平面简谐波的运动方程
简谐振动 平面简谐波
答:初相是指 t = 0 时刻的位相,
初始时刻选择不同,初相值就不同; 另外,单摆作简谐振动是角位移。
因此,把一个单摆位开一个小角度 0
自由摆动,此 0 并不是初位相。
单摆绕悬点转动的角速度等于 d
dt
而简谐振动的圆频率
g
l
,然后放开让其
可见,单摆绕悬点转动的角速度是不是简谐振动的圆频率。
4.3 简谐振动的能量
E=Ek
+Ep
=1k 2
A2
(4.15)
w wj E k= T 10 TE kdt= T 10 T 1 2m2 A 2s2 i(n t+)d t= 1 4 k2A
wj E p= T 10 T E pd t= T 10 T 1 2 kA 2c2 o (ts+)d t= 1 4 k2A
(1/2)kA2
kx0 =mg
化简上式得
d2x dt 2
+
k m+
I
x=0
R2
可知:物体做简谐振动.且振动圆频率为
w=
k
m+ I
R2
另解: 静平衡时 物体 ( x 处 )
滑轮
mgT2 =mdd2t2x
T 2T 1R=I
d2 x dt2
=
R
T1=kxo+x
联立以上各式可得
dd2t2x+mkR2R2+I x=0
w =
o
v0
=
m m+M
u0
X
>0
A=
mu0 k(m+
M)
,
j
0
=
3
2
,
x= m0u cowst(+3)
14-2平面简谐波的波动方程
u
振动曲线 图形
A O
波形曲线
t A O t 0 P
t0 P
T
v
v
u x
研究 某质点位移随时间 对象 变化规律
由振动曲线可知
某时刻,波线上各质点 位移随位置变化规律
由波形曲线可知 该时刻各质点位移 波长 , 振幅A 只有t=0时刻波形才能提供初相
物理 周期 T 振幅 A 初相 0 意义
14-2 平面简谐波的波动方程
一、波函数的建立
波函数(wave function): 描述波传播媒质中不同质点的 运动规律,又称波动表达式(或波动方程).
y f x, t
依据:各质点沿波传播方 向相位依次落后. 平面波在传播过程中,波 线上的各质点都作同频率 同振幅的简谐运动—叫做 平面简谐行波(traveling wave). 波面为平面 传播中的波(相对于“驻波”而言)
x y A cos t u
(1)
P为任意点,波动表达式为
u O P( x )
x
方法2 波线上沿传播方向每走一个,相位落后2
P点相位比O落后
y P A cos(t
即
x
2π
x
y A cos(t
2π
P在 t=0 时刻过平衡位置向负向运动 ——波向左移
y(m)
0.2 O 1
t=0 P
2
yP(m) x(m)
0.2 O 0.1 0.2
t (s)
3 yO 0.2 cos(10πt π) 2 x 3 波向-x方向传播 y 0.2 cos[10 π(t ) π] 10 2 π π b) 以 P 为参考点 P yP 0 2cos( 10π t ) 2 2 波向-x方向传播 x 1 π 0 2 cos[10 π(t x ) π ] y 0 2 cos[10 π(t ) ] 10 2 10 2
平面简谐波 波动方程
式中x以m计。
§5-3 波的能量
能流
弹性波传播到介质中的某处,该处将具有动能和势 能。在波的传播过程中,能量从波源向外传播。
1. 波的能量
考虑棒中的体积V,其质量为m(m=V )。 当波动传播到该体积元时,将具有动能 Wk和弹性势 能Wp。
x 平面简谐波 y ( x, t ) A cos t u
在t1和t1+Δt时刻,对应的位移用x(1) 和x(2)表示,则
y(t1 )
x(1) A cos t1 0 u
x( 2) A cos t1 t 0 u
y(t1 t )
u
S
平均能流密度或波的强度 通过与波传播方向垂直的 单位面积的平均能流,用I 来表示,即
1 平均能流: P w Su uSA2 2 2
2 2 2
u
I wu u A 2 z A 2
2
波的强度
其中介质的特性阻抗 z u 。 I 的单位:瓦特/米2 (W.m-2) 平面余弦行波振幅不变的意义:
加速度
y x 2 A cos t 0 , 2 t u
2
任何物理量y ,若它与时间、坐标间的关系满足上 式,则这一物理量就按波的形式传播。
波动方程的推导
例题 频率为=12.5kHz的平面余弦纵波沿细长的金属棒传播, 棒的杨氏模量为 Y =1.91011N/m2,棒的密度 =7.6103kg/m3。 如以棒上某点取为坐标原点,已知原点处质点振动的振幅为A =0.1mm,试求:(1)原点处质点的振动表式,(2)波动表式,(3) 离原点 10cm 处质点的振动表式, (4) 离原点 20cm 和 30cm 两点 处质点振动的相位差,(5)在原点振动0.0021s时的波形。
平面简谐波的运动方程
(310-2 ) cos(4πt - x )
5
u
8m 5m 9m
C
B oA
Dx
20
5-2 平面简谐波的波函数
(2) 以 B 为坐标原点,写出波动方程
yA y(5,t ) (310-2 ) cos(4 π t )
t0 x0
y 0, v y 0 - π
t
2
y cos[2π( t - x ) - π ] (m) 2.0 2.0 2
cos(t - x - )
2
O
y
A
18
5-2 平面简谐波的波函数
例2 一平面简谐波以速度u 20 m s-1
沿直线传播,波线上点 A 的简谐运动方 程
yA 310-2 cos(4 π t); ( y, t单位分别为m,s).
