天体运动中的双星问题
物理双星问题三个公式
物理双星问题三个公式物理中的双星问题,可是个有趣又有点烧脑的知识点。
咱们今儿就来好好唠唠其中的三个关键公式。
先来说说双星系统的定义哈。
双星,简单说就是两颗恒星在彼此引力作用下,绕着共同的中心做圆周运动。
这就像两个人手拉手在转圈跳舞,彼此的引力就是那只拉住他们的“无形的手”。
咱们来看看第一个公式,线速度与半径的关系公式:$v_1r_1 =v_2r_2$ 。
这里的$v_1$、$v_2$ 分别是两颗星的线速度,$r_1$、$r_2$ 是它们各自做圆周运动的半径。
给您举个例子吧。
有一次我在公园里散步,看到两个小孩在玩那种用绳子拴着的小球甩圈游戏。
其中一个小孩力气大,甩动的速度快,绳子也长,就相当于线速度大、半径大;另一个小孩力气小,速度慢,绳子短,就类似线速度小、半径小。
但是不管怎样,他们转一圈所用的时间是一样的,这就和双星系统里线速度和半径的关系有点像。
再来说第二个公式,角速度相同公式:$\omega_1 = \omega_2$ 。
这个很好理解,双星就像在一个锅里搅和的两个勺子,它们转动的快慢是一样的。
记得有一次我在厨房搅拌鸡蛋,我用两根筷子,就像是双星一样,一起在蛋液里转动,它们的角速度肯定是相同的呀。
最后是第三个公式,向心力公式:$F = m\omega^2r$ 。
这个公式告诉我们,向心力的大小和质量、角速度以及半径都有关系。
就像我骑自行车,轮子的质量越大,我蹬得越快(角速度大),轮子的半径越大,我蹬起来就越费劲,需要的力就越大。
总之,这三个公式在双星问题中可是起着关键作用。
只要咱们理解透彻,再遇到双星相关的题目,那都不在话下。
您瞧,物理其实没那么可怕,只要多观察生活中的现象,很多抽象的知识就能变得清晰易懂。
希望您在学习物理的道路上越走越顺,加油!。
天体运动中“多星”问题
3.由三颗星体构成的系统,忽略其它星体对它们的 作用,存在着一种运动形式:三颗星体在相互之间 的万有引力作用下,分别位于等边三角形的三个顶 点上,绕某一共同的圆心O在三角形所在的平面内 做相同角速度的圆周运动(图示为A、B、C三颗星 体质量不相同时的一般情况)。若A星体质量为3m, B、C两星体的质量均为m,三角形的边长为a,求: (1)A星体所受合力大小FA; (2)B星体所受合力大小FB; (3)C星体的轨道半径RC; (4)三星体做圆周运动的周期T。
A.m
B.m C.m D.m
1
1 1 2
:m
:m
2
2
做圆周运动的角速度之比为2:3
做圆周运动的线速度之比的半径为
2.”多星”问题 (1)多颗行星在同一轨道绕同一点做匀速圆周运 动,每颗行星做匀速圆周运动所需的向心力由其 它各个行星对该行星的万有引力的合力提供. (2)每颗行星转动的方向相同,运行周期,角速 度和线速度大小相等.
黑 洞
所谓“黑洞”,就是这样一种天体: 它的引力场是如此之强,就连光也不能逃脱出 来.黑洞不“黑”,“黑洞”很容易让人望文生义地想象 成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是 这样一种天体:它的引力场是如此之强,就连光也 不能逃脱出来。说它“黑”,是指它就像宇宙中的无 底洞,任何物质一旦掉进去,“似乎”就再不能逃出 。
4.宙中存在一些质量相等的且离其他恒星较远的四 颗星组成的四星系统,通常可忽略其他星体对它们 的引力作用.设四星系统中每个星体质量均为m, 半径均为R,四颗星稳定分布在边长为a的正方形的 四个顶点上.已知引力常数为G,关于四星系统, 下列说法正确的是( CD ) •A. 四颗星围绕正方形对角线的交点做匀速圆周运 动 •B. 四颗星的线速度均为v= •C. 四颗星表面的重力加速度均为 •D. 四颗星的周期均为
双星与多星问题
