2020年中考模拟考试数学试卷(含答案)
浙江省宁波2020年中考数学模拟卷(含答案)
2020年浙江宁波中考模拟卷数学考试题号一二三总分评分1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A. 0.5B. ±0.5C. ﹣0.5D. 52.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为38万公里,将数38万用科学记数法表示,其结果()A. 3.8×104B. 38×104C. 3.8×105D. 3.8×1063.下列运算正确的是()A. B. C. D.4.已知,如图所示的几何体,则从左面看到的平面图形是( )A. B. C. D.5.一个不透明的口袋中有4个完全相同的小球,分别将它们标上1,2,3,4,随机摸出标号为3的小球的概率是()A. B. C. D.6.甲,乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填人下表:班级人数中位数方差平均字数甲 55 149 191 135乙 55 151 110 135优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是()A. ①②③B. ①②C. ①③D. ②③7.如图,已知直线a⊥c,直线b⊥c,若∠1=65°,则∠2的度数为()A. 20°B. 25°C. 50°D. 65°8.如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q 从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t (s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A. AE=12cmB. sin∠EBC=C. 当0<t≤8时,y=t2D. 当t=9s时,△PBQ是等腰三角形9.一直角三角形的两直角边长为12和16,则斜边上中线长为( )A. 8B. 10C. 15D. 2510.如图,M是双曲线上一点,过点M作轴、y轴的垂线,分别交直线于点D,C,若直线与轴交于点A,与轴交于点B,则的值为()A. B. C. D.二、填空题(每小题5分,共30分)11.一元二次方程x2﹣4=0的解x=________.12.P是反比例函数图象上的一点,且点P到x轴的距离为2,到y轴的距离为3,则反比例函数的解析式为________,点P关于原点的对称点在此反比例函数图象上吗?________.(填在或不在)13.小华为参加毕业晚会演出,准备制一顶圆锥形彩色纸帽,如图所示,如果纸帽的底面半径为8cm,母线长为25cm,那么制作这顶纸帽至少需要彩色纸板的面积为________cm2.(结果保留π)14.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达(结果保留根号)15.如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ,给出如下结论:①DQ=1;②=;③S△PDQ=;④cos∠ADQ=,其中正确结论是________ (填写序号).16.二次函数y=x2的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为________三、解答题(本大题共8小题,共80分)17.先化简,再求值:(x+y)(x﹣y)+2y2,其中x=,y=1.18.最短路径问题:例:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长。
浙江省绍兴市柯桥区中学2020届九年级模拟检测数学试题(含答案)
知识像烛光,能照亮一个人,也能照亮无数的人。
--培根1 / 192020 年柯桥区联盟学校数学学科中考模拟试卷数 学 试 题 卷(2020.6)考生须知: 1. 本试题卷共 6 页,有三个大题,24 个小题。
全卷满分 150 分,考试时间 120 分钟。
2. 答案必须写在答题纸相应的位置上,写在本试题卷、草稿纸上均无效。
3. 答题前,认真阅读答题纸上的“注意事项”,按规定答题。
本次考试不能使用计算器。
试 卷 Ⅰ(选择题,共 40 分)一、选择题(本题有 10 每小题 4 分,共 40 分)1.2020 的相反数是( ▲ )A . - 2020B .2020C . - 1D .2020 2. 一双没有洗过的手,带有各种细菌约 75000 万个,75000 万用科学记数法表示为( ▲ )A .7.5×104B .7.5×105C .7.5×108D .7.5×1093. 如图,由几个小正方体组成的立体图形的左视图是( ▲ )A .B .C .D . 4. 某校九年级(1)班 50 名学生中有 20 名团员,他们都积极报名参加学校开展的“文明劝导活动”.根据要求,该班从团员中随机抽取 1 名参加,则该班团员京京被抽到的概率( ▲ )A .B .C .D .5.下面是一位同学做的四道题①(a +b )2=a 2+b 2 , ②(2a 2)2=﹣4a 4 , ③a 5÷a 3=a 2 ,④a 3·a 4=a 12.其中做对的一道题的序号是( ▲ ) A .① B . ② C .③ D .④知识像烛光,能照亮一个人,也能照亮无数的人。
--培根6.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),2 / 19A.当x<1,y 随x 的增大而增大B.当x<1,y 随x 的增大而减小C.当x>1,y 随x 的增大而增大D.当x>1,y 随x 的增大而减小7.如图所示,矩形纸片ABCD 中,AD=6cm,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为(▲)A.3.5cm B.4cm C.4.5cm D.5cm8.如图,半径为5 的⊙P 与y 轴相交于M(0,﹣4),N(0,﹣10)两点,则圆心P 的坐标为(▲)A.(5,﹣4)B.(4,﹣5)C.(4,﹣7)D.(5,﹣7)9.超市有一种“喜之郎”果冻的长方体礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm 的圆,横截面可以近似地看作一个抛物线,如图的点M 是OH 的中点。
2020年中考数学模拟试卷03含解析 (2)
2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。
即1x y x+=-的自变量取值范围是0x ≠。
故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。
2020中考数学模拟试卷1+参考答案+评分标准
2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。
人教版2020年中考数学模拟试题及答案(含详解) (4)
中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
陕西省西安市碑林区西北工大附中2020年中考数学模拟试卷含解析
2020年中考数学模拟试卷一、选择题1.(3分)﹣的绝对值为()A.﹣2 B.﹣C.D.12.(3分)如右图所示的几何体,它的左视图是()A.B.C.D.3.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a24.(3分)如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60°B.65°C.70°D.75°5.(3分)若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()A.﹣B.﹣3 C.D.36.(3分)如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC 于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.7.(3分)已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,0)旋转180°,所得的图象经过(0.﹣1),则m的值为()A.﹣2 B.﹣1 C.1 D.28.(3分)如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为()A.B.C.D.9.(3分)如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为()A.25°B.30°C.35°D.40°10.(3分)已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题11.(3分)不等式>4﹣x的解集为.12.(3分)如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为.13.(3分)若反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),则这个反比例函数的表达式为.14.(3分)如图,已知AD∥BC,∠B=90°,∠C=60°,BC=2AD=4,点M为边BC的中点,点E、F在边AB、CD上运动,点P在线段MC上运动,连接EF、EP、PF,则△EFP的周长最小值为.三、解答题15.计算:﹣﹣|4sin30°﹣|+(﹣)﹣116.解方程:1+17.如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)18.如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.19.某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:(1)填空m=,n=,数学成绩的中位数所在的等级;(2)如果该校有1200名学生参加了本次模拟测,估计D等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A等级学生的数学成绩的平均分数.①如下分数段整理样本;等级等级分数段各组总分人数A110<X<120 P 4B100<X<110 843 nC90<X≤100 574 mD80<X<90 171 2②根据左表绘制扇形统计图.20.如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)21.小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间.22.某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.23.如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.24.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC=2S△A′BC,求所有满足条件的抛物线L′的表达式.25.问题提出(1)如图1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圆半径R 的值;问题探究(2)如图2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,点D为边BC上的动点,连接AD以AD为直径作⊙O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.参考答案与试题解析一、选择题1.(3分)﹣的绝对值为()A.﹣2 B.﹣C.D.1【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值为.故选:C.2.(3分)如右图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:图中所示几何体的左视图如图:故选:A.3.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.4.(3分)如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60°B.65°C.70°D.75°【分析】由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.【解答】解:∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故选:C.5.(3分)若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()A.﹣B.﹣3 C.D.3【分析】设该点的坐标为(a,b),则|b|=3|a|,利用一次函数图象上的点的坐标特征可得出k=±3,再利用正比例函数的性质可得出k=﹣3,此题得解.【解答】解:设该点的坐标为(a,b),则|b|=3|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±3.又∵y值随着x值的增大而减小,∴k=﹣3.故选:B.6.(3分)如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC 于点E,若BD=6,AE=5,则sin∠EDC的值为()A.B.C.D.【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【解答】解:∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD===,故选:A.7.(3分)已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,0)旋转180°,所得的图象经过(0.﹣1),则m的值为()A.﹣2 B.﹣1 C.1 D.2【分析】根据题意得出旋转后的函数解析式为y=﹣x﹣1,然后根据解析式求得与x 轴的交点坐标,结合点的坐标即可得出结论.【解答】解:∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,0)旋转180°,所得的图象经过(0.﹣1),∴设旋转后的函数解析式为y=﹣x﹣1,在一次函数y=﹣x+2中,令y=0,则有﹣x+2=0,解得:x=4,即一次函数y=﹣x+2与x轴交点为(4,0).一次函数y=﹣x﹣1中,令y=0,则有﹣x﹣1=0,解得:x=﹣2,即一次函数y=﹣x﹣1与x轴交点为(﹣2,0).∴m==1,故选:C.8.(3分)如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则的值为()A.B.C.D.【分析】过点A作AF⊥DE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及相似三角形的判定和性质解答即可.【解答】解:如图,过点A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD与△DCE中,∴△AFD≌△DCE(AAS),∴△CDE的面积=△AFD的面积=∵矩形ABCD的面积=AB•BC=2AB2,∴2△ABE的面积=矩形ABCD的面积﹣2△CDE的面积=(2﹣)AB2,∴,故选:C.9.(3分)如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为()A.25°B.30°C.35°D.40°【分析】如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.【解答】解:如图,连接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴==,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故选:B.10.(3分)已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【解答】解:抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2a+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.二、填空题11.(3分)不等式>4﹣x的解集为x>4 .【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:去分母得:x﹣4>8﹣2x,移项合并得:3x>12,解得:x>4,故答案为:x>412.(3分)如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为.【分析】由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【解答】解:∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案为:.13.(3分)若反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),则这个反比例函数的表达式为y=﹣.【分析】把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式.【解答】解:∵反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),∴,解得k=﹣5,∴反比例函数的表达式为y=﹣,故答案为y=﹣.14.(3分)如图,已知AD∥BC,∠B=90°,∠C=60°,BC=2AD=4,点M为边BC的中点,点E、F在边AB、CD上运动,点P在线段MC上运动,连接EF、EP、PF,则△EFP的周长最小值为2.【分析】作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转60°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M 是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q =F'C'=2,∠F'C'H=60°,所以F'H=,HC'=7,在Rt△MF'H中,F'M=2;【解答】解:作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转60°,则有GE'=FE',P与Q是关于AB的对称点,∴PF=GQ,又∵GF'=GQ,∴当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,∴F'M为所求长度;过点F'作F'H⊥BC',∵M是BC中点,∴Q是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴F'H=,HC'=7,在Rt△MF'H中,F'M=2;∴△FEP的周长最小值为2;故答案为2;三、解答题15.计算:﹣﹣|4sin30°﹣|+(﹣)﹣1【分析】直接利用特殊角的三角函数值以及绝对值的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=﹣3﹣(﹣2)﹣12=﹣3﹣+2﹣12=﹣4﹣10.16.解方程:1+【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,经检验x=3是增根,分式方程无解.17.如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)【分析】利用尺规在点E处作∠DCE=∠B,交AC于D,即可使得△ABC∽△CDE.【解答】解:过D作DE⊥AC,如图所示,△CDE即为所求:18.如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.【分析】由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.【解答】证明:∵△ABC,△DEB都是等边三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.19.某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:(1)填空m= 6 ,n=8 ,数学成绩的中位数所在的等级B;(2)如果该校有1200名学生参加了本次模拟测,估计D等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A等级学生的数学成绩的平均分数.①如下分数段整理样本;等级等级分数段各组总分人数A110<X<120 P 4B100<X<110 843 nC90<X≤100 574 mD80<X<90 171 2②根据左表绘制扇形统计图.【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【解答】解:(1)本次抽查的学生有:4÷=20(人),m=20×30%=6,n=20﹣4﹣3﹣2=11,数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)1200×=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:=113(分),即A等级学生的数学成绩的平均分是113分.20.