第1章 位错的结构
第1章 位错的定义及柏氏矢量
刃位错的柏氏回路和柏氏矢量
b指向半原
子面
左螺位错的柏氏 回路和柏氏矢量
柏氏矢量是位错线的一个特征量,可以用它来明确地定义位错 的类型: ξ b b 右螺位错, ξ b b 左螺位错 ξ b 0 刃位错; 位错线和其柏氏矢量既非垂直又非平行的是混合位错。 右图的顶视投影原子模型图 产生混型位错的Volterra模型
假设一根位错终止在晶体内部绕这根位错作一右旋回路l如果它是根真实的位错那么如果它是根真实的位错如果它是一根真实的位错那么柏氏矢量的某一分量bi为dddd332211xxuxxuxxuxxubiililkkii??????????????如果以回路l为界作一曲面s?它把把位错终点p包含在曲面s?内侧根据stokes定理对l的线积分可换成对s?的面积分0dd2?????ksmliklmlkkiisxxuxxub??????这就产生了原来假设的矛盾这说明假设的前提是错误的
设想的缺陷引入晶体必需要: ①它的晶体学要素不依赖于加力的大小,而由晶体学本 身确定。由它运动导致的变形不破坏晶体结构,只是原 子间的相对运动。所以引入的缺陷不是完全无规而是有 晶体学特性的; ②它能解释变形的不均匀性,即能说明它的结构敏感性; ③它能说明变形过程的传播性; ④引入的这种缺陷是易动的,能解释实验强度比理论强 度低的原因。但它又不能像空位那样易受热起伏的影响; ⑤它应有合理的增殖机制。 现在已经知道,这种缺陷就是这里要讨论的位错。
早在知道有序介质材料中存在线缺陷之前,在20世纪初数学 家沃特拉(V.Volterra)就提出了线缺陷的概念和模型,他是研究 连续弹性介质中的一个半割面两侧变形后从新粘合后的数学奇异 性问题。“制造”沃特拉线缺陷的过程的步骤如下:
位错产生的机制
位错是晶体中结构缺陷或失序引起的晶格位移。
它可以通过以下几种机制产生:
1.移位机制:当晶体在应力作用下发生变形时,晶格会出现位错线或位错面,从而导致原子位置发生位移。
这是最常见的位错产生机制,可分为边界位错、螺旋位错和混合位错等不同类型。
2.弥散机制:在某些条件下,原子可以通过晶格间的空位、间隙等进行扩散和迁移,从而引起位错的形成。
这主要发生在高温或其他非平衡条件下。
3.特殊条件下的位错引入:在一些特殊条件下,如材料的激发、气氛或外场的影响等,位错可以被引入晶体中,例如辐射损伤、塑性变形等。
4.生长缺陷引起的位错:在晶体的生长和形成过程中,由于晶格的失序、扩散速率不均等因素,可能会产生位错。
总体而言,位错产生是晶体为了适应外界应力或内部缺陷而发生的晶格变形,引发了晶体内部的局部结构变化,进而改变了材料的性质和行为。
位错的产生和影响在材料科学与工程中具有重要意义,对材料的强度、塑性、热力学性能等方面有着重要影响。
位错理论1-位错的结构
把位错环分成几段,而每一段有它自己不
同的柏氏矢量。
48
Conservation of Burgers vector
柏氏矢量守恒性的推论3
描述:位错线不可能中断于晶体内部
中断于:dis. Ring; dis. node; surface of crystal
证明:
设位错AB的柏氏矢量为b,其中断于B点 I区——已滑移区;II区——未滑移区 所以:未涉及的III区只能是两情况之一:
Байду номын сангаас刃型位错的基本特点:
位错线(dislocation line)是多余半原子 面和滑移面的交线,但位错线不一定就是 直线
直线 折线 位错环
19
Edge Dislocation
刃型位错的基本特点:
刃位错的点阵畸变相对于多余半原子面是左右对 称的
对于正刃位错:滑移面上部位错线周围原子受压, 向外偏离平衡;滑移面下部位错线周围原子受拉, 向内偏离平衡。
20
Edge Dislocation
刃型位错的基本特点:
位错线垂直于滑移矢量
b
21
目录
位错理论之序 滑移和位错 刃型位错 螺型位错 柏氏矢量及其守恒性 混合位错
22
Screw Dislocation
螺型位错的结构
ABCD面为滑移面:在 t作用下发生滑移 EF:位错线
位错
主要内容
位错:位错的基本类型、位错的运动、位错的弹 性性质、位错的来源和位错的增殖; 面缺陷:晶界与亚晶界。
重点内容
1.位错线、位错移动方向、滑移面、切应力方向、 柏氏矢量之间的关系。 2.柏氏矢量的确定。 3.位错的应变能。 4.位错的来源。
5.3 位错 Dislocation,位错是原子的一种特殊组态,是一种 具有特殊结构的晶格缺陷,也称为线缺陷。 位错概念的提出 用于解释晶体的塑性变形。
位错的运动有两种基本形式:滑移和攀移。
在一定的切应力的作用下,位错在滑移面上受到垂 至于位错线的作用力。当此力足够大,足以克服位错运 动时受到的阻力时,位错便可以沿着滑移面移动,这种 沿着滑移面移动的位错运动称为滑移。
刃型位错的位错线还可以沿着垂直于滑移面的方向 移动,刃型位错的这种运动称为攀移。
1. 位错的滑移 刃型位错:对含刃型位错的晶体加切应力,切应力方 向平行于柏氏矢量,位错周围原子只要移动很小距离, 就使位错由位臵(a)移动到位臵(b)。 当位错运动到晶体表面时,整个上半部晶体相对 下半部移动了一个柏氏矢量晶体表面产生了高度为b 的台阶。 刃型位错的柏氏矢量b与位错线t互相垂直,故滑 移面为b与t 决定的平面,它是唯一确定的。刃型位 错移动的方向与b方向一致,和位错线垂直。
晶界:约三个原子层厚