双星与多星问题 【1 】双星模子1.模子构建在天体活动中,将两颗彼此相距较近,且在互相之间万有引力感化下绕两者连线上的某点做周期雷同的匀速圆周活动的行星称为双星.2.模子前提①两颗星彼此相距较近.②两颗星靠互相之间的万有引力做匀速圆周活动.③两颗星绕同一圆心做圆周活动.3.模子特色如图所示为质量分离是m 1和m 2的两颗相距较近的恒星.它们间的距离为L .此双星问题的特色是:(1)两星的运行轨道为齐心圆,圆心是它们之间连线上的某一点.(2)两星的向心力大小相等,由它们间的万有引力供给.(3)两星的活动周期.角速度雷同.(4)两星的活动半径之和等于它们间的距离,即r 1+r 2=L .4. 双星问题的处理办法双星间的万有引力供给了它们做圆周活动的向心力,即 Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2. 5. 双星问题的两个结论(1)活动半径:m 1r 1=m 2r 2,即某恒星的活动半径与其质量成反比.(2)质量之和:因为ω=2πT ,r 1+r 2=L ,所以两恒星的质量之和m 1+m 2=4π2L 3GT 2.【示例1】2016年2月11日,美国科学家宣告探测到引力波,证实了爱因斯坦100年前的猜测,填补了爱因斯坦广义相对论中最后一块缺掉的“拼图”.双星的活动是产生引力波的起源之一,假设宇宙中有一双星体系由a .b 两颗星体构成,这两颗星绕它们连线的某一点在万有引力感化下做匀速圆周活动,测得a 星的周期为T ,a .b 两颗星的距离为l ,a .b 两颗星的轨道半径之差为Δr (a 星的轨道半径大于b 星的轨道半径),则( )A.b 星的周期为l -Δr l +ΔrT B.a 星的线速度大小为π(l +Δr )T C.a .b 两颗星的半径之比为l l -Δr D.a .b 两颗星的质量之比为l +Δr l -Δr纪律总结解答双星问题应留意“两等”“两不等”(1)双星问题的“两等”:①它们的角速度相等.②双星做匀速圆周活动的向心力由它们之间的万有引力供给,即它们受到的向心力大小老是相等的.(2)“两不等”:①双星做匀速圆周活动的圆心是它们连线上的一点,所以双星做匀速圆周活动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m 1ω2r 1=m 2ω2r 2知因为m 1与m 2一般不相等,故r 1与r 2一般也不相等.【示例2】经长期不雅测,人们在宇宙中已经发明了“双星体系”,“双星体系”由两颗相距较近的恒星构成,每个恒星的线度远小于两个星体之间的距离,并且双星系同一般远离其他天体.两颗星球构成的双星m 1.m 2,在互相之间的万有引力感化下,绕连线上的O 点做周期雷同的匀速圆周活动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2.则可知( )A .m 1与m 2做圆周活动的角速度之比为2∶3B .m 1与m 2做圆周活动的线速度之比为3∶2C .m 1做圆周活动的半径为25L D .m 2做圆周活动的半径为25L【示例3】2015年4月,科学家经由过程欧航局天文千里镜在一个河外星系中,发明了一对互相环绕扭转的超大质量双黑洞体系,如图所示.这也是天文学家初次在正常星系中发明超大质量双黑洞.这对验证宇宙学与星系演变模子.广义相对论在极端前提下的顺应性等都具有十分主要的意义.我国本岁尾也将发射全球功效最强的暗物资探测卫星.若图中双黑洞的质量分离为M 1和M 2,它们以两者连线上的某一点为圆心做匀速圆周活动.依据所学常识,下列选项准确的是( )A .双黑洞的角速度之比ω1∶ω2=M 2∶M 1B.双黑洞的轨道半径之比r1∶r2=M2∶M1C.双黑洞的线速度之比v1∶v2=M1∶M2D.双黑洞的向心加快度之比a1∶a2=M1∶M2【示例4】宇宙间消失一些离其他恒星较远的三星体系,个中有一种三星体系如图所示,三颗质量均为m的星位于等边三角形的三个极点,三角形边长为L,疏忽其他星体对它们的引力感化,三星在同一平面内绕三角形中间O做匀速圆周活动,引力常量为G,下列说法准确的是()A.每颗星做圆周活动的角速度为3GmL3动的加快度与三星的质量无关C.若距离L和每颗星的质量m都变成本来的2倍,则周期变成本来的2倍L和每颗星的质量m都变成本来的2倍,则线速度变成本来的4倍【示例5】(多选)宇宙间消失一个离其他星体遥远的体系,个中有一种体系如图所示,四颗质量均为m的星体位于正方形的极点,正方形的边长为a,疏忽其他星体对它们的引力感化,每颗星体都在同一平面内绕正方形对角线的交点O做匀速圆周活动,引力常量为G,则()(1+2 4)GmaGm2a32a3Gm的加快度与质量m有关【示例6】两个星球构成双星,它们在互相之间的万有引力感化下绕连线上某点做周期雷同的匀速圆周活动.