如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)【分析】根据相似三角形的性质解答即可.【解答】解:过E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,设EF为x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE=,答:DE的长度为6+4.21.小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间.【分析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.【解答】解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),300×5=1500(米),∴两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小丽离距离图书馆500m时所用的时间为分.22.某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.【分析】(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率.【解答】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:,故答案为:;(2)树状图如下图所示,则顾客享受折上折优惠的概率是:,即顾客享受折上折优惠的概率是.23.如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.【分析】(1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;(2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.【解答】(1)证明:连接OB,∵BE为⊙O的切线,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直径,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四边形ABCD的外接圆为⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴设AB=x,则BD=2x,∴=,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.24.已知抛物线,L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,与y轴交于点C,且抛物线L的对称轴为直线x=1.(1)抛物线的表达式;(2)若抛物线L′与抛物线L关于直线x=m对称,抛物线L′与x轴交于点A′,B′两点(点A′在点B′左侧),要使S△ABC=2S△A′BC,求所有满足条件的抛物线L′的表达式.【分析】(1)抛物线L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,对称轴为直线x =1,则点B(3,0),即可求解;(2)S△ABC=2S△A′BC,则点A′为(1,0)或(5,0),对应抛物线的对称轴为:x=3或7,即可求解.【解答】解:(1)抛物线L:y=ax2+bx﹣3与x轴交于A(﹣1,0)、B两点,对称轴为直线x=1,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3;(2)S△ABC=2S△A′BC,则点A′为(1,0)或(5,0),对应抛物线的对称轴为:x=3或7,故抛物线L′的表达式为:y=(x﹣3)2﹣4或y=(x﹣7)2﹣4.25.问题提出(1)如图1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圆半径R 的值;问题探究(2)如图2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,点D为边BC上的动点,连接AD以AD为直径作⊙O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.【分析】(1)如图1中,作△ABC的外接圆,连接OA,OC.证明∠AOC=90°即可解决问题.(2)如图2中,作AH⊥BC于H.当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短.(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB 的延长线于H,设BE=CD=x.证明EC=AC,构建二次函数求出EC的最小值即可解决问题.【解答】解:(1)如图1中,作△ABC的外接圆,连接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣60°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=6,∴OA=OC=6,∴△ABC的外接圆的R为6.(2)如图2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC•sin45°=8×=8,∵∠BAC=60°,∴当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.∵∠EOF=2∠BAC=120°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF•cos30°=4•=6,∴EF=2EH=12,∴EF的最小值为12.(3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB 的延长线于H,设BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小时,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=60°,∴∠EBC=120°,∴∠EBH=60°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=12,CD=x,∴BC=12﹣x∴EC2=EH2+CH2=(x)2+()2=x2﹣12x+432,∵a=1>0,∴当x=﹣=6时,EC的长最小,此时EC=18,∴AC=EC=9,∴AC的最小值为9.。
2020年天津市中考数学模拟试题(含答案) (6)
2020年天津市中考数学模拟试卷(典型考点整理)一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y2.下列交通标志是中心对称图形的为()A.B.C.D.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.35.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±26.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是°.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是m.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明).三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣118.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.参考答案与试题解析一.选择题(共8小题)1.已知,那么下列等式中,不成立的是()A.B.C.D.4x=3y【分析】直接利用比例的性质将原式变形进而得出答案.【解答】解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.2.下列交通标志是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义即可解答.【解答】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选:C.3.二次函数y=x2的对称轴是()A.直线y=1 B.直线x=1 C.y轴D.x轴【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,据此解答可得.【解答】解:二次函数y=x2的对称轴是直线x=0,即y轴,故选:C.4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sin A===,∴tan A==,故选:B.5.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±2【分析】将点M坐标代入反比例函数解析式得出关于a的方程,解之可得.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.6.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上【分析】由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【解答】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=2,AC=2,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P2符合这样的要求,故P点应该在P2.故选:B.7.A,B是⊙O上的两点,OA=1,劣弧的长是,则∠AOB的度数是()A.30 B.60°C.90°D.120°【分析】直接利用已知条件通过弧长公式求出圆心角的度数即可.【解答】解:∵OA=1,的长是,∴,解得:n=60,∴∠AOB=60°,故选:B.8.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC 向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数图象大致是二次函数图象,开口向下.故选:C.二.填空题(共8小题)9.写出一个经过点(1,﹣2)的函数的表达式,所写的函数的表达式为.【分析】此题只需根据一次函数的形式或反比例函数的形式或二次函数的形式等写出适合(1,﹣2)的解析式即可.【解答】解:将点(1,﹣2)代入一次函数或反比例函数的形式或二次函数得:y=﹣2x,,y=﹣2x2等.故答案为:(答案不唯一).10.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是90 °.【分析】根据网格结构,先找出对应点连线的垂直平分线的交点为旋转中心,那么一对对应点与旋转中心连线的夹角即为旋转角.【解答】解:由图可知,A与D、B与E分别是对应点,作出线段AD、BE的垂直平分线,得到旋转中心P的坐标为(﹣1,0),则∠BPE=90°.故答案为90.11.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为 1 .【分析】根据直角三角形30度角的性质即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=1,故答案为1.12.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),13.如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D处,并绕点D旋转,两直角三角板的两直角边分别交于点E,F,下列结论:①DE=DF;②S四边形AEDF =S△BED+S△CFD;③S△ABC=EF2;④EF2=BE2+CF2,其中正确的序号是①②④.【分析】连接AD,如图,利用等腰直角三角形的性质得AB=AC,∠B=∠C=45°,AD⊥BC,BD=CD=AD,∠1=45°,再证明△DBE ≌△DAF得到DE=DF,则可对①进行判断;同理可得△DCF≌△DAE,则可对②进行判断;利用三角形面积公式得到S△ABC=AD2,由于当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,于是可对③进行判断;利用勾股定理得到EF2=AE2+AF2,由于△DBE≌△DAF,△DCF ≌△DAE,则BE=AF,CF=AE,从而可对④进行判断.【解答】解:连接AD,如图,∵△ABC为等腰直角三角形,∴AB=AC,∠B=∠C=45°,∵点D为等腰直角△ABC的斜边的中点,∴AD⊥BC,BD=CD=AD,AD平分∠BAC,∴∠2+∠3=90°,∠1=45°,∵∠EDF=90°,即∠4+∠3=90°,∴∠2=∠4,在△DBE和△DAF中,∴△DBE≌△DAF(ASA),∴DE=DF,所以①正确;同理可得△DCF≌△DAE,∴S四边形AEDF=S△BED+S△CFD,所以②正确;∵S△ABC=•AD•BC=•AD•2AD=AD2,而只有当DE⊥AB时,四边形AEDF为矩形,此时AD=EF,∴S△ABC不一定等于EF2,所以③错误;在Rt△AEF中,EF2=AE2+AF2,∵△DBE≌△DAF,△DCF≌△DAE,∴BE=AF,CF=AE,∴EF2=BE2+CF2,所以④正确.故答案为①②④.14.一名身高为1.6m的同学的影长为1.2m,同一时刻旗杆影长为9m,那么旗杆的高度是12 m.【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.【解答】解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=12.即旗杆的高是12米.故答案为:12.15.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15 个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.16.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,故答案为:点M是长方形AFBE是对角线交点,点N是正方形ABCD 的对角线的交点,直线MN就是所求的线段AB的垂直平分线.三.解答题(共12小题)17.计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣1【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.18.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠A+∠F=90°,∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.19.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.【分析】(1)根据画位似图形的一般步骤和相似比找出图形;(2)根据相似比和相似三角形的性质求出点B′及点C′的坐标;(3)运用待定系数法求出一次函数解析式.【解答】解:(1)如图△A′B′C′即为所求;(2)∵△ABC与△A′B′C′的相似比为1:3,∴B′(0,6),C′(3,0);(3)设B′C′所在直线的解析式为y=kx+b,,解得,∴B′C′所在直线的解析式y=﹣2x+6.20.如图所示,有一圆弧形拱桥,拱的跨度AB=30m,拱形的半径R=30m,则拱形的弧长为多少?【分析】过O作OD⊥AB,交AB于点C,交于点D,如图所示,利用垂径定理得到C为AB的中点,由AB长求出AC长,在直角三角形AOC中,利用锐角三角函数定义求出sin∠AOC的值,利用特殊角的三角函数值求出∠AOC度数,进而求出∠AOB度数,利用弧长公式即可求出拱形的弧长.【解答】解:过O作OD⊥AB,交AB于点C,交于点D,如图所示,∴C为AB的中点,即AC=BC=AB=15m,在Rt△AOC中,sin∠AOC===,∴∠AOC=60°,∴∠AOB=2∠AOC=120°,则拱形的弧长l==20π.21.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度.【分析】根据同一时刻物高与影长成正比,因而作DE⊥AB于点E,则AE与DE的比值,即同一时刻物高与影长的比值,即可求解.【解答】解:作DE⊥AB于点E,根据题意得:=,=,解得:AE=8米.则AB=AE+BE=8+2=10米.即旗杆的高度为10米.22.如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA 于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.(3)分三种情形分别讨论求解即可解决问题;【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).23.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【分析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为4,所以两次抽取的牌上的数字都是偶数的概率=.24.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O 相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.【分析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且=.【解答】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故为60°,∴F在直径BC下方的圆弧上,且=.25.如果一个函数的图象关于y轴对称,我们就称这个函数为偶函数.(1)按照上述定义判断下列函数中,D是偶函数.A.y=3x B.y=x+1 C.D.y=x2(2)若二次函数y=x2+bx﹣4是偶函数,该函数图象与x轴交于点A和点B,顶点为P.求△ABP的面积.【分析】(1)根据对称性进行判断;(2)根据偶函数的定义,知二次函数的对称轴是y轴,则其中的b=0,从而进一步求得点A、B、P的坐标,根据三角形的面积公式即可求出该三角形的面积.【解答】解:(1)A、y=3x是经过一、三象限的直线,其对称轴不是y轴,则不是偶函数;B、y=x+1是经过一、二、三象限的直线,其对称轴不是y轴,则不是偶函数;C、是在一、三象限的双曲线,其对称轴不是y轴,则不是偶函数;D、y=x2是关于y轴对称的抛物线,则是偶函数.故答案为D.(2)∵二次函数y=x2+bx﹣4是偶函数,∴其对称轴是y轴,则b=0.即二次函数y=x2﹣4.则A(﹣2,0),B(2,0),P(0,﹣4),则△ABP的面积=×4×4=8.26.抛物线y=﹣x2与直线y=kx﹣2k+3交于A,B两点,若∠AOB =90°,求k的值.【分析】将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,根据二次函数图象上点的坐标特征以及根与系数的关系得出y1=x12,y2=x22,x1•x2=4k﹣6,那么y1•y2=k2﹣3k+当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.证明△AOM∽△OBN,根据相似三角形对应边成比例得出y1•y2=﹣x1•x2,依此列出关于k的方程,求出k的值即可.【解答】解:将y=kx﹣2k+3代入y=x2,得x2﹣kx+2k﹣3=0,设抛物线y=﹣x2与直线y=kx﹣2k+3交于A(x1,y1),B(x2,y2)两点,∴y1=x12,y2=x22,x1•x2=4k﹣6,∴y1•y2=(x12)•(x22)=(x1•x2)2=(4k﹣6)2=4k2﹣6k+9 当∠AOB=90°时,如图:,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.在△AOM与△OBN中,,∴△AOM∽△OBN,∴=,即=,∴y1•y2=﹣x1•x2,∴4k2﹣6k+9=﹣4k+6,∵k>0,∴k=,27.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【解答】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=150°,∴∠PQC=150°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===5.28.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE 为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD 是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。
2020年河南省中考数学模拟考试试卷(经典一) (解析版)
2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。
2020年天津市中考数学模拟试题(含答案) (4)
2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。
