决定;- 若a大于0,则抛物线开口朝上;- 若a小于0,则抛物线开口朝下。
最值- 若a大于0,则抛物线的最小值为顶点的纵坐标;- 若a小于0,则抛物线的最大值为顶点的纵坐标。
弧长- 抛物线弧长可由积分求解,公式为:L = ∫(1 + (dy/dx)^2)^(1/2) dx,其中dy/dx为抛物线方程的导数。
以上是抛物线的一些常见性质和特点。
对于理解和应用抛物线非常有帮助。
希望本文对您有所启发和帮助。
抛物线常用性质总结
抛物线常用性质总结抛物线是数学中的一种曲线形状,其方程一般为y=ax^2+bx+c,其中a、b、c为常数。
抛物线在几何学、物理学、工程学等领域中都具有广泛的应用。
下面将总结抛物线的一些常用性质。
1.抛物线的形状:抛物线是一种开口向上或向下的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.对称性:抛物线与y轴对称,其顶点坐标为(-b/2a,c-b^2/4a)。
抛物线也可以与x轴对称,其对称轴与x轴垂直,并通过顶点。
3.焦点和准线:抛物线的焦点F的坐标为(-b/2a,c-b^2/4a+1/4a),准线的方程为y=(c-b^2/4a)-1/4a。
4.抛物线的平移:抛物线的平移是通过调整方程中的常数b和c来实现的。
平移后的抛物线与原抛物线具有相同的形状,但位置有所变化。
5. 零点:抛物线的零点即为方程的解,可以通过求解ax^2+bx+c=0来得到。
根据一元二次方程的解的性质,当b^2-4ac>0时,抛物线与x轴有两个交点;当b^2-4ac=0时,抛物线与x轴有一个交点;当b^2-4ac<0时,抛物线与x轴无交点。
6.最值:抛物线的最值即为顶点的纵坐标。
当a>0时,抛物线的最小值为c-b^2/4a;当a<0时,抛物线的最大值为c-b^2/4a。
7.切线和法线:在抛物线上的任意一点,其切线的斜率为抛物线在该点的导数值。
切线与抛物线的切点的坐标可以通过求解方程组来得到。
在抛物线上的任意一点,其法线与切线垂直。
8.弧长:抛物线的弧长表示为y=x^2的积分。
计算抛物线上两点间的弧长可以通过积分计算得到。
9.面积:抛物线与y轴之间的面积可以通过求解抛物线和y轴之间的定积分来计算得到。
抛物线的其中一段与x轴之间的面积可以通过求解抛物线和x轴之间的定积分来计算得到。
10.抛物线的应用:抛物线在现实生活中有很多应用。
例如,在物理学中,抛物线可以描述物体的弹道;在工程学中,抛物线可以描述桥梁、拱门等结构的外形;在经济学中,抛物线可以描述成本、产量等指标的关系。
word完整版抛物线的性质归纳及证明推荐文档
抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦性质及证明2p2sin 证明:根据抛物线的定义,| AF |= | AD |= x i + P , | BF |= | BC |= x 2 + 2,| AB |= | AF 汁 | BF |= x i + X 2+ p如图2,过A 、B 引x 轴的垂线AA i 、BB i ,垂足为 A i 、B i ,那么 | RF |= | AD | FA i |= | AF | AF |cos , ...I AF |= 1 RF 1 = pi — cos i — cos•j AB=1 AF |+1 BF=血 + 盅=話S5 = S5 + S OBF = 2| OF || y i |+1| OF || y i | =舟舟• y i 1+ I y i I)-y i y 2=— p 2,贝V y i 、y 2异号,因此,| y i |+ | y i |= | y i — y 2 |二 S ^OAB = 4| y i — y 2 | = ^/(y i + y 2)2— 4y i y 2 = g/4m 2p 2+ 4p 2=■p ^/i + m 2=2^过抛物线 y 2= 2px (p > 0)焦点F 的弦两端点为 A(x i , y i ), B(x 2, y 2),倾斜角为,中点为C(x o ,y 0),垂足为A'、B'、C .1.求证: 分别过A 、B 、C 作抛物线准线的垂线, ①焦半径I AF I x i P -;1 1 i2 i cos③I -;一|+人片=2;④弦长 I ABI = x i + X 2+ p= 2p ;特别地,当 X i =X 2( =90 ) 丨AF丨丨BF丨P s i n 2②焦半径|BF| £号鳥时,弦长|AB|最短,称为通径,长为鸟卩:⑤厶AOB 的面积S ^OA = 同理,1 BF=罟=盘22.求证:①x 冷P •,②刘24当AB 丄x 轴时,有AF BF p,成立;•••方程(1 )之二根为 X 1 , X 2,••• xx 2先证明:Z AMB = Rt Z【证法一】延长 AM 交BC 的延长线于E ,如图3, 则△ ADM ◎△ ECM ,• I AM |= | EM |, | EC |= | AD | • | BE |= | BC 汁 | CE |= | BC 汁 | AD |=| BF |十 | AF |= | AB |1,1 2 十 — IAF | | BF | p当AB 与x 轴不垂直时,设焦点弦 AB 的方程为:y k x 卫•代入抛物线方程:22k 2 x 号2p x .化简得:k 2x 22pk 2 2x 中21_ _1_ _1_ _1 AF BF AA , BB 1X 2x-i x 2p 2p p x 1x 2x ix 2——2 43.