现测得两星中间的距离为R,其活动周期为T,求两星的总质量.【示例7】由三颗星体构成的体系,疏忽其它星体对它们的感化,消失着一种活动情势;三颗星体在互相之间的万有引力感化下,分离位于等边三角形的三个极点上,绕某一配合的圆心O在三角形地点的平面内做雷同角速度的圆周活动(图示为A.B.C三颗星体质量不雷同时的一般情形).若A星体质量为2m.B.C两星体的质量均为m,三角形的边长为a, 求:(1)A星体所受合力大小F A;(2)B星体所受合力大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周活动的周期T.1. (多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力感化互相绕转,称之为双星体系.在浩瀚的银河系中,多半恒星都是双星体系.设某双星体系A.B绕其连线上的O点做匀速圆周活动,如图4所示.若AO>OB,则()A. 星球A的质量必定大于星球B的质量B. 星球A的线速度必定大于星球B的线速度C. 双星间距离必定,双星的质量越大,其迁移转变周期越大D. 双星的质量必定,双星之间的距离越大,其迁移转变周期越大2. 双星体系由两颗恒星构成,两恒星在互相引力的感化下,分离环绕其连线上的某一点做周期雷同的匀速圆周活动.研讨发明,双星体系演变进程中,两星的总质量.距离和周期均可能产生变更.若某双星体系中两星做圆周活动的周期为T,经由一段时光演变后,两星总质量变成本来的k倍,两星之间的距离变成本来的n倍,则此时圆周活动的周期为()A. n3k2T B.n3k T C.n2k T D.nk T3. 文学家将相距较近.仅在彼此的引力感化下运行的两颗恒星称为双星.双星体系在银河系中很广泛.应用双星体系中两颗恒星的活动特点可推算出它们的总质量.已知某双星体系中两颗恒星环绕它们连线上的某一固定点分离做匀速圆周活动,周期均为T,两颗恒星之间的距离为r,试推算这个双星体系的总质量.(万有引力常量为G)4. 宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周活动而不会因万有引力的感化吸引到一路.(1)试证实它们的轨道半径之比.线速度之比都等于质量的反比.(2)设两者的质量分离为m1和m2,两者相距L,试写出它们角速度的表达式.。
物理天体双星问题公式
物理天体双星问题公式开放双星是指天体之间没有重力束缚,可以相对自由地移动。
这种情况下,可以使用开放双星的质心系来研究双星的运动。
质心系是指一个惯性系,该系的原点位于两个天体的质心位置。
在质心系中,可以将双星系统化简为一个天体围绕另一个天体运动的单星系统。
开放双星的运动可以利用牛顿运动定律和万有引力定律来描述。
假设双星的质量分别为m1和m2,位置向量分别为r1和r2,速度向量分别为v1和v2、根据牛顿二定律,可以得到双星的运动方程:m1 * d²r1/dt² = G * m1 * m2 * (r2 - r1) / ,r2 - r1,³m2 * d²r2/dt² = G * m1 * m2 * (r1 - r2) / ,r1 - r2,³其中G是万有引力常数。
封闭双星是指天体之间存在重力束缚,它们围绕共同质心作圆周运动。
这种情况下,可以利用角动量守恒和质量守恒来研究双星的运动。
假设双星的质量分别为m1和m2,角速度分别为ω1和ω2,距离质心的投影分别为r1和r2、根据角动量守恒,可以得到:m1*r1²*ω1=m2*r2²*ω2根据质量守恒,可以得到:m1*r1=m2*r2结合以上两个方程,可以求解出r1和r2关于m1、m2、ω1和ω2的表达式。
这样,就可以得到封闭双星的运动规律。
除了以上研究开放双星和封闭双星的公式之外,还可以利用能量守恒和动量守恒来研究双星问题。
根据能量守恒和动量守恒,可以得到双星系统的综合方程,从而求解出双星的运动状态。
总之,物理天体双星问题涉及到多个物理量之间的相互关系和相互作用。
通过运用牛顿运动定律、万有引力定律、角动量守恒、质量守恒、能量守恒和动量守恒等原理和公式,可以研究双星的运动规律,揭示天体的行为和性质。
高中物理复习 双星问题,天体追击
一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
双星及三星系统和万有引力综合问题(精选.)