2020年中考数学模拟试卷(含答案解析) (2)
中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。
湖南省湘潭市2020年中考数学模拟试题(二)有答案精析
湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。
2020年安徽省芜湖市中考数学第一次模拟试卷(Word版含解析)
2020年中考数学一模试卷一、选择题.1.﹣2的绝对值是()A.﹣2B.2C.﹣D.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.3.如图所示的几何体的左视图为()A.B.C.D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2 5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5 6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346858.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.29.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=.12.函数y=中,自变量x的取值范围是.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案一.选择题(共10小题)1.﹣2的绝对值是()A.﹣2B.2C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.解:|﹣2|=2.故选:B.2.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.3.如图所示的几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.4.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0B.x2+4x﹣1=0C.2x2﹣4x+3=0D.3x2=5x﹣2【分析】利用根的判别式△=b2﹣4ac分别进行判定即可.解:A、△=4>0,有两个不相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C.5.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:=0.00002=2×10﹣5.故选:D.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选:D.7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.8.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.9.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.10.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.故选:B.二、填空题(共4小题,每小题5分,满分20分)11.因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.解:2x2﹣8=2(x+2)(x﹣2).12.函数y=中,自变量x的取值范围是x≥﹣1且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:x+1≥0且x﹣1≠0,解得:x≥﹣1且x≠1.故答案为:x≥﹣1且x≠1.13.如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B,D两点,若AB=2,∠BAD=30°,则k=6+2.【分析】连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.解:连接OC,AC,过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG ⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.14.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为40°或100°或70°.【分析】如图1,连接AP,根据直角三角形的判定和性质得到∠APB=90°,当BC=BP时,得到∠BCP=∠BPC,推出AB垂直平分PC,求得∠ABP=∠ABC=25°,于是得到θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,根据线段垂直平分线的性质得到CH垂直平分PB,求得∠CHB=90°,根据等腰三角形的性质得到θ=2×50°=100°,当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,推出PG垂直平分BC,得到∠BGO=90°,根据三角形的内角和得到θ=∠BOG =70°.解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=20°,∴θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=20°,∴∠CBH=70°,∴∠OBH=50°,∴θ=2×50°=100°;当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=20°,∴θ=∠BOG=70°,综上所述:当△BCP恰为轴对称图形时,θ的值为40°或100°或70°,故答案为:40°或100°或70°.三、解答题(共2小题,每小题8分,满分16分)15.计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.解:原式=4×+1﹣3+1=﹣+2.16.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为(﹣2,﹣2)或(﹣6,0).【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P 点坐标即可或作C1B2和B1C2的垂直平分线,它们的交点旋转中心.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).线段B2C2可以看成是线段C1B1绕着点(﹣6,0)顺时针旋转90°得到,此时P点的坐标为(﹣6,0).故答案为(﹣2,﹣2)或(﹣6,0).四、(共2小题,每小题8分,满分16分)17.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标.(2)若y1>y2>0,求x的取值范围.(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.【分析】(1)联立两直线解析式得到关于x、y的方程组,解之即可得;(2)求得直线l2:y2=x+3与x轴的交点,然后根据图象即可求得;(3)根据题意表示出E、F的坐标,得到关于m的方程,解之可得答案.解:(1)根据题意,得:,解得:,∴点P的坐标为(﹣2,1).(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3,由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2;(2)由题意可知E(m,﹣2m﹣3),F(m,m+3),∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得:m=﹣3或m=﹣1.18.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】作DE⊥AB于点E,作CF⊥DE于点F,由tan37°=≈0.75求得AE=40.2,由AB=57知BE=17.3,再根据四边形BCFE是矩形知CF=BE=17.由∠CDF=∠DCF =45°知DF=CF=17.4,从而得BC=EF=30﹣17=13.5.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40.2∵AB=57,∴BE=17.3∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17.4∴BC=EF=30﹣17=13.5答:教学楼BC高约13米.五、(共2小题,每小题10分,满分20分)19.如图,AB是⊙O的直径,P、C是圆周上的点,=,弦PC交AB于点D.(1)求证:∠A=∠C;(2)若OD=DC,求∠A的度数.【分析】(1)连接OP,构造全等三角形(△POA≌△POC),由该全等三角形的性质证得结论;(2)设∠A=∠C=x°,利用圆周角定理和三角形内角和定理列出方程,由方程思想解答.【解答】(1)证明:如图,连接OP.∵=,∴PA=PC.在△POA与△POC中,.∴△POA≌△POC(SSS).∴∠A=∠C;(2)设∠A=∠C=x°,则∠POB=2∠A=2x°.∵OD=DC,∴∠DOC=∠C=x°.在△POC中,x+3x+x=180°x=36.∴∠A=36°.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.六、(本题满分12分)21.观察下列数据:第1列第2列第3列第4列…第n列第1行1234…n第2行2468…2n第3行36912…3n…………………第n行n2n3n4n…n2请回答:(1)第1行所有数字之和为(用含字母n的式子表示);(2)表格中所有数字之和为(用含字母n的式子表示);(3)根据以上的信息,计算13+23+33+ (1003)【分析】(1)直接利用前n个数和公式可得结论;(2)分别计算每一列的所有数字之和,再相加可得结论;(3)通过计算发现:前n个数的立方和等于前n个数的和的平方,根据(1)中的结论可解答.解:(1)1+2+3+…+n=;故答案为:;(2)第1列所有数字之和=1+2+3+…+n=,第2列所有数字之和=2+4+6+…+2n=2(1+2+3+…+n)=,…第n列所有数字之和=n(1+2+3+…+n)=,∴格中所有数字之和为:++…+===;故答案为:;(3)∵13=12,13+23=9=(1+2)2,13+23+33=36=(1+2+3)2,…∴13+23+33+ (1003)=(1+2+3+…+100)2,=50502,=25502500.七、(本题满分12分)22.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【分析】(1)根据购进两种型号的汽车数量相同列出分式方程即可求解;(2)根据销售利润等于每台汽车的利润乘以销售量列出二次函数关系即可求解.解:(1)设B型汽车的进货单价为x万元,根据题意,得=,解得x=8,经检验x=8是原分式方程的根.答A、B两种型号汽车的进货单价为:10万元、8万元.(2)设两种汽车的总利润为w万元,根据题意,得w=(x+2﹣10)[﹣(x+2)+18]+(x﹣8)(﹣x+14)=﹣2x2+48x﹣256=﹣2(x﹣12)2+32∵﹣2<0,当x=12时,w有最大值为32.答:A、B两种型号的汽车售价各为14万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是32万元八、(本题满分14分)23.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。
江苏省淮安市2020年中考数学模拟卷02(含解析)
江苏省淮安市2020年中考数学模拟卷021. 试卷分为第I 卷和第II 卷两部分,共6页,全卷满分150分,考试时间120分钟。
2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3. 答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置,答案写在试卷上或答题卡上规定的区域以外无效. 4. 作图要用2B 铅笔,加黑加粗,描写清楚. 5. 考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.2019-的相反数等于( ) A .2019-B .12019C .12019- D .20192.下列各式中,正确的有( ) A .325a a a +=B .32622a a a =gC .326(2)4a a -=D .824a a a ÷=3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为( ) A .947.2410⨯B .94.72410⨯C .54.72410⨯D .5472.410⨯4.如图所示几何体的左视图正确的是( )A .B .C .D .5.已知ABC ∆的三边长分别为a 、b 、c ,且()()()M a b c a b c a b c =+++---,那么( ) A .0M >B .0M …C .0M =D .0M <6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是( ) A .20分,22.5分B .20分,18分C .20分,22分D .20分,20分7.下列关于x 的一元二次方程中,有两个相等的实数根的方程是( ) A .2230x x +-=B .210x +=C .24410x x ++=D .230x x ++=8.如图,矩形ABCD 的边5AB cm =,4BC cm =动点P 从A 点出发,在折线AD DC CB --上以1/cm s 的速度向B 点作匀速运动,则表示ABP ∆的面积()S cm 与运动时间()t s 之间的函数系的图象是( )A .B .C .D .第II 卷 (非选择题 共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 9.分解因式:29y x y -= .10.某区10名学生参加实际汉字听写大赛,他们得分情况如下表:那么10名学生所得分数的中位数是 . 11.分式方程3104x x+=+的解为 . 12.若n 边形的外角和为(2)180n -⨯︒,则n = . 13.不等式组52124x x -⎧⎨-<⎩…的解集是 .14.圆锥的侧面展开图的圆心角是120︒,其底面圆的半径为2cm ,则其侧面积为 . 15.如图,ABC ∆中,//DE BC ,5AB =,3AC =,若BD AE =,则AD 的长为 .(第15题)(第16题)16.如图,在矩形ABCD 中,3AB =,2BC =,H 是AB 的中点,将CBH ∆沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan HAP ∠= .三、解答题(本大题共有11小题,共102分。
中考数学模拟考试卷(附答案解析)
中考数学模拟考试卷(附答案解析)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1. |﹣2023|的结果是( ) A .12023B .2023C .−12023D .﹣20232. 一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A. B. C. D.3. 月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为( ) A .38.4×104B .3.84×105C .0.384×106D .3.84×1064.在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标 为( ) A. ()0,2-B. ()0,2C. ()6,2-D. ()6,2--5.下列运算正确的是( ) A .3xy ﹣xy =2 B .x 3•x 4=x 12 C .x ﹣10÷x 2=x ﹣5D .(﹣x 3)2=x 66.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( ) A .40,42B .42,43C .42,42D .42,417. 如图,Rt △ABC 中,∠ABC =90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C8.已知关于x的分式方程xx−2−4=k2−x的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k ≠﹣29. 如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.AEEC =EFCDB.EFCD=EGABC.AFFD=BGGCD.CGBC=AFAD10.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 把多项式a 3﹣4a 分解因式,结果是 .12. 在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是 .13. 如图,△ABC 内接于⊙O ,MH ⊥BC 于点H ,若AC =10,AH =8,⊙O 的半径为7,则AB = .14. 我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 . 三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(8分)(1)计算:0|12sin 45(2020)︒--+-;(2)解不等式组:(1)3,29 3.x x -->⎧⎨+>⎩16.(8分)先化简,再求值:÷(1﹣),其中a=5.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.18. (8分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米/秒,参考数据:√3≈1.732,√2≈1.414).19.(10分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.20.(10分)如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分∠BAC ,DE ⊥AC ,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,∠BAC =60°,求线段EF 的长.B卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)21. 当x=12.代数式(x+1)(x﹣1)+x(2﹣x),的值为________.22. 已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.23.如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是.24.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为.25. 如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为.二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)26.(9分)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.27.(9分)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC =EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.28.(12分)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标;(3)点5(,0)02N n n ⎛⎫<<⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=.①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个?参考答案与解析A 卷第Ⅰ卷(选择题,共30分)一、选择题 1. 【答案】B【解析】根据绝对值的性质直接解答即可. |﹣2023|=2023 2. 【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A 选项中的图形. 3. 【答案】B【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 38.4万=384000=3.84×105 4.【答案】A【解析】先根据点向右平移3个单位点的坐标特征:横坐标加3,纵坐标不变,得到点P '的坐标,再根据关于x 轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.∵将点()3,2P -向右平移3个单位, ∴点P '的坐标为:(0,2),∴点P '关于x 轴的对称点的坐标为:(0,-2). 5.