3.孪晶界 孪晶界是晶界中最简单的一种。 孪晶关系指相邻两晶粒或一个晶粒内部相邻两部分 沿一个公共晶面(孪晶界)构成镜面对称的位向关系。 孪晶界上的原子同时位于两个晶体点阵的结点上, 为孪晶的两部分所共有,这种形式的界面称为共格界面。
铜合金中的孪晶
小
基本概念:
结
刃型位错、螺型位错、位错密度、滑移、攀移、 晶界、大角度晶界、小角度晶界、晶界能
位错的基本结构
混合位错的分解
二、柏氏矢量
1939年,柏格斯(J.M.Burgers)提出。 柏氏矢量:用来揭示位错本质,描述位错行为的矢量。 1、柏氏矢量的确定 用柏氏回路确定。 1)人为规定位错线 的正方向。 2)在实际晶体中, 作柏氏回路,回路中的每 一步都连接相邻的原子。 3)在完整晶体中, 按同样的方向和步数作一 个对比回路。从终点Q 到 始点M连接起来的矢量 b , 即为柏氏矢量。
关系,确定位错的类型。 (1)
b ⊥位错线,刃型位错。将 b
顺时针旋转90°,若 b
的方
向与位错线正向一致,正刃位错;反错线,螺型位错。 b 的方向与位错线正方向一致, 右螺型位错;b 的方向与位错线负方向一致,左螺型位错. (3) b 和位错线成任意角度0<φ<90°,混合位错。
混合位错可分解为刃型分量和螺型分量。 be b sin , bs b cos
左、右螺型位错
右螺旋位错:符合右手法则的螺型位错。 左螺旋位错:符合左手法则的螺型位错。 拇指:前进方向;其余四指:旋转方向。
左、右螺型位错有着本质区别,无论将晶体如 何放置,也不可能改变其原本的左、右性质。
3、混合型位错
混合位错:位错线与滑移方向成任意角度的位错。 混合位错线是一条曲线,在A处是螺位错,在C处是刃型 位错,在A与C之间的每一小段位错线都可以分解为刃型和螺 型两个分量。
2、螺型位错
位错模型:
产生:晶体局部滑移产生。 ABCD:滑移面; bb’:螺型位错线,也是已滑移区(AB bb’)与未滑移区 (bb’ CD)在滑移面上的边界线,但平行于滑移方向。
螺型位错线周围的原子
在位错线附近有一个约几个原子间距宽的, 上、下层原子不吻合的过渡区(bb’和aa’之间) 。 位错线附近的原子:按螺旋形排列。
第一章金属的晶体结构作业答案
第⼀章⾦属的晶体结构作业答案第⼀章⾦属的晶体结构1、试⽤⾦属键的结合⽅式,解释⾦属具有良好的导电性、正的电阻温度系数、导热性、塑性和⾦属光泽等基本特性.答:(1)导电性:在外电场的作⽤下,⾃由电⼦沿电场⽅向作定向运动。
(2)正的电阻温度系数:随着温度升⾼,正离⼦振动的振幅要加⼤,对⾃由电⼦通过的阻碍作⽤也加⼤,即⾦属的电阻是随温度的升⾼⽽增加的。
(3)导热性:⾃由电⼦的运动和正离⼦的振动可以传递热能。
(4) 延展性:⾦属键没有饱和性和⽅向性,经变形不断裂。
(5)⾦属光泽:⾃由电⼦易吸收可见光能量,被激发到较⾼能量级,当跳回到原位时辐射所吸收能量,从⽽使⾦属不透明具有⾦属光泽。
2、填空:1)⾦属常见的晶格类型是⾯⼼⽴⽅、体⼼⽴⽅、密排六⽅。
2)⾦属具有良好的导电性、导热性、塑性和⾦属光泽主要是因为⾦属原⼦具有⾦属键的结合⽅式。
3)物质的原⼦间结合键主要包括⾦属键、离⼦键和共价键三种。
4)⼤部分陶瓷材料的结合键为共价键。
5)⾼分⼦材料的结合键是范德⽡尔键。
6)在⽴⽅晶系中,某晶⾯在x轴上的截距为2,在y轴上的截距为1/2;与z轴平⾏,则该晶⾯指数为(( 140 )).7)在⽴⽅晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(ī10),OC晶向指数为(221),OD晶向指数为(121)。
8)铜是(⾯⼼)结构的⾦属,它的最密排⾯是(111 )。
9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体⼼⽴⽅晶格的有(α-Fe 、 Cr、V ),属于⾯⼼⽴⽅晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六⽅晶格的有( Mg、Zn )。
3、判断1)正的电阻温度系数就是指电阻随温度的升⾼⽽增⼤。
(√)2)⾦属具有美丽的⾦属光泽,⽽⾮⾦属则⽆此光泽,这是⾦属与⾮⾦属的根本区别。
(×)3) 晶体中原⼦偏离平衡位置,就会使晶体的能量升⾼,因此能增加晶体的强度。
实际晶体中的位错
Frank分位错的特点: (a) 位于{111}晶面上,可以是直线、曲线和封闭环,但是无论
是什么形状,它总是刃型的。因为b=1/3<111>和{111}晶面 垂直。 (b) 由于b不是FCC的滑移方向,所以Frank分位错不能滑移, 只能攀移(只能通过扩散扩大或缩小)。不再是已滑移区和 未滑移区的边界,而且是有层错区和无层错区的边界。 注意与Shockley分位错的特点进行比较。
n
m
1、几何条件: ∑b' j = ∑bi
j =1
i =1
即,新位错的柏氏矢量 之和应等于反应前位错 的柏氏矢量之和。
∑ ∑ 2、能量条件:
n
m
b'2j < bi2
j =1
i =1
即,新位错的总能量应 小于反应前位错的总能 量。
前面讲过位错的弹性能Eel=αGb2
例如,FCC的全位错分解为Shockley分位错:b→b1+b2
αβ = αA + Aβ = 1 [1 1 1] + 1 [1 12] = 1 [1 1 0] = 1 BA
3
6
6
3
同理可得:
αγ
=
1 [0 1 1] =
1 CA
6
3
αδ = 1 [101] = 1 DA
6
3
希-希向量就是FCC中 压杆位错的柏氏矢量。
βγ = 1 [1 01] = 1 CB
6
3