(10)双星及三星系统和万有引力综合问题一、双星系统在天体运动中,将两颗彼此相距较近的行星称为双星。
它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。
如果双星间距为L ,质量分别为M 1和M 2,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线速度。
特点:(1)向心力相同由双星之间的引力提供21n n F F = (2)周期相同:21T T = (3)角速度相同:21ωω=解题思路:双星之间的万有引力提供向心力 研究M 1 121221R M L M GM ω= 研究M 2222221R M LM GM ω= 两式相除得1221M M R R =(半径与质量成反比) 又 L R R =+21 得L M M M R 2121+=,L M M M R 2111+=,()L M M G L T 2112+==πω, r v ω=(线速度与半径成正比)等效模型:中心天体质量M 1+M 2,一卫星围绕其做圆周运动,半径为L 。
(方便计算两卫星总质量和双星周期)即()L Tm L m M M G 222214π=+ 例题1:经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”是由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如右图所示,两颗星球组成的双星,在相互之间的万有引力的作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2.则可知( ) A .m 1、m 2做圆周运动的线速度之比为3∶2 B .m 1、m 2做圆周运动的角速度之比为3∶2引力距离轨道半径C .m 1做圆周运动的半径为52LD .m 2做圆周运动的半径为52L例题2:双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
(完整版)“双星”问题及天体的追及相遇问题
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得
高中物理双星问题
“双星”问题的分析思路 两颗质量可以相比的恒星相互绕着旋转的现象,叫双星;双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析;一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提 供;由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小;二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等 的,所以线速度与两子星的轨道半径成正比;三、 要明确两子星圆周运动的动力学关系;设双星的两子星的质量分别为M 1和M 2,相距L,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径;例题一两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:A 、它们做圆周运动的角速度之比与其质量成反比;B 、它们做圆周运动的线速度之比与其质量成反比;C 、它们做圆周运动的半径与其质量成正比;D 、它们做圆周运动的半径与其质量成反比;解析:两子星绕连线上的某点做圆周运动的周期相等,角速度也相等;由v=r ω得线速度与两子星圆周运动的半径是成正比的;因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由212112M M G M r L ω=,212222M M G M r L ω=可知:221122M r M r ωω=,所以它们的轨道半径与它们的质量是成反比的;而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的;正确答案为:BD;例题二用天文望远镜长期观测,人们在宇宙中发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质存在的形式和分布有了较深刻的认识,双星系统是由两个星体构成,其中每个星体的线度都小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理,现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动;1计算该双星系统的运动周期T 计算;2若实验上观测到的运动周期为T 观测,且T 观测:T 计算=1N>1,为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质,作为一种简化22模型,我们假定在这两个星体边线为直径的球体内均匀分布着暗物质,而不考虑其它暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度;解析:1双星绕它们的连线中点做圆周运动,由万有引力提供向心力,根据万有引力和牛顿第二定律得:2222M M L G L ω=,而2Tπω=;解得:T π计算= 2因为T T 观测计算计算<,这个差异是以双星连线为直径的球体内均匀分布着的暗物质引起的,设这种暗物质质量为M ′,位于两星连线中点处的质点对双星的影响相同,这时双星做圆周运动的向心力由双星的万有引力和M ′对双星的万有引力提供,所以有:()22/222/2M L M MM G G L L ω=观测+,又2T πω=观测观测 解得暗物质的质量为:/N 1/4M M =(-) 而暗物质的体积为:34L V 32π=() 所以暗物质的密度为:/3M 3(1)/(2)V N M L ρπ=-=。
(完整版)双星三星四星问题
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
专题09 双星问题