【答案】D【解析】分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.A .3xy ﹣xy =2xy ,故本选项不合题意;B .x 3•x 4=x 7,故本选项不合题意;C .x ﹣10÷x 2=x ﹣12,故本选项不合题意;D .(﹣x 3)2=x 6,故本选项符合题意.6.【答案】C【解析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=427. 【答案】D【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC 即可.【解析】由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AEB+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确.8.【答案】B【分析】表示出分式方程的解,根据解为正数确定出k的范围即可.【解析】分式方程xx−2−4=k2−x,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=k+83,由分式方程的解为正数,得到k+83>0,且k+83≠2,解得:k>﹣8且k≠﹣2.9. 【分析】根据平行线分线段成比例性质进行解答便可.【解析】∵EF∥BC,∴AFFD =AEEC,∵EG∥AB,∴AEEC =BGGC,∴AFFD =BGGC,故选:C.10.【答案】C【解析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.抛物线开口向下,a<0,对称轴为x=−b2a=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=−b2a=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,第Ⅱ卷(非选择题,共70分)二、填空题11. 【答案】a(a+2)(a﹣2).【解析】首先提公因式a,再利用平方差进行二次分解即可.原式=a(a2﹣4)=a(a+2)(a﹣2).12. 【解析】(4,8)或(﹣4,﹣8).【分析】利用关于原点对称的点的坐标,把A点横纵坐标分别乘以2或﹣2得到其对应点A1的坐标.【解析】∵△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,而点A的坐标为(2,4),∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),即(4,8)或(﹣4,﹣8).13. 【答案】565.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解析】作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,由圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴ABAH =ADAC,即AB8=1410,解得,AB=56514. 【答案】{x+y=250x+10y=30.【分析】根据“现用30钱,买得2斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解析】依题意,得:{x+y=250x+10y=30.故答案为:{x+y=250x+10y=30.三、解答题15.(8分)(1)计算:0|12sin45(2020)︒--+-;(2)解不等式组:(1)3, 29 3.xx-->⎧⎨+>⎩【答案】(1)0;(2)-3<x<-2【解析】(1)原式1212-⨯+=0;(2)(1)3 293xx-->⎧⎨+>⎩①②,解不等式①得:x<-2,解不等式②得:x>-3,∴不等式组的解集为:-3<x<-2.16.(8分)先化简,再求值:÷(1﹣),其中a=5.【答案】a+2,7.【解析】根据分式的混合运算法则把原式化简,代入计算即可.÷(1﹣)=÷(﹣)=•=a+2,当a=5时,原式=5+2=7.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【答案】见解析。
2020年中考二模检测《数学试题》附答案解析
中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、选择题(本大题共10小题,每小题4分,满分40分在每小题给出的选项中,只有一个符合题意,请将正确的一项代号填入下面括号内)1.4的倒数是 ( )A. -4B. 4C. 14-D. 14 2.下列各式计算的结果是5x 的是( )A. 102x x ÷B. 6x x -C. 23x x ⋅D. ()32x 3.某几何体的三视图如下所示,则该几何体可以是( )A. B. C. D. 4.2019年春学期,历时近三年,总投资24.3百万元,建筑面积8218平方米的庐阳中学艺体楼投入使用,进一步提升了我校的办学品质.其中“24.3百万”用科学计数法表示为 ( )A. 624.310-⨯B. 62.4310⨯C. 724.310⨯D. 72.4310⨯5.若分式25626x x x -+-的值等于0,则x 的值为( ) A. 2或3 B. 2 C. 3 D. 无解 6.如图,在平行四边形ABCD 中,100D ∠=︒,DAB∠平分线AE 交DC 于点E ,连接BE ,若AE AB =,则EBC ∠的度数为( )A. 30°B. 40︒C. 60︒D. 80︒7.在体育模拟考试中,某班25名男生的跳绳成绩如下表所示: 成绩/次 160 165 170 175 180 185 190 人数1 2 3 5 8 4 2则这些同学跳绳成绩的中位数,众数分别是( )A. 175,180B. 175,190C. 180,180D. 180,190 8.某种商品售价200元/件,经过两次降价后的价格为128元/件,则平均每次降价的百分率为( )A. 6.4%B. 12.8%C. 16%D. 20% 9.已知二次函数()2y x h =-- (h 为常数),当自变量x 的值满足13x ≤≤时,其对应的函数值y 的最大值为1-,则h 的值为 ( )A. 2或4B. 0或-4C. 2或-4D. 0或410.如图,在矩形ABCD 中,6AB =,4BC =,动点E 从点A 出发,沿A B C→→的路线运动,当点E 到达点C 时停止运动,过点E 作FE AE ⊥,交CD 于点F ,设点E 运动的路程为x ,FC y =.则y 关于x 的图象大致为( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.27-的立方根是________.12.如图,在平面直角坐标系中,点B 在y 上,OA AB =,反比例函数()0k y x x=>的图像经过点A ,若ABO ∆的面积是4,则k 的值为___.13.如图,已知,在O e 中,150AOB ∠=︒ ,E 是优弧AB 上一点,C 、D 是劣弧AB 上不同的两点(不与A 、B 两点重合),则C D ∠+∠的度数为______.14.如图,在菱形ABCD 中,60DAB ∠=︒, 3AB =, 点E 在边AD 上,且1DE =,点F 为线段AB 上一动点(不与点A 重合),将菱形沿直线EF 折叠,点A 的对应点为点'A ,当'A 落在菱形的对角线上时,AF 的长为__________.三、(本大题共2小题,每小题8分,共16分)15.计算:21122sin 452-⎛⎫-+ ⎪⎝⎭o 16.解不等式组21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩,并在数轴上表示它的解集.四、(本大题共2小题,每小题8分,共16分)17.如图,ABC V 的顶点分别为()()()3,4,B 4,2,C 2,1.A(1)请在平面直角坐标系中做出ABC V 绕原点O 逆时针旋转90o 后得到的111A B C △(点,,A B C 的对应点分别为111,,A B C );(2) 画出点A 在旋转过程中所经过的路径,并求出点A 所经过的路径的长18.如图,某景区的两个景点A 、B 处于同一水平地面上,一架无人机在空中飞行至点C 处时,测得景点A 的俯角为45°,景点B 的俯角为知75°,已知点C 与AB 在同铅直平面内,两景点A 、B 间的距离为100米,求无人机与景点A 的距离CA 为多少米?(结果保留根号)五、(本大题共2小题,每小题10分,共20分)19.如图1,观察数表,如何计算数表中所有数的和?方法1:如图1,先求每行数的和:第1行 ()123 123... n n ++++=++++L第2行 ()2462 2 123 n n ++++=++++L L第n 行 ()223 123 n n n n n n ++++=++++L L故表中所有数的和:()()()123212 3 123n n n n ++++++++++++++=+L L L L ;方法2:如图2.依次以第1行每个数为起点,按顺时针方向计算各数的和:第1组 311=第2组 32422++=第3组 3369633++++=…第n 组 222n m n n n ++++++=L L ,用这n 组数计算的结果,表示数表中所有数的和为: ,综合上面两种方法所得的结果可得等式: ;利用上面得到的规律计算:333312320++++L .20.如图,在O e 内接ABC ∆中,AB AC =, D 是O e 上一点,AD 的延长线交BC 的延长线于点E .(1)求证: ACB CDE ∠=∠;(2)若20AB =, 15AD = ,求ED 的长.六、(本题满分12分)21.将正面分别标有数字-1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上.(1)小明从这四张卡片中随机抽取一张, 抽到一张恰好是负数的概率是多少?(2)随机抽出一张,记其数字为b ,不放回,再随机抽出一张, 记其数字为c ,则使关于x 的方程2 =0x bx c ++有实数根的概率是多少?七、(本题满分12分)22.“淮南牛肉汤”是安徽知名地方小吃.某分店经理发现,当每碗牛肉汤的售价为6元时,每天能卖出500碗;当每碗牛肉汤的售价每增加0.5元时,每天就会少卖出20碗,设每碗牛肉汤的售价增加x 元时,一天的营业额为y 元.(1)求y 与x 的函数关系式(不要求写出x 的取值范围);(2)考虑到顾客可接受价格a 元/碗的范围是69a ≤≤,且a 为整数,不考虑其他因素,则该分店的牛肉汤每碗多少元时,每天的牛肉汤营业额最大?最大营业额是多少元?八、(本题满分14分)23.如图,正方形ABCD 边长为2,E 、F 分别是AD 、CD 上两动点,且满足AE DF =, BE 交AF 于点G .(1)如图1,判断线段BE 、AF 的位置关系,并说明理由;(2)在(1)的条件下,连接DG ,直接写出DG 的最小值为 ;(3)如图2,点E 为AD 的中点,连接DG .①求证:GD 平分EGF ∠;②求线段DG 的长度.答案与解析一、选择题(本大题共10小题,每小题4分,满分40分在每小题给出的选项中,只有一个符合题意,请将正确的一项代号填入下面括号内)1.4的倒数是 ( )A. -4B. 4C. 14-D. 14 【答案】D【解析】【分析】当两数的乘积等于1时,我们称这两个数互为倒数.【详解】解:4的倒数是14. 故选:14. 考点:倒数的定义2.下列各式计算的结果是5x 的是( )A. 102x x ÷B. 6x x -C. 23x x ⋅D. ()32x 【答案】C【解析】【分析】 根据同底数幂除法法则、同底数幂相乘法则、幂的乘方法则对各项进行运算验证即可求得.【详解】A .1028x x x =÷,不符合题意B . 6x x -,无法进行运算,不符合题意C . 235x x x ?,符合题意 D . ()326x x =,不符合题意故选:C【点睛】本题考查了同底数幂除法法则、同底数幂相乘法则、幂的乘方法则,应熟练掌握这些法则. 3.某几何体的三视图如下所示,则该几何体可以是( )A. B. C. D.【答案】A【解析】【详解】解:根据主视图、左视图、俯视图的平面图形,可以判断该几何体为A .故选:A4.2019年春学期,历时近三年,总投资24.3百万元,建筑面积8218平方米的庐阳中学艺体楼投入使用,进一步提升了我校的办学品质.其中“24.3百万”用科学计数法表示为 ( )A. 624.310-⨯B. 62.4310⨯C. 724.310⨯D. 72.4310⨯【答案】D【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数【详解】24.3百万=724300000=2.4310⨯,故选D.【点睛】此题考查科学记数法一表示较大数,难度不大5.若分式25626x x x -+-的值等于0,则x 的值为( ) A. 2或3B. 2C. 3D. 无解【答案】B【解析】【分析】 根据分式方程的值为0,可得2560x x -+=,260x -≠,即可求解.【详解】∵25626x x x -+-的值为0 ∴2560x x -+=,260x -≠2560x x -+=(2)(3)0x x --=解得x=2或x=3又∵260x -≠,3x ≠∴x=2故选:B【点睛】本题考查了分式方程为0的条件:分式的分子为0,且分母不为0.6.如图,在平行四边形ABCD 中,100D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE ,若AE AB =,则EBC ∠的度数为( )A. 30°B. 40︒C. 60︒D. 80︒【答案】A【解析】【分析】 由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°-∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数【详解】//,180,80DC AB D DAB DAB Q ∴∠+∠=︒∴∠=︒,∵∠ABC=∠D=100°,AE 为角平分线,∴40EAB ∠=︒AE AB =Q70EBA ∴∠=︒,1007030EBC ∴∠=︒-︒=︒,故选A.【点睛】此题考查平行四边形的性质,难度不大7.在体育模拟考试中,某班25名男生的跳绳成绩如下表所示:则这些同学跳绳成绩的中位数,众数分别是( )A. 175,180B. 175,190C. 180,180D. 180,190【答案】C【解析】【分析】中位数:是指将所有数从小到大或从大到小排列后,如果总数为奇数个,中位数就是排在最中间的那个数,众数:一组数据中,出现次数最多的数据.【详解】中位数为180,众数为180,故选C.【点睛】此题主要考查中位数、众数的概念,难度不大8.某种商品售价200元/件,经过两次降价后的价格为128元/件,则平均每次降价的百分率为()A. 6.4%B. 12.8%C. 16%D. 20%【答案】D【解析】【分析】设该商品平均每次降价的百分率为x,根据该商品的标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其中小于1的值即可得出结论【详解】设该商品平均每次降价的百分率为x,根据题意得:200(1−x)2=128,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).∴该商品每次降价的百分率为20%.故选:D【点睛】本题考查了一元二次方程的实际应用,根据题意找到等量关系列出一元二次方程是解题的关键.9.已知二次函数()2=-- (h为常数),当自变量x的值满足13y x h≤≤时,其对应的函数值y的最大值x-,则h的值为()为1A. 2或4B. 0或-4C. 2或-4D. 0或4【答案】D【解析】【分析】分h<1、1≤h≤3和h>3三种情况考虑:当h<1时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当1≤h≤3时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>3时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论. 【详解】当h<1时,有−(1−h)2=−1,解得:h 1=0,h 2=2(舍去);当1⩽h ⩽3时,y=−(x−h)2的最大值为0,不符合题意;当h>3时,有−(3−h)2=−1,解得:h 3=2(舍去),h 4=4.综上所述:h 的值为0或4.故选:D .【点睛】本题主要考查了二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键. 10.如图,在矩形ABCD 中,6AB =,4BC =,动点E 从点A 出发,沿A B C →→的路线运动,当点E 到达点C 时停止运动,过点E 作FE AE ⊥,交CD 于点F ,设点E 运动的路程为x ,FC y =.则y 关于x 的图象大致为( )A. B. C. D.【答案】B【解析】【分析】分为两种情况:当E 点在AB 上运动时和当E 点在BC 上运动时,再把x,y 代入得出解析式即可【详解】当E 点在AB 上运动时,06x ≤≤,,AE x FC y ==,6x y +=,即6y x =-+,为一次函数; 当E 点在BC 上运动时,68x <≤,易证ABE EFC ∆∆:,AB EB EC FC ∴=,即6610x x y -=-,化简得()28263x y --=+,即当8x =时,y 有最大值23,故选B.【点睛】此题考查动点问题的函数图象,解题关键在于分情况讨论二、填空题(本大题共4小题,每小题5分,满分20分)11.27-的立方根是________.【答案】-3.【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.如图,在平面直角坐标系中,点B 在y 上,OA AB =,反比例函数()0k y x x=>的图像经过点A ,若ABO ∆的面积是4,则k 的值为___.【答案】4.【解析】【分析】如图,过点A 作AD ⊥y 轴于点D,结合等腰三角形的性质得到△ADO 的面积为2,所以根据反比例函数系数k 的几何意义求得k 的值【详解】如图,过点A 作AD y ⊥轴于点D ,AB AO =Q ,ABO ∆的面积为4,22ADO kS ∆∴==,又反比例函数的图象位于第一象限,0k >,则4k =,故答案为4.【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于算出三角形AOD 的面积13.如图,已知,在O e 中,150AOB ∠=︒ ,E 是优弧AB 上一点,C 、D 是劣弧AB 上不同的两点(不与A 、B 两点重合),则C D ∠+∠的度数为______.【答案】105︒【解析】【分析】根据圆心角与弧的关系及圆周角定理不难求得C D ∠+∠的度数.【详解】∵150AOB ∠=︒∴弧AB 的度数为150︒∴C D ∠+∠=12(»AE 度数+»BE 度数) =1(360150)2⨯︒-︒=105︒ 故答案为:105︒【点睛】本题考查了圆心角与弧的关系,及圆周角定理.14.如图,在菱形ABCD 中,60DAB ∠=︒, 3AB =, 点E 在边AD 上,且1DE =,点F 为线段AB 上一动点(不与点A 重合),将菱形沿直线EF 折叠,点A 的对应点为点'A ,当'A 落在菱形的对角线上时,AF 的长为__________.【答案】2或513-【解析】【分析】分为两种情况:当点'A 在BD 上时和当点'A ;在AC 上时,再利用菱形的性质和等边三角形的性质进行解答.【详解】①当点'A 在BD 上时,如图:则'60EA F A ∠=∠=︒,EA EA '=,FA='A F∴'120EA D FA B '∠+∠=︒∵四边形ABCD 是菱形∴AB=AD=3∵60A ∠=︒∴△ABD 为等边三角形,∴120A FB FA B ''∠+∠=︒∴A FB EA D ''∠=∠∴DEA BA F ''∆∆:∴DA EA DE BF A F BA ''==''∵DE=1∴312EA AE '==-=设AF=FA '=x , DA y '=2BA y '=- 2133y x x y==-- 解得x=513-∴AF=513-②当点'A 在AC 上时,如图:则EF 垂直平分'AA∵四边形ABCD 是蒙形,∠DAB=60°∴∠DAC=∠CBA=30 ,∠AFE=∠DAB=60°∴EAF 是等边三角形,∴AF=AE=2 综上所述:AF=2或513-故答案为:2或513【点睛】本题考查了菱形的性质和等边三角形的性质和判定,分情况讨论是解题的关键,每种情况都不能遗漏.三、(本大题共2小题,每小题8分,共16分)15.计算:21122sin 452-⎛⎫-+ ⎪⎝⎭o 【答案】3.【解析】【分析】根据绝对值,特殊角的三角函数值和负指数幂进行计算即可【详解】原式2-1-2+4 =3【点睛】此题考查绝对值,特殊角的三角函数值和负指数幂,掌握运算法则是解题关键16.解不等式组21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩,并在数轴上表示它的解集. 【答案】11x -≤<,在数轴上表示见解析.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩解不等式,212x x -≥-,得1x ≥-,解不等式11224x x ⎛⎫+>- ⎪⎝⎭, 得1x <.∴原不等式组的解集为11x -≤<,在数轴上表示为.【点睛】本题考查了不等式组的解法,求出不等式组中每一个不等式的解集,再求出它们的公共部分,即为不等式组的解集.考查了不等式组的解集在数轴上的表示. 四、(本大题共2小题,每小题8分,共16分)17.