FCC中的位错反应,即 位错的合成与分解也可
⎤2 ⎥⎦
=
1 2
∑n
反应后:
j =1
b'2j
=
b12
+
b22
位错讲义
结果变成 其中*表示孪生面,虚线表示错排中心位置。这种堆垛发生两处 不符合面心立方的堆垛顺序,即构成四个原子层的密排六方结构 不符合面心立方的堆垛顺序,即构成四个原子层的密排六方结构 (其中两边最外层面是和原来面心立方结构共格的)或者构成两 (其中两边最外层面是和原来面心立方结构共格的)或者构成两 个孪生面。 个孪生面。 这类层错的层错矢量是<112>/6 ,这类层错称内禀。因为这种层错 这类层错称内禀。因为这种层错 是由滑移形成,有时亦称滑移层错。
ε '12 = α
0 1 2 0 α 0 0 0 0 0
对晶体参考坐标系x,它与x′坐标系间的坐标变换(Tij)为:
Tij x1 x2 x3 x′1 ′ x′2 ′ n1 n2 n3 x′3 ′ p1 p2 p3
β1 β2 β3
其中n是滑移面法向单位矢量,β 是滑移方向单位矢量。 是滑移方向单位矢量。
第一层为 A, 第二放在B 位 置,第三层放 在C 位置,第 四层在放回A 位置。{111}面 按…ABCABC …顺序排列, 这就形成面心 立方结构。
(111)面以及其中的一些方向
面心立方(111)面原子排列示意 图 ,并标出一些有用的晶向。
(111) 为了清楚地看清 (111) 面的堆垛,应找一个和 面垂 (111) [112] 面的交线是 直的面, 直的面,例如(110)面。(110)面 和 方向, (111) 所以在(110)面上的一个 方向 就表示一个 面。 [112]
实在晶体结构中的位错
在实在的晶体结构中,位错线可能有哪一些柏氏矢量取决 在实在的晶体结构中,位错线可能有哪一些柏氏矢量取决 于两方面,一方面是位错线本身的能量,位错线能量和b 于两方面,一方面是位错线本身的能量,位错线能量和b2成正比, 因而,位错线的柏氏矢量尽可能取最短的矢量;另一方面看,如果 因而,位错线的柏氏矢量尽可能取最短的矢量;另一方面看,如果 位错的拍氏矢量不是取点阵的平移矢量,使得位错线移动后点阵中 位错的拍氏矢量不是取点阵的平移矢量,使得位错线移动后点阵中 的原子会出现错排,这也使能量增加。所以,在实际的晶体结构中, 的原子会出现错排,这也使能量增加。所以,在实际的晶体结构中, 稳定的位错的柏氏矢量大都是晶体点阵中最短的平移矢量。 柏氏矢量为晶体点阵的单位平移矢量的位错称为全位错。 柏氏矢量为晶体点阵的单位平移矢量的位错称为全位错。 晶体中可以有柏氏矢量不为点阵平移矢量的位错,这类位错称为部 晶体中可以有柏氏矢量不为点阵平移矢量的位错,这类位错称为部 分位错(又称不全位错),部分位错所伴随的错排面,称为堆垛层 分位错(又称不全位错),部分位错所伴随的错排面,称为堆垛层 错,或简称层错。
位错的名词解释
位错的名词解释位错,是指晶体中原子排列发生偏移或者交换,形成错位的现象。
它是晶体结构中常见的缺陷之一,对材料的机械性能和导电性能等起到重要影响。
细致观察位错的性质及其影响,对于材料科学和工程领域具有重要意义。
一、位错的形成和分类1. 形成位错的原因位错的形成通常是由晶体生长过程中的应力、温度变化以及机械变形等因素所引起。
例如,在晶体生长过程中,由于生长速度的不均匀或晶体材料的不完美,就会出现位错。
同样地,在材料的机械变形过程中,如弯曲、拉伸或压缩等,也会导致晶体中位错的产生。
2. 位错的分类根据原子重新排列的方式和排列结构的不同,位错可以分为线性位错、平面位错和体位错。
线性位错是指位错线与晶体的某一晶面交线的直线排列,具有一维特征。
最常见的线性位错有位错线、螺旋位错和阶梯位错等。
平面位错是指位错线与晶体的某一晶面交线上有无限个交点,呈现出平面性的特点。
常见的平面位错有位错环、晶界以及孪晶等。
体位错是指位错线在晶体内没有终点,具有三维特征。
体位错通常有位错蠕变和位错多晶等。
二、位错的性质与作用1. 位错的性质位错对晶体的特性和行为有着重要影响。
它能够改变晶体的原子排列方式,导致晶体局部微结构的变化。
位错可以促进晶体的固溶体形成以及离子扩散等过程。
此外,位错还会影响晶体的力学性能,如硬度、韧性和弹性等。
因此,位错常常被用来研究晶体的性质和行为。
2. 位错的作用位错在材料科学和工程领域具有广泛的应用价值。
首先,位错可以增加晶体的强度和韧性,提高材料的抗变形能力。
这在制备金属材料和合金中起到重要作用。
此外,位错也可以影响材料的导电性能,例如半导体中的位错可以改变电子迁移的路径和速率,从而影响整个电子器件的性能。
除此之外,位错还可以用于晶体的生长和材料的表面改性等过程。
三、位错的观察和表征方法1. 传统观察方法传统的位错观察方法包括透射电镜、扫描电镜和X射线衍射等技术。
透射电镜可以通过对物质的薄片进行观察,获得高分辨率的位错图像。
晶体中的位错
晶体中的位错晶体是由大量的原子或离子按照一定的规律排列形成的,具有高度的有序性和周期性。
然而,在晶体中,由于制备、加工等原因,有时候不同的晶体原子并不完全对齐,形成了一些错位,这些错位就称作位错。
位错是晶格缺陷的一种,是晶体中最常见的缺陷之一。
本文将重点介绍晶体中的位错。
一、位错的定义和分类位错是晶体中的缺陷,是一种原子排列顺序的失误或对晶体构造发生的不规则的紊乱。
从形式上来看,位错其实是一条线,称为位错线。
位错线是一个平面的分界线,分别将位错的正侧和负侧分开,两侧的原子堆积方式互不相同。