专题九、双星问题问题分析近年来,天文学家发现银河系中大部分恒星都存在于双星或多星系统中,它们有着固定的轨道,这对研究天体运动十分重要.双星是指两颗相隔一定距离、并绕着连线上的某点做周期相同的匀速圆周运动的天体,有关双星的试题是高考的一个热点,同时也是一个难点,在天体运动中,与双星问题相似的还有三星问题、四星问题等,它们的运动原理相似. 1.双星透视的特点(1)两星球绕着连线的中点做匀速圆周运动,周期相同,角速度相同,各自的运行半径之和等于两星球之间的姬离,即12r r L +=(2)两星球之间的万有引力分别提供了两星球做匀速圆周运动的向心力,即两星球运行的向心力相等,则21211224m m G m r L T π=,21222224m m G m r L Tπ=(3)如果知道了两星球的质量1m 、2m 和相互之间的距离L ,那么就可以求出两星球运行的轨道半径,即1122m r m r =,2112m r L m m =+,1212m r L m m =+(4)在运动过程中,两星球与旋转中心三者始终共线,即两星球的角速度、周期相同; (5)在双星问题中,两星球运动的轨道半径与引力半径是不相同的,两星球的引力半径为L ,而轨道半径为1r 、2r . 2.解题策略在高考中,有关双星的试题信息量比较大,一般比较难,这就需要考生能从题干中提取有用的信息,综合运用相关知识求解问题,构成双星系统的两星球之间的万有引力与各自做匀速圆周运动的向心力相等,运行周期相等,角速度也相等,这是处理双星问题的突破口.解题时,就是利用这三个关系列方程求解. 3.三星透视常见的三星透视有两种情况:一种是三颗星球在同一直线上,两边的星球绕中间的星球做匀速圆周运动;另一种情况是三颗星球在等边三角形的顶点上,绕三角形的中心运动,运行轨迹为等边三角形的外接圆. 透视1 考查双星透视中的速度问题在双星透视中,两星球运行的角速度相等,但是两星球的线速度不相等,通常是利用万有引力与向心力相等,即222Mm v G m mr r rω==来求速度问题.【题1】月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动的线速度大小之比约为 ( ) A .1:6 400 B .1: 80 C .80:1 D .6 400:1【解析】月球和地球绕O 做匀速圆周运动,它们之间的万有引力提供各自的向心力,则地球和月球的向心力相等,且月球、地球和点O 始终共线,说明月球和地球有相同的角速度和周期,因此有22m r m r ωω=地地月月,所以80=1v r m v r m ==月月地地地月,C 正确,A 、B 、D 错误 透视2 考查双星透视中的质量问题在双星透视中,如果知道了两星球的质量1m 、2m 和相互之间的距离L ,就可以求出两星球运行的轨道半径1r 、2r ;反过来,如果知道了两星球运行的轨道半径1r 、2r 和相互之间的距离L ,也可以求出两星球的质量.【题2】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍,利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【解析】设两星质量分别为1m 、2m ,做圆周运动的半径分别为1r 、2r ,角速度分别为1ω、2ω,根据题意可得12ωω= ① 12r r r += ②根据万有引力定律和牛顿第二定律可得2121112m m G m r rω=③ 2122222m m Gm r rω= ④ 联立以上各式解得2112m r L m m =+⑤1212m r L m m =+ ⑥根据角速度与周期的关系知122Tπωω==⑦联立③④⑤⑥⑦式解得:231224r m m GT π+=透视3 考查双星透视中的周期问题在双星问题中,两星球运行的周期是相等的,可以利用万有引力与向心力之间的关系和引力半径与运行的轨道半径之间的关系 2212112222244m m G m r m r L T Tππ==,12r r L +=【题3】如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常数为G .(l)求两星球做圆周运动的周期(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为1T .但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为2T .已知地球和月球的质量分别为245. 9810⨯kg 和227.3510⨯ kg .求2T 与1T 两者平方之比.(结果保留三位小数)【解析】(l)设r 为星球A 的运动半径,R 为星球B 的运动半径,星球A 和星球B 在万有引力作用下都绕O 点做匀速圆周运动,两星球之间的万有引力提供它们做匀速圆周运动的向心力,故星球A 和星球B 的向心力大小相等.根据题意可知,A 、B 的中心和O 三点始终共线,这表明星球A 和星球B 具有相同的角速度和周期,则 22m r M R ωω= ① r R L += ② 联立①②式解得 mR L m M =+ ③ Mr L m M=+ ④ 根据牛顿第二定律和万有引力定律,对星球A 有222Mm G m r T L π⎛⎫= ⎪⎝⎭⑤联立④⑤式解得2T = ⑥(2)将地球和月球看成上述星球A 和B ,设地心与月心之间的距离为'L ,地球和月球的质量分别为'M 、'm .由⑥式可得12T = ⑦将月球看成绕地心做圆周运动,万有引力提供月球的向心力,则2'22''2''M m G m L T L π⎛⎫= ⎪⎝⎭将上式变形得22T = ⑧联立⑦⑧式可得2T 与1T 两者平方之比为224222241'' 5. 98107.3510 1.012' 5. 9810T M m T M ⎛⎫+⨯+⨯=== ⎪⨯⎝⎭⑨ 点评 处理双星问题的关键是掌握两点:一是万有引力提供双星做匀速圆周运动的向心力;二是各自做匀速圆周运动的半径之和等于两者之间距离,即12r r L +=. 透视4 考查三星透视中的相关问题在三星问题中,涉及的是三个星球的运动关系,比较复杂,在分析问题时,首先是需要判断三个星球的位置关系,是在同一直线上,还是在等边三角形的三个顶点上;然后是需要判断星球的受力情况,求出的合力即为提供星球做圆周运动的向心力;最后是利用几何关系求出星球做圆周运动的轨道半径,利用相关的关系列方程求解,【题4】宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设每个星体的质量均为m .(l)试求第一种形式下,星体运动的线速度和周期.(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少? 〖解析〗(1)第一种形式下,三颗星位于同一直线上,如图所示,以星体A 为研究对象,星体A 受到星体B 、C 两个万有引力的作用,它们的合力提供星体A 做圆周运动的向心力,则212m F G R=222(2)m F GR = 212v F F m R+=联立以上三式解得星体运动的线速度54Gmv R=. 根据2RT vπ=可求得星体运动的周期为: 45RT RGmπ=. (2)第二种形式下,三颗星体的位置如图所示,设星体之间的距离为r ,则三颗星体做圆周运动的半径为 0'2cos30rR =由于星体做圆周运动所需要的向心力是由另外两个星体的万有引力的合力提供,即图中的F 合,其为1F 与2F 的合力.根据平行四边形定则和万有引力定律可知2o 22cos30m F G r =合224'F m R Tπ=合联立以上各式解得13125r R ⎛⎫= ⎪⎝⎭。