如图,ABC V 的顶点分别为()()()3,4,B 4,2,C 2,1.A(1)请在平面直角坐标系中做出ABC V 绕原点O 逆时针旋转90o 后得到的111A B C △(点,,A B C 的对应点分别为111,,A B C );(2) 画出点A 在旋转过程中所经过的路径,并求出点A 所经过的路径的长【答案】(1) 111A B C △如图所示见解析;(2) 路径如图所示见解析,路径长为52π 【解析】【分析】(1)在平面直角坐标系中画出A,B,C 的对应点111,,A B C ,然后顺次连接即可;(2)求出AO 的长,根据弧长公式进行计算即可求出点A 所经过的路径长.【详解】(1) 111A B C △如图所示(2) 路径如图所示,则2234=5+路径长为905180π⋅⋅ =52π. 【点睛】此题考查作图-旋转变换,解题关键在于掌握作图法则18.如图,某景区的两个景点A 、B 处于同一水平地面上,一架无人机在空中飞行至点C 处时,测得景点A 的俯角为45°,景点B 的俯角为知75°,已知点C 与AB 在同铅直平面内,两景点A 、B 间的距离为100米,求无人机与景点A 的距离CA 为多少米?(结果保留根号)【答案】无人机与景点A 的距离CA 为(502506)+米. 【解析】 【分析】 过点B 作BE AC ⊥于点E ,根据已知在Rt ABE ∆中,可求出BE ,AE=BE ,在Rt CBE ∆中,求出BC ,利用特殊角三角函数,再求出CE ,CA=CE+AE ,即可求出CA .【详解】过点B 作BE AC ⊥于点E ,根据题意45CAB ∠=︒,754530ACB ∠=︒-︒=︒,在Rt ABE ∆中,sin BE EAB AB ∠=,即sin 45100BE ︒=, ∴502BE =,∴502AE BE ==,在Rt CBE ∆中,21002BC BE ==,tan BE ECB CE ∠=,即502tan 30︒=, ∴506CE =,∴502506CA =+,故答案为:无人机与景点A 的距离CA 为2506)米【点睛】本题考查了解直角三角形的应用—仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形,是数形结合思想的应用.五、(本大题共2小题,每小题10分,共20分)19.如图1,观察数表,如何计算数表中所有数的和?方法1:如图1,先求每行数的和:第1行 ()123 123... n n ++++=++++L第2行 ()2462 2 123 n n ++++=++++L L第n 行 ()223 123 n n n n n n ++++=++++L L 故表中所有数的和:()()()123212 3 123n n n n ++++++++++++++=+L L L L ;方法2:如图2.依次以第1行每个数为起点,按顺时针方向计算各数的和: 第1组 311=第2组 32422++=第3组 3369633++++=…第n 组 222n m n n n ++++++=L L ,用这n 组数计算的结果,表示数表中所有数的和为: ,综合上面两种方法所得结果可得等式: ;利用上面得到的规律计算:333312320++++L .【答案】方法1:()22114n n +;方法2:3n ;3333123n ++++L ; ()223333111234n n n +=++++L ;44100.【解析】【分析】方法1:先提取公因式,然后利用计算公式(1)1232n n n +++++=L ,即可求解. 方法2:根据规律第1组311=,第2组32422++=,第3组3369633++++=可找到规律,2322n m n n n n ++++++=L L根据表中所有数的和相等,将方法1和方法2综合即可得等式.333312320++++L 结合上一问所得等式即可求出解.【详解】方法1:()()()123212 3 123n n n n +++++++++++++++L L L L =2(1)2(1)3(1)(1)2222n n n n n n n n ++++++++L =(1)(123)2n n n +++++L =(1)(1)22n n n n ++g =22(1)4n n + 方法2:222n m n n n ++++++L L=3n用这n 组数计算的结果,表示数表中所有数的和为:3333123n ++++L ;综合上面两种方法所得的结果可得等式:22(1)4n n +3333123n =++++L ; 计算22333320(201)12320441004+++++==L . 【点睛】本题是找规律的一道题目,掌握计算公式(1)1232n n n +++++=L 是解题关键. 20.如图,在O e 的内接ABC ∆中,AB AC =, D 是O e 上一点,AD 的延长线交BC 的延长线于点E .(1)求证: ACB CDE ∠=∠;(2)若20AB =, 15AD = ,求ED 的长.【答案】(1)证明见解析;(2)353. 【解析】【分析】(1)根据圆的内接四边形的任意一个外角等于它的内对角,可得ABC CDE ∠=∠,又因为AB AC =,A ABC CB =∠∠,即可证得 ACB CDE ∠=∠.(2)由(1)结论,可得ADC ACE ∠=∠,又因为CAD CAD ∠=∠,可得ADC ACE ∆∆:,得出相似比,代入已知线段长度,即可求解.【详解】∵内接四边形ABCD ,∴ABC CDE ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∴ACB CDE ∠=∠;(2)由(1)得20AB AC ==,ACB CDE ∠=∠,∴ADC ACE ∠=∠,又∵CAD CAD ∠=∠,∴ ADC ACE ∆∆:, ∴AD AC AC AE =,即152020AE=, ∴803AE =, ∴353DE AE AD =-=. 故答案为:353【点睛】本题考查了圆的内接四边形的任意一个外角等于它的内对角,相似三角形的判定及性质.六、(本题满分12分)21.将正面分别标有数字-1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上.(1)小明从这四张卡片中随机抽取一张, 抽到一张恰好是负数的概率是多少?(2)随机抽出一张,记其数字为b ,不放回,再随机抽出一张, 记其数字为c ,则使关于x 的方程2 =0x bx c ++有实数根的概率是多少?【答案】(1)抽到一张恰好是负数的概率是14;(2)P (方程20x bx c ++=有实数根)12=. 【解析】【分析】(1)小明从这四张卡片中随机抽取一张,共有四种不同的结果,其中这四种结果中,只有一种结果是负数:小明抽到一张恰好是负数的概率是14(2)依题意可知:不放回的抽取两张,出现的结果可以是(-1,2),(-1,3),(-1,4),(2,-1),(2,3),(2,4),(3,-1),(3,2),(3,4),(4,-1),(4,2),(4,3)这12种不同的结果,其中前面的数字是b ,后面的数字是c ,列出树状图,若方程x 2+bx+c=0有实数根,则b 2-4c ≥0得b 2≥4c ,满足此条件的结果只有(2,-1),(3,-1),(3,2),(4,-1),(4,2),(4,3)这6种,使关于x 的方程x 2+bx+c=0有实数根的概率是612【详解】(1)∵小明从这四张卡片中随机抽取一张,共有四种不同的结果,其中这四种结果中,只有一种结果是负数∴小明抽到一张恰好是负数的概率是:14 故答案为:14(2)列出树状图:∵共有12种等可能结果,其中满足方程20x bx c ++=有实数根的结果有6种,∴P (方程20x bx c ++=有实数根)61122==. 故答案为:12【点睛】本题考查了随机事件求概率方法,作树状图或列表时,应按一定的顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分) 22.“淮南牛肉汤”是安徽知名地方小吃.某分店经理发现,当每碗牛肉汤的售价为6元时,每天能卖出500碗;当每碗牛肉汤的售价每增加0.5元时,每天就会少卖出20碗,设每碗牛肉汤的售价增加x 元时,一天的营业额为y 元.(1)求y 与x 的函数关系式(不要求写出x 的取值范围);(2)考虑到顾客可接受价格a 元/碗的范围是69a ≤≤,且a 为整数,不考虑其他因素,则该分店的牛肉汤每碗多少元时,每天的牛肉汤营业额最大?最大营业额是多少元?【答案】(1) 2402603000y x x =-++;(2)售价为9元每碗时,每天的最大营业额为3420元【解析】【分析】(1)根据题意:售价×碗数=一天的营业额=(6+x )(500-20×0.5x ) (2)由(1)可得当 3.25x <时y 随着x 的增大而增大,再结合x 取整数,即可解答,将x=3代入函数关系式可得最大营业额【详解】(1) 2(6)(50040)402603000y x x x x =+-=-++(2) 由(1)得()240 3.253422.5y x =--+,400-<,当 3.25x <时y 随着x 的增大而增大,又69,03a x ≤≤∴≤≤,结合x 为整数,故当3x =,即售价为9元每碗时,每天的最大营业额为3420元【点睛】此题考查二次函数的实际应用,列出方程是解题关键八、(本题满分14分)23.如图,正方形ABCD 边长为2,E 、F 分别是AD 、CD 上两动点,且满足AE DF =, BE 交AF 于点G .(1)如图1,判断线段BE 、AF 的位置关系,并说明理由;(2)在(1)的条件下,连接DG ,直接写出DG 的最小值为 ;(3)如图2,点E 为AD 的中点,连接DG .①求证:GD 平分EGF ∠;②求线段DG 的长度.【答案】(1)BE AF ⊥;理由见解析;(251;(3)①见解析;②2105DG =. 【解析】【分析】(1)证明ABE DAF ∆∆≌,即可解答.(2)取AB 的中点0,连接OG 、OD ,则OG=12AB=1,在Rt △AOD 中,根据勾股定理计算出OD 的值;根据三角形的三边关系,可得OG+DG>OD ,于是当O 、D 、G 三点共线时,DG 的长度最小为OD-OG ,据此解答.(3)①过点D 作DM GE ⊥于M ,DN GF ⊥于N ,可得四边形MGND 为矩形,再证得MDE NDF ∆∆≌,所以DM ND =,又因为DM GE ⊥, DN GF ⊥,可得GD 平分EGF ∠; ②在Rt ADF ∆中,根据1122ADF S AD DF AF DN ∆=⋅=⋅,可求得DN ,在Rt DGN ∆中,45DGN ∠=︒,sin 45DN DG =︒,即可求得DG . 【详解】(1)BE AF ⊥;理由:∵四边形ABCD 为正方形.∴AB AD =,90BAD ADC ∠=∠=︒,∵AB AD BAD ADC AE DF =⎧⎪∠=∠⎨⎪=⎩,∴ABE DAF ∆∆≌,∴ABE DAF ∠=∠,又∵90DAF BAG ∠+∠=︒,∴90ABE BAG ∠+∠=︒,∴90AGB ∠=︒,∴BE AF ⊥;(2)取AB 的中点O,连接OG 、OD ,如图所示:则OG=12AB=1 在Rt △AOD 中,2222125OA AD +=+=根据三角形的三边关系,OG+DG>OD ,当O 、D 、G 三点共线时,DG 的长度最小,最小值51 51(3)①过点D 作DM GE ⊥于M ,DN GF ⊥于N ,∵90EGF M DNG ∠=∠=∠=︒.∴四边形MGND 为矩形,∴90MDN ∠=︒,即90MDE EDN ∠+∠=︒,又∵90FDN EDN ∠+∠=︒,∴MDE FDN ∠=∠,又∵90M DNF ∠=∠=︒,∴ MDE NDF ∆∆≌,∴DM ND =,又∵DM GE ⊥, DN GF ⊥,∴GD 平分EGF ∠;②在Rt ADF ∆中,22125AF =+=,∵1122ADF S AD DF AF DN ∆=⋅=⋅, ∴255DN =, 在Rt DGN ∆中,45DGN ∠=︒,∴210sin 455DN DG ==︒.2105【点睛】此题考查正方形的性质和三角形全等的性质和判定,解题关键在于证明三角形全等。
2020年上海市松江区中考一模数学试卷(含有答案解析)
2020年上海市松江区中考一模数学试卷1.(2020·上海松江区·模拟)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是( )A.a>0,b>0,c>0B.a<0,b<0,c<0C.a<0,b>0,c>0D.a<0,b<0,c>02.(2020·上海松江区·模拟)如果点A(1,3),B(m,3)是抛物线y=a(x−2)2+ℎ上两个不同的点,那么m的值为( )A.2B.3C.4D.53.(2020·上海松江区·模拟)在以O为坐标原点的直角坐标平面内,有一点A(3,4),射线OA与x轴正半轴的夹角为α,那么cosα的值为( )A.35B.43C.45D.344.(2020·上海松江区·模拟)下列两个三角形不一定相似的是( )A.两条直角边比都是2:3的两个直角三角形B.腰与底的比都是2:3的两个等腰三角形C.有一个内角为50∘的两个直角三角形D.有一个内角为50∘的两个等腰三角形5.(2020·上海松江区·模拟)如果a⃗+b⃗⃗=c⃗,a⃗−b⃗⃗=3c⃗,且c⃗≠0⃗⃗,下列结论正确的是( )A.∣a⃗∣=∣∣b⃗⃗∣∣B.a⃗+2b⃗⃗=0C.a⃗与b⃗⃗方向相同D.a⃗与b⃗⃗方向相反6.(2020·上海松江区·模拟)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(阴影部分)的面积是1.5,那么sinα的值为( )A . 34B . 12C . 23D . 327. (2020·上海松江区·模拟)已知:xy =23,那么 2x−y x+y= .8. (2020·上海松江区·模拟)已知线段 a 是线段 b ,c 的比例中项,如果 a =2,b =3,那么 c = .9. (2020·上海松江区·模拟)若两个相似三角形的面积比为 3:4,则它们的相似比为 .10. (2020·上海松江区·模拟)已知点 P 是线段 AB 上黄金分割点,AP >PB ,且 AP =2,那么PB = .11. (2020·上海松江区·模拟)已知 Rt △ABC 中,若 ∠C =90∘,AC =3,BC =2,则 ∠A 的余切值为 .12. (2020·上海松江区·模拟)已知二次函数 f (x )=12x 2+bx +c 图象的对称轴为直线 x =4,则f (1) f (3).(填“>”或“<”)13. (2020·上海松江区·模拟)在直角坐标平面中,将抛物线 y =2(x +1)2 先向上平移 1 个单位,再向右平移 1 个单位,那么平移后的抛物线表达式是 .14. (2020·上海松江区·模拟)如图,已知 D 是 △ABC 的边 AC 上一点,且 AD =2DC .如果AB ⃗⃗⃗⃗⃗⃗=a ⃗,AC ⃗⃗⃗⃗⃗⃗=b ⃗⃗,那么向量 BD ⃗⃗⃗⃗⃗⃗⃗ 关于 a ⃗,b⃗⃗ 的分解式是 .15.(2020·上海松江区·模拟)如图,在正方形网格中,点A,B,C是小正方形的顶点,那么tan∠BAC的值为.16.(2020·上海松江区·模拟)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB的坡度为.17.(2020·上海松江区·模拟)以一个等腰直角三角形的腰为边分别向形外做等边三角形,我们把这两个等边三角形重心之间的距离称作这个等腰直角三角形的“肩心距”.如果一个等腰直角三角形的腰长为2,那么它的“肩心距” .18.(2020·上海松江区·模拟)如图,矩形ABCD中,AD=1,AB=k.将矩形ABCD绕着点B顺时针旋转90∘得到矩形AʹBCʹDʹ.连接ADʹ,分别交边CD,AʹB于E,F.如果AE=√2DʹF,那么k=..19.(2020·上海松江区·模拟)计算:3−(2cos45∘)2+3tan30∘2sin260∘−cos60∘−cot30∘20.(2020·上海松江区·模拟)已知二次函数y=x2−4x−1.(1) 将函数y=x2−4x−1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象顶点B坐标;(2) 在平面直角坐标系中xOy中,设抛物线y=x2−4x−1与y轴交点为C,抛物线的对称轴与x轴交点为A.求四边形OABC的面积.21.(2020·上海松江区·模拟)如图:在梯形ABCD中,AD∥BC,∠C=90∘,AD=AB=13,BD=24.求边DC的长.22.(2020·上海松江区·模拟)如图,小岛A在港口P的南偏西45∘方向上,一艘船从港口P,沿着正南方向,以每小时12海里的速度航行,1小时30分钟后到达B处,在B处测得小岛A 在它的南偏西60∘的方向上.小岛A离港口P有多少海里?23.(2020·上海松江区·模拟)已知:如图,点D,F在△ABC边AC上,点E在边BC上,且DE∥AB,CD2=CF⋅CA.(1) 求证:EF∥BD;(2) 如果AC⋅CF=BC⋅CE,求证:BD2=DE⋅BA.24.(2020·上海松江区·模拟)如图,已知抛物线y=−x2+bx+c过点A(3,0)、点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,连接BQ.(1) 求抛物线表达式;(2) 连接OP,当∠BOP=∠PBQ时,求PQ的长度;(3) 当△PBQ为等腰三角形时,求m的值.25.(2020·上海松江区·模拟)已知tan∠MON=2,矩形ABCD的边AB在射线OM上,AD=2,AB=m,CF⊥ON,垂足为点F.(1) 如图(1),作AE⊥ON,垂足为点E.当m=2时,求线段EF的长度;(2) 如图(2),连接OC,当m=2,且CD平分∠FCO时,求∠COF的正弦值;(3) 如图(3),当△AFD与△CDF相似时,求m的值.答案1. 【答案】C【解析】抛物线开口向下a<0;对称轴在y轴右侧,b>0(与a异号);图象交y正半轴,c>0.2. 【答案】B【解析】∵点A(1,3),B(m,3)是抛物线y=a(x−2)2+ℎ上两个不同的点,∴这两个点关于抛物线的对称轴对称,∴由顶点式可知对称轴是x=2,对称轴位于A点的右侧,∴2<m,=2,解之得:m=3.∴1+m23. 【答案】A【解析】∵在以O为坐标原点的直角坐标平面内有一点A(3,4),∴OA=√32+42=5,.∴cosα=354. 【答案】D【解析】A.两条直角边的比都是2:3的两个直角三角形,根据两边对应成比例且夹角相等,两个三角形相似判断,两个三角形相似,故正确,不符合题意;B.腰与底的比都是2:3的两个等腰三角形,等腰三角形,两条腰相等,根据三边对应成比例,两个三角形相似判断,两个三角形相似,故正确,不符合题意;C.有一个内角为50∘的两个直角三角形,两角对应相等两三角形相似判断,两个三角形相似,故正确,不符合题意;D.有一个内角为50∘的两个等腰三角形,内角是50∘的等腰三角形需要注意的是,这个角是顶角还是底角,情况不一样不一定相似.5. 【答案】D【解析】将a⃗+b⃗⃗=c⃗代入a⃗−b⃗⃗=3c⃗,计算得:a⃗=−2b⃗⃗(方向相反).6. 【答案】C【解析】如图示:作BC⊥CD交CD于C点,AD⊥CD交CD于D点,由阴影部分是两条宽度都为1的纸条,交叉重叠放在一起可知,阴影部分是一个菱形,则有AB=AE,AD=1,,∴AB=AE=1sinα∴S阴影=AB⋅AD=1sinα×1=1.5,解之得:sinα=23.7. 【答案】15【解析】∵xy =23,∴设x=2k,则y=3k,代入2x−yx+y 得:2×2k−3k2k+3k=k5k=15.8. 【答案】43【解析】∵线段a是线段b,c的比例中项,∴a2=bc,即22=3×c,∴c=43.9. 【答案】√32【解析】∵两个相似三角形面积的比为3:4,∴它们的相似比=√34=√32.10. 【答案】√5−1【解析】由于P为线段AB的黄金分割点,且AP是较长线段;则AP=AB×√5−12=2,∴PB =AB −PA =√5+1−2=√5−1.11. 【答案】 32【解析】如图.∵∠C =90∘,AC =3,BC =2,cot∠A =AC BC=32.12. 【答案】 >【解析】 ∵ 二次函数 f (x )=12x 2+bx +c 的图象开口向上,对称轴为直线 x =4, ∴ 当 x 的取值越靠近 4 函数值就越小,反之越大, ∴f (1)>f (3).13. 【答案】 y =2x 2+1【解析】根据二次函数图象平移的特征:函数平移遵循“上加下减,左加右减”则抛物线 y =2(x +1)2 平移后为:y =2[(x −1)+1]2+1=2x 2+1.14. 【答案】 23b ⃗⃗−a ⃗【解析】 ∵AD =2DC ,∴AD ⃗⃗⃗⃗⃗⃗=23AC⃗⃗⃗⃗⃗⃗. 根据题意,可得:DB ⃗⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗−AD ⃗⃗⃗⃗⃗⃗=a ⃗−23AC ⃗⃗⃗⃗⃗⃗=a ⃗−23b⃗⃗. ∴BD ⃗⃗⃗⃗⃗⃗⃗=23b ⃗⃗−a ⃗.15. 【答案】 2【解析】如图示: 连接 BC , 根据题意可得: AC 2=32+12=10, AB 2=12+12=2, BC 2=22+22=8, ∴AB 2+BC 2=AC 2,∴在Rt△ABC中,tan∠BAC=BCAB =√8√2=2.16. 【答案】23【解析】斜面AB的坡度为:2030=23.17. 【答案】3√2+√63【解析】如图示:等腰直角三角形的腰长为2,即AB=AC=2,∵△DBA和△EAC是等边三角形,△ABC等腰直角三角形∴BC=2√2,DM=EN=√3.延长DF交边BC于点F.∵G1,G2分别是等边△ABD和等边△ACE的重心,∴DM垂直且平分AB,EN垂直且平分AC,G1M=G2N=√33,又∵∠BAC=90∘,∴AC∥DF.∴点F是BC的中点.同理可得EN的延长线也交BC于点F.∴MF=12AC=1,FN=12AB=1,MN=12BC=√2.