按照线向和方向,位错可分为长位错和短位错;按照线型,位错可分为直线位错和环状位错;按照纵向位置,位错可分为面内位错和面间位错;按照能量点的数量,位错可分为单位错、双位错、三位错等等。
二、位错的形成原因晶体中的位错是由于应力和温度的变化等原因,导致原子在晶体内部的位置和晶格结构发生变化而形成的。
晶体中的一些应力和原子偏移最终会形成位错,进而影响构造和性能。
常见的位错形成原因有以下几种:1.加工过程中导致的位错:金属加工可能会引起位错的发生,因为加工会施加一定的应力,从而导致晶格变形。
例如,扭曲或拉伸材料时,原子可能会脱离原来的顺序,最终形成位错。
2.晶体生长过程中导致的位错:晶体在生长过程中,由于固态、液相界面的移动推进,产生压力分布变化,从而造成位错的形成。
在原子或离子加入了其他元素或化合物的情况下,位错也会在晶体中发生。
3.晶体性能的变化导致的位错:晶体的性质随着应力和温度的变化而变化。
温度和离子浓度等的变化可能会改变晶体的构造,导致位错。
三、位错的作用位错是晶体中的缺陷,但它并不总是会对晶体的性质产生不良影响。
实际上,位错可以对晶体的某些性质产生正向、负向改变,主要包括以下几种:1.塑性变形:位错的存在使晶体产生了柔韧性,容易受到力的作用产生塑性变形。
2.材料的硬度:如果位错数量越大,晶体的硬度就会变差,同时晶体的脆性就会增加。
1-位错的定义及柏氏矢量
两岸的相对位移D 一般能分解为一个平移分量b 两岸的相对位移D(r)一般能分解为一个平移分量b和一个转动 分量ω=w×r,r是原点在割面上的矢径。如果D(r)只有平移分量, 是原点在割面上的矢径。如果D 则形成的位错称平移位错(Dislocation);如果D 则形成的位错称平移位错(Dislocation);如果D(r)只有旋转分量, 则形成的位错称旋转位错,简称为向错(Dislination)。 则形成的位错称旋转位错,简称为向错(Dislination)。 实在晶体并不是真正的连续介质,它存在各向异性及结构的 不连续,所以在Volterra过程中的D 不连续,所以在Volterra过程中的D(r)不是任意的,只能根据晶体 的特点取有限的值。不论平移分量或旋转分量都必须符合晶体点 阵的对称性质。例如平移只能是晶体的点阵平移矢量,旋转角必 须是晶体的基转角。在以后我们会知道,由于能量的原因,真正 位错线的平移矢量也不可能是任意的点阵平移矢量,而是其中较 短的几个矢量。 对于向错,晶体的旋转对称性最多为六次对称,也就是说, 对于向错,晶体的旋转对称性最多为六次对称,也就是说, 在晶体中产生向错最小的旋转角也要60°,它会引起很大的畸变, 60° 随着离开中心的距离加大畸变加大,所以旋错的能量很高,所以 随着离开中心的距离加大畸变加大,所以旋错的能量很高,所以 在晶体中除了个别特殊情况,一般是不会出现向错。而在液晶中 向错却是常见的线缺陷。
这个线缺陷的弹性性质显然取决于位错环C的位置以及产生位错 时割面两侧的相对位移D(r)。但是,无论割面两侧位移多大,周界 的应力是无限大的。为了避免周界这样的应力发散,一般沿周界 挖一个空心管道,这个非常小的空心管道区域就是介质中的线缺 陷。 线缺陷是晶体(有序介质)中原子(或分子)出现的严重错排 仅集中在线附近的小区域内,远离这条线只有弹性畸变,并且这 些畸变随着离开这条线的距离而急剧减小。可以把严重错排区域 用类似一个“管道”来描述,这个管道的直径通常仅有几个原子 间距,并贯穿于有序介质之中。在管道内,原子间的坐标与在完 整有序介质中很不同,而在管道之外的原子的坐标接近于完整有 序介质。这里的所谓管道“内部”和管道“外部”之间并无明确 界线,它们之间是逐渐过渡的,并且管道的截面也不一定是圆形。 管道“内部”这个定义不很精确的区域是线缺陷的核心 还要注意的是,“产生”线缺陷的沃特拉过程只是用以描述线 缺陷的奇异性本质,以及描述线缺陷的结构,而实际的线缺陷并 不是用沃特拉过程的方式产生的。
晶体学位错
3.6.1 实际晶体中位错的柏氏矢量
柏氏矢量等于单位点阵矢量的位错称为“单位位错”
8/10
a<110>
位错能量正比于b2,b越小越稳定,单位位错是最稳定的,b最小
1
柏氏矢量等于点阵矢量的位错称为“全位错”
----全位错滑移后晶体中原子排列规律不变;
柏氏矢量不等于点阵矢量的位错称为“不全位错” ----不全位错滑移后原子排列规律发生变化; 柏氏矢量小于点阵矢量的位错称为“部分位错” , 或称为“半位错”。 实际晶体结构中,位错的柏氏矢量不能是任意的, 要符合晶体的结构条件和能量条件
(3)扩展位错的交滑移
2
螺型束集 a/2[110]=a/6[211]+a/6[12-1]
20
(3)扩展位错的交滑移
(1-11) (-111)
a/2[110]=a/6[121]+a/6[21-1] a/2[110]=a/6[211]+a/6[12-1]
21
例题:某面心立方点阵晶体的(1-11)面上有一螺型单 位位错,其位错线为直线,柏氏矢量为a/2[110], 1 在晶胞中标明该位错的柏氏矢量,该位错滑移产生的 切变量是多少?
2 该位错能否在(1-11)面上自动分解成两根肖克莱不 全位错,为什么?并在晶胞中标明两根肖克莱不全 位错的柏氏矢量; 3 在(1-11)面上由上述两不全位错中间夹一层错带形 成扩展位错。若作用在该滑移面上的切应力方向为 [1-1-2],该扩展位错如何运动?若切应力方向为 D减小或增大 [110],该扩展位错又如何运动? D不变,沿[1-1-2]方向运动
一个全位错分解为两个不全位错,中间夹着一个 堆垛层错的位错组态称为扩展位错
位错的基本类型和特征!