物理(双星问题)经典题型例题解析
一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提 供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等 的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角 速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m2:m 1线速度之比与质量比相反:(由半径之比推导)V 1=ωr 1 V 2=ωr 22 2V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
【例题1】两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:A 、它们做圆周运动的角速度之比与其质量成反比。
高中物理天体运动多星问题
双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。
(引力常量为G)【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,不考虑其他天体的影响.A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G,由观测能够得到可见星A的速率v 和运行周期T.(1)可见星A所受暗星B的引力F a可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A 和B的质量分别为m1、m2,试求m′(用m1、m2表示).(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞.若可见星A的速率v=2.7×105 m/s,运行周期T=4.7π×104 s,质量m1=6m s,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11 N·m2/kg2,m s=2.0×1030 kg)【例题3】天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L,质量分别为M1、M2,试计算(1)双星的轨道半径(2)双星运动的周期。
天体运动的双星和多星问题解析
天体运动的双星和多星问题解析天体运动的双星和多星随着天体演化论的建立和完善,人们从天文观测中获得了许多有关双星和多星系统的知识。
双星或多星系统所呈现出来的各种复杂的运动,主要受这些天体之间相互作用的影响,其研究内容十分丰富。
本文仅就这些年发现的较重要的双星问题做一些探讨。
1.太阳系成员双星问题解析例2。
天琴座RR型变星(RRCator)也称为周期为半年至数百天的周期性变星。
根据它们光变周期的长短可以把它们分成两大类:长周期的以恒星和白矮星为主,短周期的以主序星为主。
其中长周期的又分为三个子类: a.椭圆形变星:由于温度的周期性变化而引起光度的周期性变化; b.光谱分类:根据恒星的谱线和光变周期的特点将它们分成三类; c.光谱分类不能确定的:它们往往在光度上有显著的变化。
2。
双星系统共同特征问题解析例3。
河系示意图显示,横坐标表示相对大小,纵坐标表示光变周期。
横坐标右边的弧是近日点,近日点光变周期随距离增大而逐渐减小;纵坐标左边的弧是远日点,远日点光变周期随距离增大而逐渐增大。
根据河系演化示意图和上述对河系演化规律的分析,可得到如下几点结论:(1)当距太阳较远时,由于天体的演化使恒星向红巨星或红超巨星演化;当恒星向红巨星演化时,河系扩张迅速,星体的温度较高,化学元素稳定性强,导致对流和恒星风的活动不剧烈。
而且“星星”和“太阳”还是一对双星,即多星,其主星和伴星还有重合的现象。
它们的特点是两星的亮度有很大的差异,从一星看是很暗的“点”,从另一星看则是很亮的“点”,因此它们既有双星的共性,又具有独特性。
这对星系将来是否会发生碰撞?应该说可能性是存在的,但希望渺茫。
“北落师门”是最有可能的系外双星之一。
“北落师门”,在天球上位于南鱼座的一个不起眼的小星系。
它与银河系之间的距离大约是100万光年。
尽管这个小星系在尺度上只是银河系的百万分之一,但它却是一颗相当重要的恒星——南鱼座“北落师门”星是双星,两子星相距约9光年。
宇宙中的双星及多星问题
【宇宙中的双星及多星问题】宇宙中,因天体间的相互作用而呈现出诸如双星、三星、四星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。
而三星、四星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。
多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。
由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。
一、双星问题近年来,天文学家们发现,大部分已知恒星都存在于双星甚至多星系统中。
双星对于天体物理尤其重要,因为两颗星的质量可从通过观测旋转轨道确定。
这样,很多独立星体的质量也可以推算出来。
在银河系中,双星的数量非常多,估计不少于单星。
研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。
双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力。
(2)它们共同绕它们连线上某点做圆周运动。
(3)它们的周期、角速度相同。