求证:_______ x12P 卫X 2 P x 1 x 22p_ 4x 1 x 2 px 1 x 2 pAC'B A'FB' Rt Z .•••△ ABE 为等腰三角形,又 M 是AE 的中点, ••• BM 丄 AE ,即/ AMB = Rt /【证法二】取 AB 的中点N ,连结MN ,贝U| MN |= 2(| AD 汁 | BC |)= 2(| AF |+ | BF |)=弓 AB |,二 | MN |= | AN |= | BN |—P 2 . p y l 斗 _y |_ p 2 y 1+ yl 2y i y 2 =4 + 2(2p + 2p ) + 4 — 4 =疋+地=丘+二= 0 2 2 2 2• "MA 丄 P B ,故/ AMB = Rt / .【证法五】由下面证得/ DFC = 90,连结FM ,贝U FM = DM.又 AD = AF ,故△ ADM ◎△ AFM ,如图 4 •••/ 1 = Z 2,同理/ 3 =Z 4•••△ ABM 为直角三角形,AB 为斜边, 故/ AMB = Rt / . 【证法三】由已知得 C(-2, y 2)、D(-2,屮),由此得M (—2, y 〔+y 2)2 ).y i + y 2y i_ 2 k AM =x i + Py — y 2p(y i — y 2) y 2+ P 222 2p + pp (y 「于) y 2+ P 2卫 y i ,同理k BM = p 2,=心 + 躯1 + X 2)+ 孚-1•••/ 2+Z 3 = 2X 180 = 90•••/ AMB = Rt Z .接着证明:Z DFC = Rt Z【证法一】如图 5,由于| AD |= | AF |, AD // RF , 故可设ZAFD =Z ADF =Z DFR =, 同理,设Z BFC =Z BCF = Z CFR =, 而Z AFD + Z DFR + Z BFC +Z CFR = 180• 2( + ) = 180,即 + = 90,故Z DFC = 90【证法二】取CD 的中点M ,即M(— 2,豊严)由前知 k AM = P, k cF = y~~ =—— = P y 1+ P + p p y 12 2 ••• k AM = k CF , AM // CF ,同理, BM // DF• Z DFC =Z AMB = 90 .【证法三】••• "D F = (p , — y 1), "C F = (p ,— y 2),• - DF • CF = p 2 + y 1y 2 = 0【证法四】由于I RF 2= p 2=— y 『2= I DR | - | RC |,即嗟^ =1 RF 1,且Z DRF = Z FRC = 90 1 RC 1• △ DRF FRC• Z DFR = Z RCF ,而Z RCF +Z RFC = 90 • Z DFR + Z RFC = 90 • Z DFC = 904. C ' A 、C ' B 是抛物线的切线2【证法一】T k AM = p, AM 的直线方程为y — y 1 = °(x — ¥)y 1 yr 2p 7• "D F 丄"C F ,故Z DFC = 90 .l M 1y\O/€ FxN 1A N图7与抛物线方程y 2= 2px 联立消去x 得 y -y i =y(2p — 2p ,整理得 y 2- 2yi y + y 2= 0可见△= (2y i )2— 4y 2{ = 0, 故直线AM 与抛物线y 2= 2px 相切, 同理BM 也是抛物线的切线,如图 8.【证法二】由抛物线方程 y 2= 2px ,两边对x 求导,(y 2)x = (2px)x ,得2y • y x = 2p , y * = p ,故抛物线y 2= 2px 在点A(x i , y i )处的切线的斜率为 k 切=y x | y d = P=yi一 . y i又k AM = y i ,••• k 切一 k AM ,即AM 是抛物线在点 A 处的切线,同理 BM 也是抛物线的 切线• 【证法三】••过点 A(xi , y i )的切线方程为y i y — p(x + x i ),把M( — p , y; y)代入右边一 p(— p + x i )=— p + px i ,左边一右边,可见,过点 即AM 是抛物线的切线,同理 BM 也是抛物 线的切线•5. C'A 、C'B 分别是/ A 'AB 和/ B 'BA 的平分线•【证法一】延长AM 交BC 的延长线于E,如图9,则厶 ADM ◎△ ECM ,有 AD // BC , AB = BE ,•••/ DAM 一/ AEB 一/ BAM , 即AM 平分/ DAB ,同理 BM 平分/ CBA. 【证法二】由图 9可知只须证明直线 AB 的倾斜角是直线AM 的倾斜角的2倍即可,即 =2•且 M(-p ,中)左边一 y i • y i + y y 2+ yy 2px i — p 22 = 2 = 2=px i — pf2 ,A 的切线经过点M ,…tan —k y2—y1—y2—y1—2p-tan —K AB = — 2 2 —X2 —x i y2y1y i + y2p 2py i+ y2 (—p2)tan :y i 2 y i —y2 p(y i —y2)p(y i y i )p,p y i , y i +p2y i +p2y i x i + 2 2 •+ p22p/• tan 22tan1 —tan22Py i 2py i 2py i2 2 2i—(p)2 y2—p y2+ y i y2(y i)—tany i + y2—2,即AM平分/ DAB,同理BM平分/ CBA.6. AC ' A '、y轴三线共点,BC ' B '、y轴三线共点【证法一】如图iO,设AM与DF相交于点G i,由以上证明知| AD |—| AF |, AM平分/ DAF,故AG i也是DF边上的中线, •G i是DF的中点.