位错的基本类型和特征晶体在不同的应力状态下,其滑移方式不同。
根据原子的滑移方向和位错线取向的几何特征不同,位错分为刃位错、螺位错和混合位错。
1. 刃位错(1)形成及定义:晶体在大于屈服值的切应力τ作用下,以ABCD面为滑移面发生滑移。
AD是晶体已滑移部分和未滑移部分的交线,犹如砍入晶体的一把刀的刀刃,即刃位错(或棱位错)。
刃型位错形成的原因:晶体局部滑移造成的刃型位错(2)几何特征:位错线与原子滑移方向相垂直;滑移面上部位错线周围原子受压应力作用,原子间距小于正常晶格间距;滑移面下部位错线周围原子受拉应力作用,原子间距大于正常晶格间距。
刃型位错的分类:分类:正刃位错,“┴”;负刃位错,“┬”。
符号中水平线代表滑移面,垂直线代表半个原子面。
(3)刃型位错的结构特征①有一额外的半原子面,分正和负刃型位错;②位错线可理解为是已滑移区与未滑移区的边界线,可是直线也可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;③只能在同时包含有位错线和滑移矢量的滑移平面上滑移;④位错周围点阵发生弹性畸变,有切应变,也有正应变;点阵畸变相对于多余半原子面是左右对称的,其程度随距位错线距离增大而减小。
就正刃型位错而言,上方受压,下方受拉。
⑤位错畸变区只有几个原子间距,是狭长的管道,故是线缺陷。
2. 螺位错(1)形成及定义:晶体在外加切应力τ作用下,沿ABCD面滑移,图中AD线为已滑移区与未滑移区的分界处。
由于位错线周围的一组原子面形成了一个连续的螺旋形坡面,形成螺位错。
晶体局部滑移造成的螺型位错(2)几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
螺型位错的分类:有左、右旋之分。
它们之间符合左手、右手螺旋定则。
(3)结构特征①螺型位错的结构特征无额外的半原子面,原子错排是轴对称的,分右旋和左旋螺型位错;②螺型位错线与滑移矢量平行,故一定是直线,位错线移动方向与晶体滑移方向垂直;③滑移面不是唯一的,包含螺型位错线的平面都可以作为它的滑移面;④位错周围点阵也发生弹性畸变,但只有平行于位错线的切应变而无正应变,即不引起体积的膨胀和收缩;⑤位错畸变区也是几个原子间距宽度,同样是线位错。
材料微观结构晶体中的位错与层错课件
层错阻碍位错滑移,导致位错在层错附近塞积,形成应力集中。
位错和层错交互作用导致材料强化和韧性下降
材料强化
位错和层错的交互作用增加了材料的强度,提高了材料的抗变形能力。
韧性下降
位错和层错的交互作用导致材料韧性下降,容易出现脆性断裂。
04
实验方法观察和分析位错与层错
透射电子显微镜技术
原理
利用电子束穿透样品,通过电磁 透镜成像,获得晶体结构的高分
形成条件
晶体结构复杂、原子间结合力弱、外界环境干扰等。
层错对材料性能影响
01Βιβλιοθήκη 0203力学性能
层错导致晶体结构畸变, 影响材料的强度、韧性、 延展性等力学性能。
物理性能
层错影响材料的导电、导 热、光学等物理性能,可 能导致材料性能的不均匀 性。
化学性能
层错处原子排列紊乱,可 能导致材料的化学活性增 加,易受环境因素影响而 发生变化。
05
典型材料中位错和层错实例分析
金属中位错和层错现象举例
铝中的位错
在铝晶体中,位错通常呈现为线缺陷, 其滑移面为{111}。位错的存在对铝的强 度和塑性变形行为具有重要影响。
VS
铜中的层错
铜晶体中,层错通常出现在{111}面上, 表现为原子层的堆垛顺序发生改变。层错 能较低,使得铜具有较好的塑性和韧性。
陶瓷中位错和层错现象举例
氧化铝陶瓷中的位错
氧化铝陶瓷晶体中,位错主要呈现为线缺陷 和面缺陷。位错的存在对陶瓷的力学性能和 热学性能具有重要影响,如提高氧化铝陶瓷 的强度和断裂韧性。
氮化硅陶瓷中的层错
氮化硅陶瓷晶体中,层错通常出现在{100} 和{110}面上。层错的引入可以改善氮化硅 陶瓷的韧性,降低脆性。
位错的基本类型和特征
位错的基本类型和特征位错的基本类型和特征什么是位错?位错(dislocation)是晶体中的一种结构缺陷,它代表了晶体中原子排列的变形和重组。
位错的存在对晶体的物理性质和机械性能具有重要影响。
位错的基本类型位错可以分为以下几个基本类型:1.直线位错:也称为边界位错(edge dislocation),可看作两个晶体之间的边界。
它是晶体中某个层面与其上方、下方的层面之间原子排列不一致所形成的。
2.螺旋位错:也称为线性位错(screw dislocation),是晶体中绕某一点形成螺旋状结构的位错。
它是由某一平面与其上方或下方的层面之间原子排列不一致所形成的。
3.混合位错:是直线位错和螺旋位错相互结合形成的位错。
位错的特征位错在晶体中具有以下特征:•位错存在与位错线(dislocation line)上,其形状可以是直线、螺旋状或弯曲的。
•位错的长度可以从纳米级到微米级,取决于材料的结晶度和应变状态。
•位错引入了局部应变场,使得晶体中原子间的距离发生变化。
•位错会导致局部应力场的形成,其中位错线附近有压应力和拉应力。
•位错可以移动和增殖,对物质的可塑性和断裂行为起重要作用。
位错的影响位错的存在对材料的性质和行为具有重要影响:•位错可以增加材料的塑性,使其具有更好的变形能力和可塑性。
•位错可以使材料的强度和硬度发生变化,影响其力学性能。
•位错还可以影响材料的电学、热学和光学性能,改变其导电性、热导率和光学吸收等特性。
•位错在材料的断裂行为中起重要作用,影响材料的断裂强度和断裂方式。
结论位错作为一种晶体中的结构缺陷,具有不可忽视的重要性。
通过研究位错的基本类型和特征,我们可以更好地理解材料的结构和性质,为材料的设计和应用提供更好的基础。