例题1:(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n 倍,DC运动的周期为()解:设m1的轨道半径为R1,m2的轨道半径为R2.由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同.由向心力公式可得:例题2:(2008•宁夏)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)解:设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为ω1,ω2.根据题意有ω1=ω2①r1+r2=r②根据万有引力定律和牛顿定律,有二、三星问题三星问题有两种情况:第一种情况三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R 的圆轨道上运行,周期相同;第二种情况三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星运行周期相同。
物理天体运动双星运动公式
物理天体运动双星运动公式
双星运动的公式可通过引力定律和牛顿第二定律推导而来。
假设双星的质量分别为m1和m2,距离为r,引力为F,速度为v,角速度为ω。
1. 引力定律:
根据牛顿引力定律,两个天体之间的引力与它们的质量和距离的平方成正比,即:
F =
G * (m1 * m2) / r^2
其中,G为万有引力常数。
2. 牛顿第二定律:
根据牛顿第二定律,物体的加速度与受力和质量的乘积成正比,即:
F = m * a
将上述两个公式结合起来,得到:
G * (m1 * m2) / r^2 = m * a
3. 圆周运动公式:
对于双星来说,它们之间的运动可以近似为圆周运动。
圆周运
动的速度和角速度之间的关系为:
v = r * ω
其中,v为线速度,r为半径。
综合上述三个公式,可以得到双星运动的公式:
G * (m1 * m2) / r^2 = m * (r * ω)^2
继续简化上式,可以得到双星质量和距离、速度之间的关系:G * (m1 + m2) / r = ω^2 * r
这是双星运动的公式,它通过质量、距离和速度之间的关系描述了双星的运动。
天体运动的双星和多星问题解析
天体运动的双星和多星问题解析作者:孙年坤来源:《理科考试研究·高中》2014年第06期一、双星问题两颗质量可以相比的恒星相互绕着旋转的现象,叫双星.双星问题是万有引力定律在天文学上的应用的一个重要内容.现就对于双星天体系统问题的解题方法做简要分析.(1)由于双星和该固定点O总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同.(2)由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等. (3)要明确双星中两颗子星匀速圆周运动的运动参量的关系,两子星绕着连线上的一点做圆周运动,所以它们的运动周期相等,角速度相等,所以线速度与两子星的轨道半径成正比. (4)要明确两子星圆周运动的动力学关系.设双星的两子星的质量分别为M1和M2,相距L;M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:GM1M2L2=M1v21r1=M1r1w21G=M1M2L2=M2v22r2=M2r2w22例1两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是().A.它们做圆周运动的角速度之比与其质量成反比.B.它们做圆周运动的线速度之比与其质量成反比.C.它们做圆周运动的半径与其质量成正比.D.它们做圆周运动的半径与其质量成反比.解析两子星绕连线上的某点做圆周运动的周期相等,角速度也相等.由v=rω得线速度与两子星圆周运动的半径成正比.因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,对M1有 GM1M2L2=M1v21r1=M1r1w21①对M2有 GM1M2L2=M2v22r2=M2r2w22②联立①②得M1r1w1=M2r2w2所以它们的轨道半径与它们的质量成反比.而线速度又与轨道半径成正比,所以线速度与它们的质量也成反比.正确答案选BD.例2用天文望远镜长期观测,人们在宇宙中发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质存在的形式和分布有了较深刻的认识,双星系统是由两个星体构成,其中每个星体的线度都小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理,现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动.(1)计算该双星系统的运动周期T计算.(2)若实验上观测到的运动周期为T观测,且T观测:T计算=1:N (N>1),为了解释T 观测与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质,作为一种简化模型,我们假定在这两个星体边线为直径的球体内均匀分布着暗物质,而不考虑其它暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质。
双星问题
m1m2 2 2 G 2 m1 ( ) r1 R T m1m2 2 2
G R
2
m2 (
T
) r2
m2 2 2 G 2 Байду номын сангаас( ) r1 R T m1 2 2 G 2 ( ) r2 R T
①
②
①+②得
m1
r1 O r2
m2
m1 m2 2 2 G ( ) (r1 r2 ) 2 R T r 1 + r2 = R
(2010· 重庆高考题) 2、月球与地球质量之比约为1:80,有研 究者认为月球和地球可视为一个由两质点构成 的双星系统,他们都围绕月球连线上某点O做 匀速圆周运动。据此观点,可知月球与地球绕 O点运动的线速度大小之比约为 A.1:6400 B.1:80 C. 80:1 D:6400:1
例2、两个星球组成双星,它们在相互之间的万有引力作用下, 绕连线上某点做周期相同的匀速圆周运动。现测得两星中心 距离为R,其运动周期为T,求两星的总质量。 解:设两星质量分别为m1和m2,都绕连线上O点作周期为T 的 圆周运动,星球1和星球2到O 的距离分别为r1和 r2 .
双星问题
“双星”是由两颗绕着共同的中心旋转的恒 星组成。对于其中一颗来说,另一颗就是其 “伴星”。
•双星运动的特点:
• 1.两颗恒星均围绕共同的旋转 中心(圆心)做匀速圆周运动。 • 2.两恒星之间万有引力分别提 供了两恒星的向心力,即两颗 恒星受到的向心力大小相等。 • 3.两颗恒星与旋转中心时刻三 点共线,即两颗恒星角速度相 同,周期相同。
•确定双星的旋转中心:
例1:已知两双星的质量m1、m2,他们之间的距离为L,
求各自圆周运动的半径?