∵FNNG2=√33,FMMG1=√33,∴FNNG2=FMMG1.∴MN∥G1G2.∴MNG1G2=FMFG1,即√2G1G2=1+√33,解得G1G2=√2+√63.18. 【答案】√2+1【解析】∵将矩形ABCD绕着点B顺时针旋转90∘得到矩形AʹBCʹDʹ,∴AD=AʹDʹ=1,AB=AʹB=k,∠Aʹ=∠DAB=90∘=∠DCB=∠ABC,∴AʹDʹ∥BA∥CD,∴∠AʹDʹF=∠FEC=∠DEA,且∠D=∠Aʹ=90∘,∴△ADE∽△FAʹDʹ,∴ADAʹF =DEAʹDʹ=AEDʹF,且AE=√2DʹF,∴DE=√2AʹDʹ=√2,AʹF=√2=√22,∵∠Aʹ=∠DCF=90∘,∠AʹFDʹ=∠EFC,∴△AʹDʹF∽△CEF,∴ECAʹDʹ=FCAʹF,∴k−√21=k−1−√22√22,∴k=√2+1.19. 【答案】原式=3−(2×√22)2+3×√332×(√32)2−12−√3=−2−√3.20. 【答案】(1) y=x2−4x−1=(x−2)2−5,该函数图象顶点B坐标为(2,−5).(2) 如图.令y=0,x=−1,∴C(0,−1).∵B(2,−5),∴A(2,0).∴四边形OABC的面积=12×(AB+OC)×OA=12×6×2=6.21. 【答案】如图,过点A作AE⊥BD,垂足为E,∵AD∥BC,∴∠ADB=∠DBC,∵AB=AD,∴∠ADB=∠ABD,∴∠ABD=∠DBC,∵AE⊥BD,AB=AD,∴∠AEB=∠C=90∘,BE=DE=12,∴AE=√AB2−BE2=√169−144=5,∵∠ABD=∠DBC,∠AEB=∠C=90∘,∴△ABE∽△DCB,∴ABBD =AECD,即:1324=5CD,∴CD=12013.22. 【答案】过点A作AD⊥PB于点D,根据题意得:PB=12×1.5=18(海里).设BD=x,则AD=√3x,∴x+18=√3x,解得:x=9+9√3,∴AD=27+9√3,∵∠APD=45∘,∴ADAP =27+9√3AP=√22.解得:AP=27√2+9√6.23. 【答案】(1) ∵DE ∥AB ,∴CD CA =CE CB ,∵CD 2=CF ⋅CA∴CD CA =CF CD ,∴CE CB =CF CD ,∴EF ∥BD .(2) ∵AC ⋅CF =BC ⋅CE ,∴AC CE =BC CF ,又 ∠C =∠C ,∴△CEF ∽△CAB ,∴∠CEF =∠A ,∵EF ∥BD ,∴∠CEF =∠EBD ,∴∠EBD =∠A ,∵ED ∥AB ,∴∠EDB =∠DBA ,且 ∠EBD =∠A ,∴△ABD ∽△BDE ,∴BD DE =AB BD ,∴BD 2=BA ⋅DE .24. 【答案】(1) ∵ 将点 A (3,0) 、点 B (0,3) 分别代入抛物线解析式y =−x 2+bx +c得 {−9+3b +c =0,c =3.解之得:{c =3,b =2,∴ 抛物线的解析式为 y =−x 2+2x +3.(2) ∵∠BOP =∠PBQ 且 MQ ∥OB ,∴∠OBP =∠BPQ ,∴△OBP ∽△BPQ ,设 Q (x,−x 2+2x +3),∵P 点在直线 AB 上,并 A (3,0).B (0,3),则直线 AB 的解析式为:y =−x +3,∴P (x,3−x ),∴BP =√2x ,OB =3,PQ =−x 2+3x ,∴OBBP =BPBQ,即√2x=√2x−x2+3x,∴x=0或95(0舍去),∴PQ=5425.(3) ∵M(m,0),P(m,3−m),Q(m,−m2+2m+3),∴BP=√2m,PQ=−m2+3m且∠BPQ=45∘,∴当△BPQ为等腰三角形时,存在如下情况:①如图1,当BQ=PQ时,即∠PBQ=∠BPQ=45∘,∴△BPQ为等腰直角三角形,∴−m2+2m+3=3,∴m=2.②当BP=PQ时,即√2m=−m2+3m,即m=3−√2或0(0舍去).③如图2,当BP=BQ时,∠BQP=∠BPQ=45∘,根据PM=3−m,OM=m,可得PQ=2m,则有−m2+2m+3=3+m,∴m=1.综上所述,m的值为2,3−√2或1.25. 【答案】(1) 如图1,延长FC交OM于点G.∵∠BCG+∠CGB=90∘,∠MON+∠CGB=90∘,∴∠BCG=∠MON,则tan∠BCG=tan∠MON=2.∴BG=2BC=4,CG=√5BC=2√5,在Rt△AOE中,设OE=a,由tan∠MON=2,可得OA=√5a,则OG=√5a+6,OF=√5=a+6√55,∴EF=OF−OE=6√55.(2) 如图2,延长FC交OM于点G.由(1)得CG=2√5.∵CD平分∠FCO,∴∠FCD=∠DCO,∵CD∥OM,∴∠FCD=∠CGO,∠DCO=∠COG,∴∠CGO=∠COG,∴CO=CG=2√5.在Rt△COB中,由BC2+BO2=OC2,得22+(√5a+2)2=(2√5)2,解得 a 1=−6√55(舍去),a 2=2√55. ∴OF =a +6√55=8√55,cos∠COF =OF OC =45. ∴sin∠COF =35.(3) 当 D 在 ∠MON 内部时,①如图 3−1,△FDA ∽△FDC 时,此时 CD =AD =2,∴m =2;②当 △FDA ∽△CDF 时,如图 3−2,延长 CD 交 ON 于点 Q ,过 F 作 FP ⊥CQ 于 P ,则 ∠FDC =∠FDA =135∘,∴∠FDP =45∘,∵PC =FP ⋅tan∠PFC =FP ⋅tan∠MON =2FP =2DP =CD +DP ,∴FP =PD =CD =m ,∴FD =√2m ,∵△FDA ∽△CDF ,∴FD DA =CD FD ,∴FD =√AD ⋅CD =√2m ,∴√2m =√2m ,∴m =1;当 D 在 ∠MON 外部时,∠ADF >90∘,∠DFC >90∘,∴∠ADF =∠DFC ,∴∠DFI =∠FDI ,ID =IF ,如图 3−3,△FDA ∽△DFC 时,此时 △FDA ≌△DFC ,∴CF =AD =2,∵∠DAF =∠FCD =∠FHD ,∴A ,O 重合,延长 BC 交 ON 于 R ,∴FR =2CF =4,CR =2√5,BR =2+2√5,∴m =CD =AB =12BR =1+√5; 如图 3−4,△FDA ∽△CFD 时,设 CF =2√5t (t >0),延长 BC 交 ON 于 R ,过 F 作 FS ⊥CD 于 S ,∵△DFC ≌△FDH ,∴DH =FC ,∴ID =IF =12CF =√5t ,∴IS =t ,FS =2t ,CS =4t ,DS =(√5+1)t ,DH =FC =2√5t ,∵△FDA ∽△CFD ,∴ADDF =DFFC,∴DF2=AD⋅FC=2DH=4√5t,∵DF2=DS2+FS2,∴4√5t=4t2+(√5+1)2t2,解得t1=√5−12,t2=0(舍去)∴DH=2√5t=5−√5>2=AD,矛盾.综上所述:m=1或m=2或m=1+√5.。
厦门市2020年中考数学模拟试题及答案
厦门市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。
①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。
河南省2020年中考模拟数学试卷及答案参考(一) 解析版 (1)
河南省2020年中考模拟数学试卷 (一)一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.28.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x﹣h﹣3)2+k+3=x+n的两根为.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,A级人数占本次抽取人数的百分比为%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.3.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05;由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10.故选:C.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式进而得出不等式组的解集,进而得出答案.【解答】解:,解①得:x>﹣6,解②得:x≤13,故不等式组的解集为:﹣6<x≤13,在数轴上表示为:.故选:B.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.2【分析】判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.【解答】解:由得,∴A(2,3),由一次函数y=x+,令y=0,解得x=﹣2,∴(﹣2,0),∴S△AOB=OB•|y A|==3,AB==5,∵当OP⊥AB时,OP最小,∴S△AOB=AB•OP最小,∴×5OP最小=3∴OP最小=,故选:C.8.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.【分析】分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.【解答】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=,①当P在OB上时,即0≤x≤1,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•OP=×2x(1﹣x)=﹣x2+x;②当P在OD上时,即1<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2﹣x):1,∴EF=4﹣2x,∴y=EF•OP==﹣x2+3x﹣2,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.根据题意可知符合题意的图象只有选项B.故选:B.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=0 .【分析】直接利用负指数幂的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣4+4=0.故答案为:0.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.【分析】用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图展示所有9种等可能的结果数,找出某一初三男学生同时选择篮球和立定跳远这两项的结果数,然后根据概率公式求解.【解答】解:用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d 分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图为:共有12种等可能的结果数,其中某一初三男学生同时选择篮球和立定跳远这两项的结果数为1,所以某一初三男学生同时选择篮球和立定跳远这两项的概率=.故答案为.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x ﹣h﹣3)2+k+3=x+n的两根为2或6 .【分析】根据函数与方程的关系及函数平移的规律,变形要求的方程,利用平移规律可解.【解答】解:由方程a(x﹣h﹣3)2+k+3=x+n得a(x﹣h﹣3)2+k=x+n﹣3①方程①可看作左边是二次函数y=a(x﹣h﹣3)2+k,右边是一次函数y=x+n﹣3根据平移知识,可知方程①相当于关于x的一元二次方程a(x﹣h)2+k=x+n②,左右两边都向右平移3个单位而方程②的两根为x1=﹣1,x2=3∴方程①的两根为x1=2,x2=6故答案为2或6.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.【分析】连接B1、B2、B3、B4点,显然它们共线且平行于AC1,依题意可知△B1B2C1与△C1AA1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AA2=1:2,所以B2C2:C2A=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S6的值,即可求解.【解答】解:解:连接B1、B2、B3、B4.∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴=×1×1=,=×2×1=1,=×3×1=,…==3,连接B1、B2、B3点,显然它们共线且平行于AA1易知S1=,∵B2B3∥AA2,∴△B2C2B3∽△A2C2A,∴=,∴S2==,同理可求,S3==,S4=×2=,S5==,S6==,∴S1+S2+S3+S4+S5+S6==,故答案为:.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=1或﹣.【分析】分两种情形:①如图1中,当∠DGF=90°时,作DH⊥BC于H.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.【解答】解:①如图1中,当∠DGF=90°时,作DH⊥BC于H.在Rt△ACB中,∵∠ACB=90°,AC=2,BC=4,∴AB===2,∵AD=DB,∴CD=AB=,∵DH∥AC,AD=DB,∴CH=BH,∴DH=DG=AC=1,∴CG=﹣1,∵DC=DB,∴∠DCB=∠B,∴cos∠DCB=cos∠B=,∴CE=CG÷cos∠DCB=﹣.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.易证四边形DKEH是正方形,可得EH=DH=1,∵CH=BH=2,∴CE=1,综上所述,满足条件的CE的值为1或﹣.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.【分析】根据分式的减法和除法可以化简题目中的式子,然后由方程a2+a﹣6=0可以求得a的值,然后将a的值代入化简后的式子即可解答本题,注意代入a的值必须使得原分式有意义.【解答】解:====,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式==.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1 时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB=60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50 名学生,A级人数占本次抽取人数的百分比为24 %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72 度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:1000×=80(人),答:该校D级学生有80人.19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)【分析】过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.Rt△DCE中根据三角函数就可以求出CD的长.【解答】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景点C与景点D之间的距离约为4km.20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?【分析】(1)首先设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,然后根据题意,即可得方程,解方程即可求得答案;(2)设至少需购进B种台灯x盏,然后由该商场销售这批台灯的总利润不少于1400元,即可得一元一次不等式35y+20(50﹣y)≥1400,解此不等式即可求得答案;(3)首先设该商场购进A种台灯m盏,由该商场预计用不多于2600元的资金购进这批台灯,可通过不等式组求得m的取值范围,然后求得该商场获得的总利润与该商场购进A种台灯的盏数的一次函数,由10<a<20,根据一次函数的增减性即可求得答案.【解答】解:(1)设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,由题意得:40x+65(50﹣x)=2500,解得:x=30,∴该商场购进A种台灯30盏,购进B种台灯20盏.(2)设购进B种台灯y盏,由题意得:35y+20(50﹣y)≥1400,解得:y≥,∴y的最小整数解为27,∴至少需购进B种台灯27盏;(3)设该商场购进A种台灯m盏,由题意得:40m+65(50﹣m)≤2600,解得:m≥26,∴26≤m30,设该商场获得的总利润为w元,则w=20m+(35﹣a)(50﹣m)=(a﹣15)m+1750﹣50a,∵10<a<20,∴当10<a≤15时,m=26,即购进A种台灯26盏,购进B种台灯24盏,该商场获得的总利润最大,当15<a<20时,m=30,即购进A种台灯30盏,购进B种台灯20盏,该商场获得的总利润最大.22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为 1 ;②∠DBE的度数为90°.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.【分析】(1)由直角三角形的性质可得∠ABC=45°,可得∠DBE=90°,通过证明△ACD ∽△BCE,可得的值;(2)通过证明△ACD∽△BCE,可得的值,∠CBE=∠CAD=60°,即可求∠DBE的度数;(3)分点D在线段AB上和BA延长线上两种情况讨论,由直角三角形的性质可证CM=BM=,即可求DE=2,由相似三角形的性质可得∠ABE=90°,BE=AD,由勾股定理可求BE的长.【解答】解:(1)∵∠ACB=90°,∠CAB=45°∴∠ABC=∠CAB=45°∴AC=BC,∠DBE=∠ABC+∠CBE=90°∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且∠CAB=∠CDE=45°,∴△ACD∽△BCE∴故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,且△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.【分析】(1)利用抛物线的对称性得到B(3,0),则设交点式为y=a(x+1)(x﹣3),把C(0,﹣3)代入求出a即可得到抛物线解析式,然后把解析式配成顶点式即可得到D 点坐标;(2)设P(m,m2﹣2m﹣3),先确定直线BC的解析式y=x﹣3,再确定E(1,﹣2),则可根据三角形面积公式计算出S△BDC=S△BDE+S△CDE=3,然后分类讨论:当点P在x轴上方时,即m>3,如图1,利用S=S△PAB+S△CAB=S△BCD得到2m2﹣4m=;当点P在x轴下方时,即1<m<3,如图2,连结OP,利用S=S△AOC+S△COP+S△POB=S△BCD得到﹣m2+m+6=,再分别解关于m的一元二次方程求出m,从而得到P点坐标;(3)存在.直线x=1交x轴于F,利用两点间的距离公式计算出BD=2,分类讨论:①如图3,EQ⊥DB于Q,证明Rt△DEQ∽Rt△DBF,利用相似比可计算出DQ=,则BQ=BD﹣DQ=;②如图4,ED′⊥BD于H,证明Rt△DEQ=H∽Rt△DBF,利用相似比计算出DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,则利用勾股定理可得x2+(2﹣)2=(﹣x)2,解得x=1﹣,于是BQ=BD﹣DH+HQ﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,利用①得结论可得EI=,BI=,而BE=2,则BG=BE﹣EG=2﹣,根据折叠性质得∠EQD=∠EQD′,则根据角平分线性质得EG=EI=,接着证明△BQG∽△BEI,利用相似比可得BQ=﹣,所以当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ 的重叠部分图形为直角三角形.【解答】解:(1)∵点A与点B关于直线x=1对称,∴B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,∴抛物线就笑着说为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=(x﹣1)2﹣4,∴抛物线顶点D的坐标为(1,﹣4);(2)设P(m,m2﹣2m﹣3),易得直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣3,则E(1,﹣2),∴S△BDC=S△BDE+S△CDE=×3×(﹣2+4)=3,当点P在x轴上方时,即m>3,如图1,S=S△PAB+S△CAB=•3•(3+1)+•(3+1)•(m2﹣2m﹣3)=2m2﹣4m,∵S=S△BCD,∴2m2﹣4m=,整理得4m2﹣8m﹣15=0,解得m1=,m2=(舍去),∴P点坐标为(,);当点P在x轴下方时,即1<m<3,如图2,连结OP,S=S△AOC+S△COP+S△POB=•3•1+•3•m+•3•(﹣m2+2m+3)=﹣m2+m+6,∵S=S△BCD,∴﹣m2+m+6=,整理得m2﹣3m+1=0,解得m1=,m2=(舍去)∴P点坐标为(,),综上所述,P点坐标为(,)或(,);(3)存在.直线x=1交x轴于F,BD==2,①如图3,EQ⊥DB于Q,△DEQ沿边EQ翻折得到△D′EQ,∵∠EDQ=∠BDF,∴Rt△DEQ∽Rt△DBF,∴=,即=,解得DQ=,∴BQ=BD﹣DQ=2﹣=;②如图4,ED′⊥BD于H,∵∠EDH=∠BDF,∴Rt△DEQ=H∽Rt△DBF,∴==,即==,解得DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,∴x2+(2﹣)2=(﹣x)2,解得x=1﹣,∴BQ=BD﹣DQ=BD﹣(DH﹣HQ)=BD﹣DH+HQ=2﹣+1﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,由①得EI=,BI=,∵BE==2,∴BG=BE﹣EG=2﹣,∵△DEQ沿边EQ翻折得到△D′EQ,∴∠EQD=∠EQD′,∴EG=EI=,∵∠GBQ=∠IBE,∴△BQG∽△BEI,∴=,即=,∴BQ=﹣,综上所述,当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ的重叠部分图形为直角三角形.。