参考文献:1.Hirth, J. P., & Lothe, J. (1992). Theory of dislocations.Wiley.2.Hull, D., & Bacon, D. J. (2001). Introduction todislocations (Vol. 952). Butterworth-Heinemann.补充位错的性质和应用位错的形成原因位错的形成主要是由于晶体生长和形变过程中的原子排列不完美引起的。
位错核心结构
位错核心结构
位错是指晶体中排列有一定秩序的原子、离子或分子发生位移,产生错位的现象。
位错的核心结构是指位错线上产生的原子、离子或分子的排列方式。
位错的核心结构可以分为三种类型:晶格位错、位面位错和扩展位错。
1. 晶格位错:晶格位错是指晶体中相邻晶面的排列错位。
其中最常见的晶格位错有错配位错和螺位错。
错配位错是两个不同的晶体区域相互连接形成的,原子排列具有较大的差异;螺位错则是晶体中晶面的平移产生的。
2. 位面位错:位面位错是晶体晶面内部的排列错位现象,即某个晶面的原子、离子或分子在晶面内部发生错位。
位面位错包括导重线位错和层错两种类型。
导重线位错是指晶面内部原子、离子或分子的排列形成了一条导重线;层错则是层状晶体在晶面内部移位产生的错位。
3. 扩展位错:扩展位错是一种晶体中产生的三维排列错位。
扩展位错包括位面位错的扩展、滑移位错和位错环几种类型。
位面位错的扩展是指位面位错延展到晶面某个方向上形成的;滑移位错是晶体中晶面的滑移产生的错位,形成螺旋状排列;位错环则是位错线形成了一个封闭的环状结构。
位错的核心结构对晶体的物理性质具有重要影响。
不同类型的位错核心结构会影响晶体的力学性能、导电性、磁性等。
因此,
对位错核心结构的研究对于理解晶体的性质和应用具有重要意义。
位错基础
一般立方晶系中柏氏矢量可表示为 b=a/n<uvw>,其中n为正整数。
通常柏氏矢量的大小(即位错强度)还用下式
来表示。
| b |
a
u2 v2 w2
n
3. 柏氏矢量的守恒性(Conservation)
位错理论的发展历史较短,还存在一些不 完善之处。弗兰克和斯蒂兹(J.W.Steeds)在1975 年的一篇“晶体位错”的评论中指出:位错有 些理论是确切的,因为它们是纯几何的或纯形 貌的。有些部分显然是近似的,然而是可靠的。 但现在有意义的问题是不能确信那些已做的近 似的可靠性,因此必须依靠全部的理论方法以 及观察和推测来谋求进一步发展。除了这些 “近似”之外,在位错领域中迄今还没有完全 解决的主要问题是如何填补单个位错的性质和 位错集团的行为之间的鸿沟。因此,位错理论 尚有待今后进一步发展和完善。
混合型位错线是一条曲线,在A处位错线与滑移矢量 平行,因此是螺型位错;而在C处位错线与滑移矢量垂直, 因此是刃型位错。A与C之间,位错线既不垂直也不平行 于滑移矢量,每一小段位错线都可分解为刃型和螺型两个 部分,因此是混合型位错。
由于位错线是已滑移区与未滑移区的边界 线,因此一根位错线不能终止于晶体内部,而 只能露头于晶体表面或晶界。
1939年柏格斯(J.M.Burgers)提出了螺型位错的概
念和柏氏矢量,使位错的概念普遍化,并发展了位错应 力场的一般理论,接着位错理论得到多方面的发展。 1940年派尔斯(Peierls)提出半点阵模型,到1947年在 纳波罗(Nabarro)的帮助下,计算出使位错滑移所需 的临界切应力(P-N力)。 1949年柯垂尔(A.H.Cottrell) 提出位错与溶质原子的作用问题,用碳原子钉扎位错来 解释钢中屈服点的现象获得成功(Cottrell气团),弗兰 克尔的螺型位错促进晶体生长的理论预告获得了令人信 服的证实。而后许多人几乎同时独立地在显微镜下观察 到了位错的存在及其形状。
位错反应
2. 不全位错 当柏氏矢量不等于最短平移矢量的整数倍的位错
叫不全位错,其中小于最短的平移矢量的位错称为
部分位错。
若柏氏矢量不是晶体的平移矢量,当这种位错 扫过后,位错扫过的面两侧必出现错误的堆垛,称 堆垛层错。层错区与正常堆垛区的交界便形成了不 全位错
面心立方金属存在两种不全位错: 肖克莱不全位错,弗兰克不全位错
当该两个位错相遇时, 有可能生成单位位错
17
4. 扩展位错 A B B
C
b1= a/2[110] B
B
C 面心立方金属的堆垛顺序 ABC 。 B 原子水平移动单 位位错的距离,需要克服 A 原子的“高峰”,选择 先滑移到C位置再到B位置,将更节省能量。因此B 原子的单位位错的柏氏矢量 BB 就可以分解为 BC 加 CB(两个肖克莱位错)
20
5. 位错增殖 实验表明退火后的金属位错密度ρ=106 cm-2 左右, 而经剧烈塑性变形过后,位错密度ρ=1011 ~ 1012cm-2 , 说明位错发生了增殖。
τ
位错线AB在 外力τ作用下受到 的力为τb
随外力的继续 增大,位错线发 生弯曲,并产生 线张力T=Gb/2r
当位错线弯成 半圆时,曲率半 径 r最小(LAB/2 ), 而T最大,为Gb/L。 此时的线张力为 位错增殖的临界 切应力
晶体中位错将发生运动,且位错移动的方向总是与 位错线方向垂直。设想位错线上作用了一个与其垂直 的力,使其发生移动,利用虚功原理来求该力的大小。
Fd 与外加切应力τ 和柏氏矢量的模|b|成正比, 方向处处垂直于位错线,并指向未滑移区
3
4. 位错线张力 由于位错线具有应变能,所以位错线有缩短的趋势
来减小应变能,这便产生了线张力T。线张力数值上等
金属材料的位错结构分析
金属材料的位错结构分析引言金属材料在日常生活和工业生产中扮演着重要角色。
为了理解和改善金属材料的性能,研究其微观结构是至关重要的。
位错是金属材料中常见的缺陷,对其产生的机理和特征进行分析有助于深入了解金属材料的力学行为和变形。
一、位错的概念和分类位错是材料中原子排列的缺陷,可以被视为相邻晶胞之间有错位的层。
位错可以根据其线向、面向和位错元素的类型进行分类。