5
yC
y(-13,t )
(310-2 ) cos[4 π t
13 π] 5
yD
y(9,t )
( 3 10-2
)cos[4 π t
-
9 5
π]
u
yA (310 -2 )co1s(04mπ t )
8m 5m 9m
C
B oA
Dx
22
5-2 平面简谐波的波函数
(3) 写出传播方向上点C、D的运动方程
5-2 平面简谐波的波函数
5.2.1 平面简谐波的运动方程--波函数 一、波长 波的周期和频率 波速
1 波长
波传播方向上相邻两振动状态完全相同
的质点间的距离(一完整波的长度).
Ay
u
O
x
-A
平面简谐波波函数
波动学基础
第2讲 平面简谐波波函数
平面简谐波波函数
平面简谐波波函数
在均匀的、无吸收的介质中, 波源作简谐运动而形成 平面简谐波.
如何描述一维平面简谐波即建立波动表达式?其所表 示的物理意义是什么?
平面简谐波波函数
(一)波函数的建立 y = y(x,t )
任选参考点 O 为 x 轴的坐标原点, O 点处 质点的简谐运动方程 为
y
∆x
O x1
x2 x
y
=
A cos ω⎜⎛ t1 ⎝
−
x u
⎞ ⎟ ⎠
相位差为
∆ϕ
= ϕ1
−ϕ2
=
2π⎜⎛ t ⎝T
−
x1 λ
⎞ ⎟
−
2π⎜⎛
t
⎠ ⎝T
−
x2 λ
⎞ ⎟ ⎠
=
2π
x2
− λ
x1
波程差 ∆x = x2 − x1 相位差和波程差的关系: ∆ϕ = 2π ∆x
λ
平面简谐波波函数
(3)当 t , x 都变时, y = y(x, t), 表示所有质元在任意时刻 的位移情况.
解: 由图得
A = 2.5cm = 0.025m,λ = 40m,
T = 4s,ω = 2π = π s−1,u = λ = 10m ⋅s−1
y (cm )
T2
Tuv
20
5
x(m )
OP
波动表达式为
y
=
A
cos
⎡ ⎢ω ⎣
⎜⎛ t ⎝
−
x u
⎞ ⎟ ⎠
+
⎤ ϕ⎥
⎦
代入 t = 0, x = 0 , y = 0 ⇒ cosϕ = 0
平面简谐波的波动方程
y
u
t 时刻
tt时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
xu t (行波)
例1 已知波动方程如下,求波长、周期和波速.
y ( 5 c) c m π [ o 2 (s - .) 1 t5 ( 0 .0 0 c- 1 s ) m 1 x ].
t
u
a 2 t2 y 2 A co (t su x )[ ]
严格区分两种速度(波速和振动速度)
波速(相速)
u
T
v y A si (n t x [ ) ]
t
u
二 波动方程的物理意义
y A co ( t x ) s ] [A c2 o π ( t s x ) [ ]
y co ( t x s ) u [ ] c2 o ( t s T x ) [] m
u2
222
2)求t1 .0 s波形图.