苏教版2020年中考数学模拟卷(含答案解析)
2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。
2020年中考数学模拟试题(八)有答案
2020年中考模拟试题(八)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。
2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。
3. 考试结束后,将本试卷保管好并将答题卡上交。
一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣12.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b23.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105 4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12 B.6C.4D.38.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.29.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4 10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.在函数y=中,自变量x的取值范围是.12.分解因式:a2b+4ab+4b=.13.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;19.先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.2020年中考数学模拟试题(八)参考答案一.选择题(共10小题)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣2020与﹣1即可.【解答】解:∵﹣2020<﹣1<0<,∴最小的数是﹣2020.故选:A.2.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b2【分析】根据合并同类项、积的乘方、单项式的除法和完全平方公式判断即可.【解答】解:A、5ab与﹣3b不是同类项,不能合并,选项错误,不符合题意;B、(﹣3a2b)2=9a4b2,选项错误,不符合题意;C、a3•b÷a=a2b,选项正确,符合题意;D、(2a+b)2=4a2+4ab+b2,选项错误,不符合题意;故选:C.3.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:19.71万=19710000=1.971×105,故选:D.4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【解答】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用6个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣6,由此可得到所求的方程.【解答】解:根据题意,得:.故选:C.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.6C.4D.3【分析】设点A的坐标,利用矩形的面积,表示矩形的边长,再根据对称中心表示E的坐标,由点A、E都在反比例函数的图象上,由反比例函数k的几何意义求解即可.【解答】解:设矩形的对称中心为E,连接OA、OE,过E作EF⊥OC垂足为F,∵点E是矩形ABCD的对称中心,∴BF=FC=BC,EF=AB,设OB=a,AB=b,∵ABCD的面积为12,∴BC=,BF=FC=,∴点E(a+,b),∵S△AOB=S△EOF=k,∴ab=(a+)×b=k,即:ab=6=k,故选:B.8.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.2【分析】根据矩形的性质和折叠的性质可得∠ADE=∠EDF=∠CDF=30°,再根据三角形面积公式可求AD的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵直线PQ是矩形ABCD的一条对称轴,∴∠DGF=90°,CD∥PQ,DG=AD,由折叠得∠EFD=∠A=90°,DF=AD,∠EDF=∠ADE,∴∠CFD=90°,∵EF=CF,∴∠EDF=∠CDF,∴∠ADE=∠EDF=∠CDF=30°,∴EF=DF,∴EC=AD,∵S△DEC=4,∴AD×AD÷2=4,解得AD=2.故选:D.9.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2±(舍去负数),则x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.【分析】根据图象的对称性,确定图象的对称性即可求解.【解答】解:由题意知,FP+PB1关于BB1对称,故可知y关于x的函数图象关于直线x=1对称,故选:B.二.填空题(共7小题)11.在函数y=中,自变量x的取值范围是x≥0且x≠3.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.分解因式:a2b+4ab+4b=b(a+2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2+4a+4)=b(a+2)2,故答案为:b(a+2)213.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为π.【分析】连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.【解答】解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=2,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故答案为:π.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为16或22.【分析】先计算判别式的值得到△=(k﹣1)2≥0,利用求根公式得到x1=k+1,x2=2k,根据等腰三角形的性质讨论:当k+1=2k或k+1=6或2k=6时,分别计算出对应的k的值得到b、c的值,然后根据三角形三边的关系和三角形周长的定义求解.【解答】解:根据题意得△=(3k+1)2﹣4(2k2+2k)=(k﹣1)2≥0,所以x=,则x1=k+1,x2=2k,当k+1=2k时,解得k=1,则b、c的长为2,而2+2<6,不合题意舍去;当k+1=6时,解得k=5,则2k=10,此时三角形的周长为6+6+10=22;当2k=6时,解得k=3,则k+1=4,此时三角形的周长为6+6+4=16.综上所述,△ABC的周长为16或22.故答案为16或22.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为2.【分析】依据S△P AB=S△PCD,即可得出点P在BC的垂直平分线上,进而得到PB=PC,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,依据勾股定理求得BD的长,即可得到PC+PD的最小值为2.【解答】解:∵点P是矩形ABCD内一动点,且S△P AB=S△PCD,AB=CD,∴点P到AB的距离等于点P到CD的距离,∴点P在BC的垂直平分线上,∴PB=PC,∴PC+PD=BP+PD,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,又∵AB=CD=4,BC=6,∴对角线BD===2,∴PC+PD的最小值为2,故答案为:2.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为()2019.【分析】根据图形的变化发现规律即可求解.【解答】解:∵菱形OAA1B的边长为1,∠AOB=60°,对角线OA1为:2cos30°•OA=;∴菱形OA1A2B2的边长为:菱形OA2A3B3的边长为()2菱形OA3A4B4的边长为()3……,发现规律:则菱形OA2019A2020B2020的边长为()2019.故答案为:()2019.三.解答题(共23小题)18.(1)计算:(﹣)﹣1+﹣|π﹣3|﹣;(2)因式分解:a3﹣2a2b+ab2.【分析】(1)原式利用负整数指数幂法则,绝对值的代数意义,二次根式性质,以及特殊角的三角函数值计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣3+﹣(π﹣3)﹣=﹣3+﹣π+3﹣=﹣π;(2)原式=a(a2﹣2ab+b2)=a(a﹣b)2.19.(1)计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;(2)先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.【分析】(1)直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案;(2)直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=1+﹣1﹣2×+﹣1=﹣1;(2)原式====,由不等式组,解得:﹣2≤x≤2,∵x+1≠0,(2+x)(2﹣x)≠0,∴x≠﹣1,x≠±2,∴当x=0时,原式==1.(或当x=1时,原式==).20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意豆花的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵DC=13m,BD=5m,∴CB==12(m).答:CB的长度为12m.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?【分析】(1)求出参加高中声乐的人数即可补充条形统计图;由参加器乐和声乐的总人数看分别求出其所占的百分比则扇形统计图可补充完整;(2)首先求出参加各个项目的初中总人数即可得到参加“书法”项目的学生所占的百分比;(3)求出参加“器乐”项目的高中学生所占百分比,即可估计1500名学生中参加“器乐”项目的高中学生的人数;(4)记两名高中学生为A,B,两名初中学生为a,b.列表得到所有可能结果,进而可求出正好抽到一名初中学生和一名高中学生的概率.【解答】解:(1)补全条形统计图和扇形统计图如下:(2).答:该校初中学生中,参加“书法”项目的学生占45%.(3)(人).答:该校参加“器乐”项目的高中学生约有375人.(4)记两名高中学生为A,B,两名初中学生为a,b.列表如下:A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)由上表可知,共有12种等可能结果,其中能抽到一名初中学生和一名高中学生的结果有8种,∴P(抽到一名初中学生和一名高中学生)=.答:正好抽到一名初中学生和一名高中学生的概率是.22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【解答】解:过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=32cm,∠CBM=30°,∴CM=BC•sin∠CBM=16cm.在Rt△ABF中,AB=42cm,∠BAD=60°,∴BF=AB•sin∠BAD=21cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+21+2=21+18(cm).答:此时灯罩顶端C到桌面的高度CE是(21+18)cm.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.【解答】解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:DE∥BC,DE=BC.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.【分析】(1)利用“边角边”证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质可得;(2)先判断出△AEG≌△DEH(ASA)进而判断出EF垂直平分GH,即可得出结论.【解答】解:DE∥BC,DE=BC,证明:如图,延长DE到点F,使得EF=DE,连接CF在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.(2)如图2,延长GE、FD交于点H,∵E为AD中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG和△DEH中,,∴△AEG≌△DEH(ASA),∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,∴GF=HF=DH+DF=2+3=5.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,利用等角的余角相等证明∠MFG=∠MGF即可解决问题.(2)连接EF.证明△EGF∽△FGM,可得结论,(3)连接OB.证明∠M=∠FOD,推出tan∠M=tan∠FOD==,由DF=6,推出OF=8,再由tan∠M=tan∠ABH==,假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,根据OH2+BH2=OB2,构建方程即可解决问题.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,解方程可求出点A坐标为(a,0),点B坐标为(1,0);(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,再由△ABC 的面积得到a的值即可;②本题分两种情况讨论:当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点P可求出;当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则直线与抛物线的交点P即可求出.【解答】解:(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a.∵点A位于点B的左侧,与y轴的负半轴交于点C,∴a<0,∴点B坐标为(1,0).(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,∴AB=1﹣a,OC=﹣a,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学模拟试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中,倒数最小的是( )A .﹣5B .51- C .5 D .152.2020年3月12日,中科院宣布国内学者已经掌握了用“纳米”画笔“绘制”各种需要的芯片,针对于此,厚度仅为0.3nm 的低维材料应运而生. 已知1nm =10﹣9m ,则0.3nm 用科学记数法表示为( )A .0.3×10﹣10 mB .3×10﹣10mC .0.3×10﹣11mD .30×10﹣11m3.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD,过点O 作OF ⊥OE ,若∠AOC =42°,则∠BOF 的度数为( )A .48°B .52°C .64°D .69° 4.下列运算正确的是( )A .426a a a +=B .()32826a a --=C .65a a -=D .325•a a a =5.如图所示的几何体,它的左视图是( )A .B .C .D .6.关于x 的一元二次方程()()132x x x --=--,下面说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .有两个实数根D .没有实数根7.若一组数据4, 9,5,m ,3的平均数是5,则这组数据的中位数和众数分别是( )A .9,3B .4,5C .4,4D .5,38.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x 个,依据题意可得方程()A .480012000480021.5x x --=B .1200012000480021.5 1.5x x--=C .120004800480021.5x x --=D .12000480012000480021.5x x---= 9.如图,在平行四边形ABCD 中,AB=4,BC=5,∠ABC=60°. 按以下步骤作图:①以C 为圆心,以适当长为半径做弧,交CB 、CD 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点E ,作射线CE 交BD 于点O,交AD 边于点F ;则BO 的长度为( )A. 3B .173C.254 10.如图1,点P 为△ABC 边上一动点,沿着A →C →B 的路径行进,点P 作PD ⊥AB ,垂足为D ,设AD =x ,△APD 的面积为y ,图2是y 关于x 的函数图象,则依据图中的数量关系计算△ACB 的周长为()A.二、填空题(每小题3分,共15分)11.计算:()10120202π-⎛⎫-+- ⎪⎝⎭= . 12.不等式组235112x x +≤⎧⎪⎨+>-⎪⎩的解集为 . 13.国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是.14.△ABC 为等边三角形,点O 为AB 边上一点,且BO=2A0=4,将△ABC 绕点O 逆时针旋转 60°得△DEF,则图中阴影部分的面积为 .15.如图,Rt△ACB中,∠ACB=90°,AC=2BC=4,点P为AB边中点,点E为AC边上不与端点重合的一动点,将△ADP沿着直线PD折叠得△PDE,若DE⊥AB,则AD的长度为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:2213222x xxx x-+⎛⎫÷--⎪++⎝⎭,请从-2,-1,0,1,中选择一个合适的值代入求值.17.(9分)如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当∠AEG=°时,四边形ABOF是菱形;②若OC=2DC,当AB=时,△AGE为等腰直角三角形.18.(9分)某中学疫情期间为了切实抓好“停课不停学”活动,借助某软件平台随机抽取了该校部分学生的在线学习时间,并将结果绘制成如下两幅不完整的统计图.请你根据以上信息回答下列问题(1)本次调查的人数为,学习时间为7小时的所对的圆心角为;(2)补全频数分布直方图;(3)若全校共有学生1800人,估计有多少学生在线学习时间不低于8个小时.19.(9分)如图所示,一副篮架由配重、支架、篮板与篮筐组成,在立柱的C点观察篮板上沿D点的仰角为45°,在支架底端的A点观察篮板上沿D点的仰角为54°,点C与篮板下沿点E在同一水平线,若AB=1.91米,篮板高度DE为1.05米,求篮板下沿E点与地面的距离.(结果精确到0.1m,参考数据:sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)20.(9分)为了迎接体育理化加试,九(2)班同学到某体育用品商店采购训练用球,已知购买3个A 品牌足球和2个B 品牌足球需付210元;购买2个A 品牌足球和1个B 品牌足球需付费130元.(优惠措施见海报)(1)求A ,B 两品牌足球的单价各为多少元?(2)为享受优惠,同学们决定购买一次性购买足球60个,若要求A 品牌足球的数量不低于B 品牌足球数量的3倍,请你设计一种付费最少的方案,并说明理由.21.