线向位错是沿着一条直线的错位,面向位错是在某个平面上发生错位。
位错的类型包括位错环、位错线和剪切位错等。
二、位错的生成和运动位错的生成可以通过多种途径实现,例如在晶体生长过程中,受应力作用或其他外界因素的影响。
位错的运动则是指位错沿晶体中的某些方向移动。
位错运动受到多种因素的影响,包括应力、温度和外部应力等。
位错运动的方式包括滑移、跃迁和扩散等。
三、位错的作用和影响位错对金属材料的性能和行为产生了很大的影响。
位错可以影响金属的硬度、塑性和断裂韧性等力学性质,并且可以导致材料的疲劳、应力腐蚀和形变失真等失效机制。
位错还可以通过吸引和排除合金元素,对金属材料的晶粒生长和相变过程产生影响。
四、位错的观测和分析方法位错的观测和分析需要借助先进的显微镜技术,如透射电子显微镜(TEM)和扫描电子显微镜(SEM)。
TEM可以提供高分辨率的位错观测,可以直接观察到位错的形态和位置。
SEM则可以通过差示对比增强技术来观测位错,并结合图像处理方法进行进一步分析。
五、位错的模拟和计算近年来,随着计算机技术的发展,分子动力学模拟和离散位错动力学模型成为位错行为研究的重要工具。
通过将晶体结构和位错特征输入到模拟软件中,可以模拟位错的生成、运动和相互作用,进而预测材料的性能和行为。
六、位错与材料的优化设计位错的存在是金属材料中的一种缺陷,但也可以被看作是一种对材料性能的调控手段。
通过合理设计和控制位错的生成和运动,可以调整材料的硬度、塑性和断裂韧性等性能指标。
因此,位错的研究为金属材料的优化设计提供了重要思路。
考研专业课:材料科学基础7 位错理论基础
5.位错滑移的点阵阻力(P-N力) 位错滑移会受到晶体点阵的阻力, 源自滑移面上下两层原子发生位移和错配导 致能量的变化,称其为点阵阻力,表示式为
b-位错柏氏矢量大小; W-称为位错宽度,一般w=(1-10)b。 位错受到的作用力大于点阵阻力时,才能进行 滑移。
晶体特性与P-N力: fcc结构的位错宽度大,其P-N力小,故其容易屈 服; bcc相反,其屈服应力大; 共价键和离子键晶体的位错宽度很小,所以表现 出硬而脆的特性。 滑移面滑移方向与P-N力: P-N力与(-d/b)成指数关系; 最密排面的面间距d最大,最密排方向的原子间 距最小(b最小); 所以,位错滑移面和滑移方向通常是原子密排面 和密排方向。
3.弯曲位错的受力 外力作用下,两端固定的位错弯曲成曲率半径r, 产生力F : 平衡条件:
由于ds=rd,当ds很小时
故:
外力、位错 b、r间关系式。
7.3 位错与晶体缺陷间的交互作用 位错具有应力场,且可移动; 其它位错或点缺陷也有应力场, 位错与其它应力场会相互作用,产生作用力。 一.位错间的交互作用 1.两平行螺型位错的交互作用 在b1应力场作用下,b2 受力为
•当y=0时(x轴上), 若x>0,则fx>0; 若x<0,则fx<0。
结论:
同号位错相互排斥, 位错间距越小,排斥 力越大。
(b)攀移力fy
fy与y同号; 当位错d2在位错d1的滑移面上部时, 攀移力fy是 正值,即指向上;
当d2在d1滑移面下部时, fy为负值,即指向下。
因此,两位错沿y轴方向是互相排斥的。
(2)两个平行的异号刃型位错
• fx和fy的方向与同号位错时相反,
位错d2的稳定位臵和介稳位臵正好互相对换, |x|=|y|时, d2处于稳定位臵。 • fy与y异号,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它若终止于晶体内部,则必与其他位错线
相连接,或在晶体内部形成封闭线即位错环, 见图1.4。
位错环各处的位错结构类型可按各处的位错线 方向与滑移矢量的关系分析,如A、B两处是刃型位 错,C、D两处是螺型位错,其他各处均为混合型位 错。 有纯刃型位错环,无纯螺型位错环。即:刃型 位错线可以是直线、曲线;而螺型位错线只能是直 线,不能是曲线。
b=bs+be
2. 柏氏矢量的表示法
柏氏矢量的大小和方向可以用它在晶轴上的分
量,即用点阵矢量a、b和c来表示。
对于立方晶系晶体,由于a=b=c,故可用与柏
氏矢量b同向的晶向指数来表示。
例如:体心立方晶体,其柏氏矢量等于从体心
立方晶体的原点到体心的矢量来表示,则 b=a/2+b/2+c/2,可写成b=a/2[111]。
一般立方晶系中柏氏矢量可表示为
b=a/n<uvw>,其中n为正整数。
通常柏氏矢量的大小(即位错强度)还用下式
来表示。
a | b | u 2 v 2 w2 n
3. 柏氏矢量的守恒性(Conservation)
对于一定的位错其柏氏矢量是固定不变的,叫守恒性。
反映在三个方面: (1)一条位错线只有一个柏氏矢量。
刃型位错的特征如下:
刃型位错有一个多余的半原子面。一般把多余的半原子
面在滑移面上边的称为正刃型位错,记为“┴”;而把多
余的半原子面在滑移面下边的称为负刃型位错,记为 “┬”。
刃型位错线是晶体中已滑移区与未滑移区的边界线。它
不一定是直线,可以是折线或曲线,但它必与滑移方向 垂直。
滑移面是同时包含有位错线和滑移矢量的平面,在其他
证明:如图1.9所示,设有一 条位错线AO,柏氏回路为B1, 其柏氏矢量为b1,移动到结 点O后,分为两个位错OB和 OC,其柏氏矢量分别为b2和 b3,b2和b3的柏氏回路为B2和 B3合成为B2+3,B1应与B2+3等 价,所以b1 =b2 +b3。表明一 条位错线分为两根时,其柏 氏矢量只有一个。
材料加工金属学
主讲教师:王亚男 教授
第1章 位错的结构
1.1 位错的基本类型 1.2 位错的结构征
1.1 位错的基本类型(Basic Types of Dislocation) 1. 定义 位错是晶体中原子排列的一种特殊组态。 已滑移区(Slip Zone)与未滑移区在滑移面