设AD与y轴交于点D i, DF与y轴相交于点易知,| DD i |= | OF |, DD i // OF ,故厶DD i G2^^ FOG2•••I DG2 |—| FG2 I,则G2也是DF 的中点.•- G i与G2重合(设为点G),贝U AM、DF、线共点,同理BM、CF、y轴也三线共点.2【证法二】AM的直线方程为y-y i=器x-稽),令x—0得AM与y轴交于点G i(0,等),又DF的直线方程为y——^(x—p),令x —0得DF与y轴交于点p 2G2(0 ,• AM、DF与y轴的相交同一点G(0,罗),贝AM、DF、y轴三线共点,同理BM、CF、y轴也三线共点H .由以上证明还可以得四边形MHFG是矩形•••• | R0 | = | 0 F |,贝U 0与0重合,即C 、0、A 三点共线,同理共线.7. A 、0、B '三点共线,B 、0、A '三点共线.【证法一】如图11, k 0A =比=洛=2P,x i y iy i2py 2 2y 2 2py 2 2py 2 2pk oc = =— =— 2~ =— =—ppp 2 — y i y 2 y i—2 二 k oA = k oc ,贝U A 、0、C 三点共线, 同理D 、0、B 三点也共线.【证法二】设 AC 与x 轴交于点 0 ,T AD // RF // BC.| RO |= | C0 |= | BF | | 0 F |= | CB | '| AD | = | CA | = | AB |, | AF | = | AB |, 又| AD |=| AF |, | BC |=| BF |,I R0 | I AF | I 0F | I AF |D 、0、B 三点也【证法三】设 AC 与x 轴交于点 0 , RF // BC ,10U | CB | 迟|| AB|CB • |AF|= | AB | =| BF| • | AF |=| AF |+ | BF |= i + i 2 | AF |+| BF |【见⑵证】• 0与0重合,则即C 、0、A 三点共线,同理 D 、0、B 三点也共线. 【证法四】0C = (— p, y 2), 0A = (x i , y i ),p • y i — x i y 2= — 2 - y ipy i y i —岳 y 2=—2 y i y 2y i2p叫吐=0 2 2p• "0c // 3A ,且都以0为端点• A 、0、C 三点共线,同理 B 、0、D 三点共线.【推广】过定点 P(m , 0)的直线与抛物线 y 2= 2px ( p > 0)相交于点 A 、B ,过A 、B 两 点分别作直线I : x =— m 的垂线,垂足分别为 M 、N ,贝U A 、0、N 三点共线,B 、0、M 三点也共线,如下图:| AD |= | AF |, | BC |= | BF |, | AE |= | AD |—| BC | = (m — n)t 亠 "亠 , I AE I (m — n)t m — n•••在 Rt △ ABE 中, cos / BAE=祐=卷=— /• cos = cos / BAE = m~n. m + n【例6】设经过抛物线 y 2= 2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |: | BF |= 3: 1,则直线AB 的倾斜角的大小为 【答案】60或120 .【说明】如图15,设E 是AF 的中点,8.若| AF I : | BF |= m : n , 点A 在第一象限 为直线AB 的倾斜角•则cosm — n m +【证明】如图14,过A 、 B 分别作准线I 的垂线,垂足分别为 D , C ,过B 作BE 丄AD于 E ,设 | AF |= mt , | AF |= nt ,则9•以AF 为直径的圆与y 轴相切, 相切;A ' B '为直径的圆与焦点弦以BF 为直径的圆与 y 轴相切;以AB 为直径的圆与准线 A'yX---'C'K B' O JBAB 相切.x i则E 的坐标为(一2—,则点E 到y 轴的距离为 d =曹=1| AF |同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作 MN 丄准线I 于1 1 1I MN |= -(| AD 汁 | BC |)= 2(l AF |+ | BF |) = -| AB | •••点Q 在抛物线y 2= 2px 上,即卩Q 是MN 的中点.故以AF 为直径的圆与 y 轴相切, N ,则1则圆心M 到I 的距离| MN |= 2| AB |, 故以AB 为直径的圆与准线相切10. MN 交抛物线于点 Q ,则Q 是MN 的中点.2 2【证明】设 A (2pp , y 1), B (2p , y 1),则 C (-p , y i ),M(-p,宁),N (小4p设MN 的中点为y — y 2)2 ), p 丄 y 1 + y 2 —2 十 4p2 ' 2p + y 1+ 送 2 + 4p22p 2 + y f + y 22y i y 2+ y f + y 28p8py 1+ y 2 22 2p。