(10分)如图,单位长度为1的网格坐标系中,一次函数 y kx b =+与坐标轴交于A 、B 两点,反比例函数m y x=(x >0)经过一次函数上一点C (2,a ). (1)求反比例函数解析式,并用平滑曲线描绘出反比例函数图像; (2)依据图像直接写出当0x >时不等式m kx b x +>的解集; (3)若反比例函数m y x=与一次函数y kx b =+交于C 、D 两点,使用直尺与2B 铅笔构造以C 、D 为顶点的矩形,且使得矩形的面积为10.22.(10分).问题发现:(1)如图1,在Rt △ABC 中,∠BAC=30°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC,∠BCD 的度数是 ;线段BD ,AC 之间的数量关系是 . 类比探究:(2)在Rt △ABC 中,∠BAC=45°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC,请问(1)中的结论还成立吗?;拓展延伸:(3)如图3,在Rt △ABC 中,AB =2,AC =4,∠BDC =90°,若点P 满足PB =PC ,∠BPC =90°,请直接写出线段AP 的长度.23.(11分)已知:如图,直线3y x =--交坐标轴于A 、C 两点,抛物线2y x bx c =++过A 、C 两点.(1)求抛物线的解析式;(2)若点P 为抛物线位于第三象限上一动点,连接PA,PC ,试问△PAC 是否存在最大值,若存在,请求出△APC 取最大值以及点P 的坐标,若不存在,请说明理由;(3)点M 为抛物线上一点,点N 为抛物线对称轴上一点,若△NMC 是以∠NMC 为直角的等腰直角三角形,请直接写出点M 的坐标.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中,倒数最小的是( )A .﹣5B .51- C .5 D .15B 【解析】﹣5,51-,5,15的倒数依次为:51-,﹣5,15,5; ∵115555-<-<<,∴倒数最小的为51-.故选:B . 2.2020年3月12日,中科院宣布国内学者已经掌握了用“纳米”画笔“绘制”各种需要的芯片,针对于此,厚度仅为0.3nm 的低维材料应运而生. 已知1nm =10﹣9m ,则0.3nm 用科学记数法表示为( )A .0.3×10﹣10 mB .3×10﹣10mC .0.3×10﹣11mD .30×10﹣11mB 【解析】0.3nm 用科学记数法表示为:3×10﹣10m ,故选:B .3.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD,过点O 作OF ⊥OE ,若∠AOC =42°,则∠BOF 的度数为( )A .48°B .52°C .64°D .69°D 【解析】∵∠AOC =42°,∴∠BOD=∠AOC =42°,∵OE 平分∠BOD,∴∠BOE =21°,∵OF ⊥OE ,∴∠BOF =90°﹣21°=69°.故选:D .4.下列运算正确的是( )A .426a a a +=B .()32826a a --=C .65a a -=D .325•a a a = D 【解析】A 、4a ,2a 非同类项,无法合并,故此选项不合题意;B 、()322a -=()3232a ⨯-g =68a -,故此选项不合题意;C 、65a a a -=,故此选项不合题意;D 、32•a a =23a +=5a ,故此选项符合题意;故选:D .5.如图所示的几何体,它的左视图是( )A .B .C .D .D 【解析】依据“长对正、高平齐、宽相等”画如图所示的几何体的三视图为:故选:D .6.关于x 的一元二次方程()()132x x x --=--,下面说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .有两个实数根D .没有实数根D 【解析】将方程()()132x x x --=--化为一般形式为:2350x x -+=,∵△=9﹣4×1×5<0,∴该方程没有实数根.故选:D .7.若一组数据4, 9,5,m ,3的平均数是5,则这组数据的中位数和众数分别是( )A .9,3B .4,5C .4,4D .5,3C 【解析】∵一组数据4, 9,5,m ,3的平均数是5,∴4+9+5+m+3=5×5,解得:m=4,这组数据按从从小到大排列为:3,4,4,5,9,故则中位数是:4,众数是4.故选:C .8.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x 个,依据题意可得方程()A .480012000480021.5x x--= B .1200012000480021.5 1.5x x --= C .120004800480021.5x x --= D .12000480012000480021.5x x ---= D 【解析】设采用新工艺之前每小时可生产口罩x 个,则采用新工艺之后每小时可生产口罩1.5x 个,根据题意,得方程为:12000480012000480021.5x x---=.故选:D . 9.如图,在平行四边形ABCD 中,AB=4,BC=5,∠ABC=60°.按以下步骤作图:①以C 为圆心,以适当长为半径做弧,交CB 、CD 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点E ,作射线CE 交BD 于点O,交AD 边于点F ;则BO 的长度为( )A. 3B .173C .254C 【解析】过点D 作DG ⊥BC 的延长线,垂足为G.由做图痕迹可知,CF 为∠BCD 的角平分线,∴∠BCF=∠DCF,∵AD∥BC,∴∠BCF=∠DFC,∴∠DFC=∠DCF,∴DF=DC=4,∵AB∥CD,∴∠DCG=∠ABC=60°,∴CG=CD ·cos60°=2,DG=CD·sin60°=在Rt △BGD 中,BG=5+2=7,DG=, ∵AD ∥BC ,∴54BO BC DO DF ==,∴BO=59故选C. 10.如图1,点P 为△ABC 边上一动点,沿着A →C →B 的路径行进,点P 作PD ⊥AB ,垂足为D ,设AD =x ,△APD 的面积为y ,图2是y 关于x 的函数图象,则依据图中的数量关系计算△ACB 的周长为()A.C 【解析】由图像可知函数图像的拐点处坐标为(4,6),结合图3可知,当点P 运动到C 点时,y 有最大值6,可知:y=12AD·CD,代入数据得CD=3,在Rt△ADC 中,, 当点D 运动到B点时,函数值为0,故AB=,在Rt△BDC 中,得∠B=60°,由BD=BC ·cos60°,得BC=∴△ABC 的周长为:5+= 故选:C.二、填空题(每小题3分,共15分)11.计算:()10120202π-⎛⎫-+- ⎪⎝⎭= . -1【解析】原式=1+(-2)=-1.故答案为:-1.12.不等式组235112x x +≤⎧⎪⎨+>-⎪⎩的解集为 . 31x -<≤【解析】235112x x +≤⎧⎪⎨+>-⎪⎩①②,解不等式①得1x ≤;解不等式②得3x >-; ∴原不等式组的解是31x -<≤,故答案为:31x -<≤.13.国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是. 13【解析】依据题意,画树状图如下:由树状图知,共有12种等可能结果,其中抽到的汉字恰为相反意义的有4种结果, 所以“抽到的汉字恰为相反意义”的概率为P=412=13,故答案为:13. 14.△ABC 为等边三角形,点O 为AB 边上一点,且BO=2A0=4,将△ABC 绕点O 逆时针旋转 60°得△DEF,则图中阴影部分的面积为 .143π-【解析】连接OC ,OF ,作CG ⊥AB ,OM ⊥BC ,FH ⊥AB 的延长线于点H . ∵BO=2A0=4,∴AO=2,AB=6,∵CG ⊥AB ,∴BG=AG=12AB=3,CG=BC·sin60°= , ∴OG=3-2=1,Rt △OGC 中,OG=1,CG=,∴,易证△NEC ,△AOD,△BOE 为等边三角形,四边形AOEF 为等腰梯形,∴AF=OE=4,CE=AO=2,OM=HF=4×sin60°=∵′COF S 扇形= (260360πg = 143π,OEC S △=AOFS △= 122⨯⨯= AOEF S梯形= ()262+⨯= , NECS △= 122⨯∴S 阴影=COF S 扇形+ OEC S △+AOF S △-AOEF S 梯形-NECS △=143π-.故答案为143π-. 15.如图,Rt △ACB 中,∠ACB=90°,AC=2BC=4,点P 为AB 边中点,点E 为AC 边上不与端点重合的一动点,将△ADP 沿着直线PD折叠得△PDE,若DE ⊥AB ,则AD 的长度为 .52-或52+分类讨论如下:①当点E 在直线AC 上方时,如图1,设DM=x. ∵∠A=∠A,∠AMD=∠C,∴△AMD∽△ACB,∴AM:MD=AC:BC=2,∴AM=2x,在Rt △AMD 中,AM=2x,DM=x,∴,∴,∴ME=)x ,在Rt △ACB 中,AC=4,BC=2∴AP=122x∵∠E=∠A,∴tan∠E=MPME =12,12=,解得:x =,;②当点E 在直线AC 上方时,如图2,设DN=y.∵DN=y,同①可得,AN=2y ,∴PN=2y ,EN=)1y ,∵tan∠E=PN NE =12,12=,解得:12y ==52+;故答案为:52-或52+. 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:2213222x x x x x -+⎛⎫÷-- ⎪++⎝⎭,请从-2,-1,0,1,中选择一个合适的值代入求值.解:原式= ()221122x x x x --÷++=()()()212211x xx x x-+++-g=11xx -+;∵当x取-2,-1,1,原分式无意义,∴x只能取0,当x=0时,原式=1010-+=1.17.(9分)如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当∠AEG=°时,四边形ABOF是菱形;②若OC=2DC,当AB=时,△AGE为等腰直角三角形.证明:(1)如图,连接OA,OF,AF,∵AG=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠GDC=90°,∴∠ACO+∠DEC=90°,∵∠DEC=∠GEA,∴∠GEA+∠ACO=90°,∵OA=OC,∴∠CAO=∠ACO,∴∠CAO+∠GAE=90°,即∠GAO=90°,∵OA为半径,∴AG为⊙O的切线;(2)答案为:60°;提示如下:①若四边形ABOF为菱形,∴AB=AO,又∵AO=BO,∴△AOB为等边三角形,∴∠ABC=60°,∴∠ACB=90°-60°=30°,∴∠AEG=∠DEC=90°-30°=60°;②如图所示,若△AGE为等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC和△BAC都是等腰三角形,在等腰Rt△BAC中,AO为斜边中线,∴∠AOC=90°,∵∠AOC=∠ODG=∠AGE=90°,∴四边形AODG为矩形,∵OC=2DC,∴OD=DC=AG,AG=故答案为:60°;.18.(9分)某中学疫情期间为了切实抓好“停课不停学”活动,借助某软件平台随机抽取了该校部分学生的在线学习时间,并将结果绘制成如下两幅不完整的统计图.请你根据以上信息回答下列问题(1)本次调查的人数为,学习时间为7小时的所对的圆心角为;(2)补全频数分布直方图;(3)若全校共有学生1800人,估计有多少学生在线学习时间不低于8个小时.解:(1)50,86.4°,解答如下:本次调查的人数为:20÷40%=50(人),学习时间为9小时的人数为:50×30%=15(人),学习时间为7小时的人数为:50-15-20-3=12(人),所对的圆心角为:360°×1250=86.4°;故答案为:50,86.4°;(2)依据(1)中相关数据,补全频数分布直方图如下:(3)1800×(30%+40%)=1260(人).答:估计全校有1260在线学习时间不低于8个小时.19.(9分)如图所示,一副篮架由配重、支架、篮板与篮筐组成,在立柱的C点观察篮板上沿D点的仰角为45°,在支架底端的A点观察篮板上沿D点的仰角为54°,点C与篮板下沿点E在同一水平线,若AB=1.91米,篮板高度DE为1.05米,求篮板下沿E点与地面的距离.(结果精确到0.1m,参考数据:sin54°≈0.80,cos54°≈0.60,tan54°≈1.33)解:过D作DF⊥AB的延长线于F,连接CE.在Rt△DEC中,∠DCE=45°,DE=1.05(米),∴CE=DE=1.05(米),∵∠CBF=∠F=∠CEF=90°,∴四边形CBFE为矩形,∴CE=BF=1.05(米),∴AF=AB+BF=2.96(米),在Rt△AFD中,AF=2.96(米),∠DAF=54°,由DF=AF·tan54°得DF≈3.94(米),∴EF=3.94-1.05≈2.9(米).答:篮板下沿E点沿与地面的距离为2.9米.20.(9分)为了迎接体育理化加试,九(2)班同学到某体育用品商店采购训练用球,已知购买3个A品牌足球和2个B品牌足球需付210元;购买2个A品牌足球和1个B品牌足球需付费130元.(优惠措施见海报)(1)求A ,B 两品牌足球的单价各为多少元?(2)为享受优惠,同学们决定购买一次性购买足球60个,若要求A 品牌足球的数量不低于B 品牌足球数量的3倍,请你设计一种付费最少的方案,并说明理由.解:(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,根据题意得:322102130x y x y +=⎧⎨+=⎩,解得5030x y =⎧⎨=⎩,答:A 品牌足球的单价为50元,B 品牌足球的单价为30元;(2)设购买A 品牌足球为a 个,则购买B 品牌足球为(60﹣a )个,根据题意得: ()360a a ≥-,解得45a ≥,故A 品牌足球可享8折,B 品牌足球原价;设购买A ,B 两品牌足球的总费用为W 元,则W =0.8×50a+30(60﹣a )=10a+1800, ∵k =10>0,∴W 随x 的增大而增大,∴当a =45时,花费最少,最少费用为:10×45+1800=2250(元).答:购买A 品牌足球45个,B 品牌足球15个花费最少,最少费用为2250元.21.(10分)如图,单位长度为1的网格坐标系中,一次函数y kx b =+与坐标轴交于A 、B 两点,反比例函数m y x=(x >0)经过一次函数上一点C (2,a ). (1)求反比例函数解析式,并用平滑曲线描绘出反比例函数图像; (2)依据图像直接写出当0x >时不等式m kx b x +>的解集; (3)若反比例函数m y x=与一次函数y kx b =+交于C 、D 两点,使用直尺与2B 铅笔构造以C 、D 为顶点的矩形,且使得矩形的面积为10.解(1)由图知点A 坐标为(0,4),点B 的坐标为(8,0),一次函数y kx b =+经过A 、B 两点,∴408b k b =⎧⎨=+⎩,解得:124k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:142y x =-+, ∵142y x =-+经过点C (2,a ),∴143a =-+=,∴点C 坐标为(2,3), ∵反比例函数m y x =经过点C (2,3),∴236m =⨯=,∴反比例函数解析式为:6y x=; (2)描绘出反比例函数m y x=(x >0)的图像如下: 依据函数图像可得,当0x >时,不等式m kx b x +>的解集为26x <<; (3)由图像可知点C 的坐标为(2,3),点D 的坐标为(6,1),依据勾股定理可得=已知矩形面积为10的情况下,分类讨论:若以CDCD 为对角线的情况下构造矩形,此时.22.(10分).问题发现:(1)如图1,在Rt △ABC 中,∠BAC=30°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC,∠BCD 的度数是 ;线段BD ,AC 之间的数量关系是 .类比探究:(2)在Rt △ABC 中,∠BAC=45°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC,请问(1)中的结论还成立吗?;拓展延伸:(3)如图3,在Rt △ABC 中,AB =2,AC =4,∠BDC =90°,若点P 满足PB =PC ,∠BPC =90°,请直接写出线段AP 的长度.解:(1)如图3,过点D 作DE ⊥BC ,垂足为E ,设BC=m.在Rt △ABC 中,∠BAC=30°,由BC=AB ·tan30°,BC=AC ·sin30°,得m , ∵AC=AD ,∠CAD=2×30°=60°,∴△ACD 为等边三角形,∴∠ACD=60°,CD=AC=2m , ∴∠BCD=60°×2=120°,在Rt △DEC 中,∠DCE=180°-120°=60°,DC=2m ,∴CE=CD·cos60°=m,DE=CE ·,∴在Rt △BED 中,,∴BD AC故AC.故答案为:120°;AC. (2)不成立,理由如下:设BC=n ,在Rt △ABC 中,∠BAC=45°,∠ABC=90°,∴BC=AB=m ,n ,∵AC=AD ,∠CAD=90°,∴△CAD 为等腰直角三角形,∴∠ACD=45°,AC= 2n ,∴∠BCD=2×45°=90°,在Rt △BCD 中,,∴BDAC 2,,故BD=2AC.答案为:90°;BD=2AC.故结论不成立.(3)AP 或;解答如下:∵PB=PC ,∴点P 在线段BC 的垂直平分线上,∵∠BAC=∠BCP=90°,故A 、B 、C 、P 四点共圆,以线段BC 的中点为圆心构造⊙O ,如图4,图5,分类讨论如下:①当点P 在直线BC 上方时,如图4,作PM ⊥AC ,垂足为M ,设PM=x.∵PB=PC ,∠BPC=90°,∴△PBC 为等腰直角三角形,∴∠PBC=45°,∵∠PAC=∠PBC=45°,∴△AMP 为等腰直角三角形,∴AM=PM=x,x ,在Rt △ABC 中,AB=2,AC=4在Rt △PMC 中,∵∠PMC=90°,PM=x ,CM=4-x ,∴()2224x x +-=,解得:11x =,23x =(舍)②当点P 在直线BC 的下方时,如图5,作PN ⊥AB 的延长线,垂足为N ,设PN=y.同上可得为等腰三角形,∴AN=PN=y ,∴BN=y -2,在R t△PNB 中,∵∠PNB=90°,PN=y ,()2222y y +-=,解得:13y =,21y =-(舍)=故AP 或23.(11分)已知:如图,直线3y x =--交坐标轴于A 、C 两点,抛物线2y x bx c =++过A 、C 两点.(1)求抛物线的解析式;(2)若点P 为抛物线位于第三象限上一动点,连接PA,PC ,试问△PAC 是否存在最大值,若存在,请求出△APC 取最大值以及点P 的坐标,若不存在,请说明理由;(3)点M 为抛物线上一点,点N 为抛物线对称轴上一点,若△NMC 是以∠NMC 为直角的等腰直角三角形,请直接写出点M 的坐标.解:(1)3y x =--交x 轴于A (-3,0),交y 轴于C (0,-3),∵抛物线2y x bx c =++经过点A (-3,0),点C (0,-3), ∴3093c b c =-⎧⎨=-+⎩,解得23b c =⎧⎨=-⎩,∴抛物线解析式为:223y x x =+-; (2)△APC 的面积存在最大值为,此时点P 的坐标为:;解答如下:过点P 作PQ ⊥x 轴,垂足为Q ,直线PQ ,AC 交于点P ,设点P 的坐标为(m ,223m m +-),则点D 的坐标为(m ,3m --),∴线段PD 的长为:(3m --)-(223m m +-)=23m m -+, ∵12PAD S PD AQ =g △,12PCD S PD OQ =g △, ∴PAC S △=PAD PCD S S +△△=1122PD AQ PD OQ +g g =12PD AO g =23327228m ⎛⎫--+ ⎪⎝⎭, ∵302a =-<,∴当32m =时候,△PAC 的面积又最大值,最大值为278, 此时点P 的坐标为(32-,154-);(3)点M 的坐标为322⎛⎫--- ⎪ ⎪⎝⎭,或522⎛--- ⎝⎭,..提示如下: ①如图3,当点M 在对称轴左侧时,构造矩形EFCG ,设点M 的坐标为(n ,223n n +-), 易证△MEN≌△CFM,得抛物线223y x x =+-的对称轴为直线x=-1,则MF=()()2233n n +---=22n n +,NE=1n --,∵MF=NE ,∴221n n n +=--,解得1n =(舍),2n =,故点M 的坐标为⎝⎭; ②当点M 在对称轴的右侧时,过点M 作EF ∥x 轴,分别交对称轴与y 轴于点E 和点F. 设点M 的坐标为(k ,223k k +-),易证△MEN≌△MFC,抛物线对称轴为直线x=-1, 则ME=()1k --=1k +,CF=()()2323k k --+-= 22k k --,∵ME=CF ,∴221k k k --=+,解得:132k --=(舍),2k =故的点M 的坐标为522⎛⎫-- ⎪ ⎪⎝⎭,;③如图4,作ME ⊥对称轴,垂足为E,ME 交NC ,交点为F.设点M 的坐标为(k ,223k k +-),则ME=1k +,CF=22k k +,易证△MNE ≌△CFM ,∵ME=CF ,故221k k k +=+,解得:1k =,2k =,故点M ; ④如图6,作MF ⊥y 轴,垂足为F,MF 交对称轴于点E ;设点M 的坐标为(k ,223k k +-),则ME=1k --,CF=22k k --,易证△MNE ≌△CFM ,∵ME=CF ,故221k k k +=+,解得:112k -+=(舍),212k -=,故点M 的坐标为(12-,52-;综上可得点M 的坐标为:⎝⎭或⎝⎭或(,.。