(Slip Plane)上的交界线,称为位错线,一般
小 结
1. 掌握位错的基本类型及各类位错的特征。
2. 会确定柏氏矢量、判断其方向、计算其大小。
3. 掌握柏氏矢量的守恒性及推论。
螺型位错的特征如下:
螺型位错无多余半原子面,原子错排是呈轴
对称的。根据位错线附近呈螺旋形排列的原 子旋转方向不同,螺型位错可分为右旋和左 旋螺型位错。
螺型位错线与滑移矢量平行,因此一定是直
线。
纯螺型位错的滑移面不是惟一的。凡是包含
螺型位错线的平面都可以作为它的滑移面。
螺型位错线周围的点阵也发生弹性畸变,但
面上不能滑移。由于刃型位错中,位错线与滑移矢量互
相垂直,因此由它们所构成的平面只有一个。
晶体中存在刃型位错后,位错周围的点阵发生
弹性畸变,既有切应变,又有正应变。正刃型 位错,滑移面上方点阵受到压应力,下方点阵
受到拉应力;负刃型位错与此相反。
在位错线周围的过渡区只有几个原子间距宽,
所以它是线缺陷(Line Defect)。
1.2 位错的结构特征
1. 柏氏矢量(Burgers Vector)的确定 柏氏矢量可以通过柏氏回路来确定,图 1.5(a)、(b)分别为含有一个刃型位错的实际晶 体和用作参考的不含位错的完整晶体。
确定位错柏氏矢量的方法如下:
首先选定位错线(ξ)的正向,通常规定出纸面
的方向为位错线的正方向。
简称为位错。
从位错的几何结构来看,可将它们分为:
刃型位错、螺型位错和混合型位错。
2. 刃型位错(Edge Dislocation)
刃型位错的晶体结构如图1.1所示。
好像一把刀刃插入晶体中,使ABCD面上下两部分 晶体之间产生了原子错排,故称刃型位错,多余 半原子面与滑移面的交线EF就称作刃型位错线。
在实际晶体中,从任一原子出发,围绕位错以
一定的步数作一逆时针闭合回路MNOPQ,称 为柏氏回路,如图1.5(a)所示。
在完整晶体中,按同样的方向和步数作相同的
回路,该回路并不闭合,由终点Q向起点M引 一矢量b,使该回路闭合,如图1.5(b)所示。 这个矢量b就是实际晶体中位错的柏氏矢量。
由图1.5可知,刃型位错的柏氏矢量与位错线垂
3. 螺型位错(Screw Dislocation)
螺型位错的晶体结构如图1.2所示。
图(a)是晶体右侧受τ作用,使右侧上下两部分晶体沿滑移面ABCD发 生了错动,这时已滑移区和未滑移区的边界线bb′平行于滑移方向。图 (b)是俯视图,“·”表示ABCD下方的原子,“°”表示ABCD上方的 原子。可看出,在aa′右边的晶体上下层原子相对错动了一个原子间距, 而在bb′和aa′之间出现一个约有几个原子间距宽的、上下层原子位置不 吻合的过渡区,原子的正常排列遭到破坏。如果以bb′为轴线,从a开始, 按顺时针方向依次连接此过渡区的各原子,见图(c)。即位错线附近 的原子是按螺旋形排列的,所以把这种位错称为螺型位错。
只有平行于位错线的切应变而无正应变,即 不会引起体积膨胀和收缩,且在垂直于位错 线的平面投影上,看不到原子的位移,看不 到有缺陷。
螺型位错周围的点阵畸变随离位错线距离的
增加而急剧减少,故它也是包含几个原子宽 度的线缺陷。
4. 混合型位错(Mixed Dislocation)
滑移矢量既不平行也不垂直于位错线,而与位错线 相交成任意角度,这种位错称为混合型位错,见图1.3。
直,这是刃型位错的一个重要特征。
刃型位错的正负可用右手法则来确定,如图1.6
所示。 用右手的拇指、食 指和中指构成直角坐标, 以食指指向位错线的方 向,中指指向柏氏矢量 的方向,则拇指的指向 代表多余半原子面的位 向,且规定拇指向上者 为正刃型位错,反之为 负刃型位错。
• 螺型位错的柏氏矢量也可按同样的方法确定, 如图1.7所示。
混合型位错线是一条曲线,在A处位错线与滑移矢量 平行,因此是螺型位错;而在C处位错线与滑移矢量垂直, 因此是刃型位错。A与C之间,位错线既不垂直也不平行 于滑移矢量,每一小段位错线都可分解为刃型和螺型两个 部分,因此是混合型位错。
由于位错线是已滑移区与未滑移区的边界 线,因此一根位错线不能终止于晶体内部,而 只能露头于晶体表面或晶界。
(2)一个位错环只有一个柏氏矢量。
证明:如图1.10所示,设有一个位错环 ABCD,将它分为两部分ABCEA和 AECDA,其柏氏矢量分别为b1和b2, 这表明两部分晶体变形不同,那么中间 就要出现一个柏氏矢量为b3的位错。 现设:CDA动,ABC不动,出现了b3,在A处b1分解为b2 和b3,即b3= b1-b2; 同理:CDA不动,ABC动,也出现了b3,在A处b2分解为 b1和b3,即b3= b2-b1。 因为实际上没有AEC,只有ABCD位错环,所以b3=0,故 b1= b2,即一个位错环只有一个柏氏矢量。
(3)多个位错相遇指向同一个结点或都离开同 一个结点,它们的b之和等于0。
证明:如图1.11所示,四根位错线均指向O点, 则有b1+ b2+ b3+ b4=0,即∑bi=0。
(4)推论:晶体中的位错,或自由封闭,或终 止在晶体表面或晶界处,不能在晶体中中断。
证明:如图1.12所示,设位错AB的柏氏矢量为b,中断 于B点。根据位错的定义:设Ⅰ区为已滑移区,Ⅱ区 为未滑移区,则Ⅲ区有两种情况:1)Ⅲ区为已滑移区, 则Ⅱ-Ⅲ区的界线BC必是一段位错线;2)Ⅲ区为未滑 移区,则Ⅰ-Ⅲ区的界线BC′必是一段位错线。所以无 论是哪种情况,BC或BC′都是AB伸向晶体表面的延伸 线,柏氏矢量也为b,这就证明了位错线不能中断在晶 体内部。
由图可知,螺型位错的柏氏矢量与位错线平行,
且规定b与位错线正向平行者为右螺型位错,b 与位错线反向平行者为左螺型位错。
混合型位错的柏氏矢量既不垂直也不平行 于位错线,而与它相交成θ角,可将其分解成垂 直和平行于位错线的刃型分量(be=bsinθ)和 螺型分量(bs=bcosθ),如图1.8所示。