(完整版)“双星”问题及天体的追及相遇问题
【答案】C
【解析】由开普勒第三定律得: ,设两卫星至少经过时间t距离最远,即B比A多转半圈, ,又 ,解得: ,故选项C正确。
点睛:本题主要考查了开普勒第三定律的直接应用,注意只有围绕同一个中心天体运动才可以使用开普勒第三定律。
【类题训练3】如图所示,A为太阳系中的天王星,它绕太阳O运行的轨道视为圆时,运动的轨道半径为R0,周期为T0,长期观测发现,天王星实际运动的轨道与圆轨道总有一些偏离,且每隔t0时间发生一次最大偏离,即轨道半径出现一次最大.根据万有引力定律,天文学家预言形成这种现象的原因可能是天王星外侧还存在着一颗未知的行星(假设其运动轨道与A在同一平面内,且与A的绕行方向相同),它对天王星的万有引力引起天王星轨道的偏离,由此可推测未知行星的运动轨道半径是( )
双星系统中两个星体做圆周运动的周期相同,即角速度相同,过程中,两者之间的引力充当向心力,故 ,又知道 ,解得 , ,A错误;两者的角速度相同,故有 ,即 ,B错误;A星受到的引力为 ,放在O点的星体对其的引力为 ,两者等效,则有 ,代入 可得 ,C正确;若在圆心处放一个质点,合力 ,D错误.
题型二 追及问题原理的理解
(4)巧妙求质量和: =m1ω2r1① =m2ω2r2② 由①+②得: =ω2L∴m1+m2=
4. 解答双星问题应注意“两等”“两不等”
(1)“两等”: ①它们的角速度相等。②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
“双星”问题及天体的追及相遇问题
1、 双星问题
高中物理天体运动多星问题
221 r221r2mm+Tp2GT22221221221L M L M LMM G w w ==--------- ..L L L =+21------- 由以上两式可得:L M M M L 2121+=,L M M M L 2122+= 又由12212214L T M L M M G p=.---------- 得:)(221M M G L L T +=【例题3】我们的银河系的恒星中大约四分之一是双星】我们的银河系的恒星中大约四分之一是双星..某双星由质量不等的星体S 1和S 2构成构成,,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动做匀速圆周运动..由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G 由此可求出S 2的质量为的质量为 (( D D )) A .212)(4GT r r r -2π B .2312π4GT r C .232π4GT r D . 2122π4GT r r 答案答案 :D 解析解析 : : : 双星的运动周期是一样的双星的运动周期是一样的,选S 1为研究对象,根据牛顿第二定律和万有引力定221121π4Tr m =r m Gm 2,则m 2=2122π4GT r r .故正确选项D 正确. 【例题4】如右图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速周运动,星球A 和B 两者中心之间距离为L 。
已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
⑴ 求两星球做圆周运动的周期。
求两星球做圆周运动的周期。
⑵ 在地月系统中,在地月系统中,若忽略其它星球的影响,若忽略其它星球的影响,若忽略其它星球的影响,可以将月球和地球看成可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行为的周期记为T 1。
但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设想把质量为m的物体,放到地球的中心,地球的质量为M,半径为R,则物体与地球间的万有引力是()
A. B.无穷大C.零D.无法确定
2、火星的质量和半径分别约为地球的 和 ,地球表面的重力加速度为g,则火星表面的重力加速度约为()
(A)0.2g(B)0.4g(C)2.5g(D)5g
A.卫星运动的速度为 B.卫星运动的周期为
C.卫星运动的加速度为 D.卫星的动能为
5.地球同步卫星质量为m,离地高度为h,若地球半径为R0,地球表面处重力加速度为g0,地球自转角速度为 ,则同步卫星所受的地球对它的万有引力的大小为 ( )
A.0 B. C.m D.以上结果都不正确
6.设同步卫星离地心的距离为r,运行速率为 1,加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为 2,地球的半径为R,则下列比值正确的是 ( )
A.运行速度大于7.9 km/s
B.离地面高度一定,相对地面静止
C.绕地球运行的角速度比月球绕地球运行的角速度大
D.向心加速度与静止在赤道上物体的向心加速度大小相等
A.m1︰m2做圆周运动的角速度之比3︰2
C.m1做圆周运动的半径为
D.m2做圆周运动的半径为
3.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球绕O点运动的线速度大小之比约为
3、假设火星和地球都是球体,火星的质量为M火和地球质量M地之比M火/M地=p,火星半径R火和地球半径R地之比R火/R地=q,那么火星表面重力加速度g火和地球表面重力加速度g地之比为()
A. B. C. D.pq
4、 在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R,地面上重加速度为g,则 ( )
A. B. C. D.
8.(09高考题)2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。下列判断正确的是( )
A.飞船变轨前后的机械能相等
B.飞船在圆轨道上时航天员出舱前后都处于失重状态
C.飞船在此圆轨道上运动的角度速度大于同步卫星运动的角速度
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
9.(08)据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77赤道上空的同步轨道。关于成功定点后的“天链一号01星”,下列说法正确的是( )
A 1∶6400
B 1∶80
C 80∶1
D 6400∶1
8.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的
A.轨道半径约为卡戎的 B.角速度大小约为卡戎的
C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍
11.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
天体运动中的双星问题
1.我们的银河系的恒星中大约四分之一是双星。某双星是由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。由此可求出S2的质量为
C. D.
2.经长期观测人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线速度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。现测得两颗星之间的距离为L,质量之比为m1︰m2=3︰2。则可知