y 1 .0 co 2π (st[x)π ] m 2 .02 .0 2
t 1 .0 s
波形方程
y1.0coπsπ (x) m 2
1.0siπ nx)( m
波形图为 y / m
pO
2π
x
p 2 π x 2 π T x u u x ypA co ts (p)
点 P 振动方程
ypAcos(tu x)
如果原点的 初相位不为零
y A
u
x0,0 O A
x
点 O 振动方程 y O A co t s)(
波 yAco(st [x)]u沿x轴正向
动 方
yAco(st [u x)]u沿 x轴负向
u
T
16-2平面简谐波 波动方程
2π x1 即 y = Acosω t λ 上式代表x1 处质点在其平衡位置附近以角频率ω 上式代表 作简谐运动。 作简谐运动。 y
A
O
t
t 一定。令t=t1,则质点位移y 仅是 的函数。 一定。 仅是x 的函数。
平面简谐波的波动表式
2π x 即 y = Acosω t1 λ
y /cm
0.5 0.4 0.2 0 0.2 0.4 0.5
M1
M2
a
10 20
b
30 40 50 60 70
x /cm
t=0
波动方程的推导
y /cm
由波形曲线图可看出: 解 由波形曲线图可看出: 0.5 0.4 (1) A=0.5cm; (2) λ=40cm; (3)由波速公式计算出 (3)由波速公式计算出
3 3
波动方程的推导
可见此点的振动相位比原点落后, 可见此点的振动相位比原点落后,相位差为 π 2,或 落后 T 4,即2×10-5s。 。 (4)该两点间的距离 (4)该两点间的距离 x = 10 cm = 0.10 m = λ 4 ,相应 的相位差为
25 × 103π t π m y = 0.1 × 10 cos 2
解
棒中的波速
u=
Y
1.9 × 1011 N m 2 = = 5.0 × 103 m/s 3 3 ρ 7.6 × 10 kg m
u 5.0 × 103 m s 1 波长 λ = = = 0.40 m 3 1 v 12.5 × 10 s
波动方程的推导
周期 T = 1 v = 8 × 10 s (1)原点处质点的振动表式 (1)原点处质点的振动表式 y0=Acosω t=0.1×10-3cos(2π×12.5×103t)m =0.1×10-3cos25×103πt m (2)波动表式
7-2平面简谐波的波动方程
时间推 点O 的振动状态
迟方法 yO A cost
t-x/u时刻点O 的运动状态
t x
点P
u
t 时刻点 P 的运动状态
点P 振动方程
yP
A cos (t
x) u
➢ 波动方程
A y u
y Acos (t x)
u
相位落后法
Ox
P
*
x 点 O 振动方程
设x 0 , 0 0
A
yo A cost
各质点都作简谐运动时,在介质中所形成的波.
➢ 平面简谐波:波面为平面的简谐波. 其特点
是在均匀的、无吸收的介质中各质点振幅相同
任何复杂的波都可以看成若干个简谐波叠加而成。
波动方程的推导
设有一以速度u 沿 x 轴正向传播的平面 简谐波 . 令原点O 的初相为零,其振
动方程
设x 0, 0 0
yO Acost
12
1 2
2π
x2 x1
2π
x21
波程差 x21 x2 x1
波程差与位相差
2π x
3 若 x, t 均变化,波动方程表示波形沿传播
方向的运动情况.
yu
t 时刻 t t 时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
x ut (行波)
例1 已知波动方程如下,求波长、周期和波速.
点 P 比点 O 落后的相位
p
O
2π x
p
2π
x
2π x Tu
x u
yp Acos(t p )
点 P 振动方程
yp
A cos (t
x) u
大学物理第十六章机械波第二节平面简谐波 波动方程
0.4
0.5
t=3T/4
波动方程的推导
(5)质点的最大速率
vm
A
A 2
T
0.5 102
2 m/s
1 30
0.94 m/s
(6)a、b两点相隔半个波长,b点处质点比a点处质点
的相位落后 。
(7)3T/4时的波形如下图中实线所示,波峰M1和M2已
分别右移3 4而到达
高等教育大学教学课件 大学物理
§16-2 平面简谐波 波动方程
平面简谐波传播时,介质中各质点都作同一频 率的简谐波动,在任一时刻,各点的振动相位一般 不同,它们的位移也不相同。据波阵面的定义可知, 任一时刻在同一波阵面上的各点有相同的相位,它 们离开各自的平衡位置有相同的位移。
波动方程:描述介质中各质点的位移随时间的变 化关系。
y /cm
M 1 和'
M 2处' 。
0.5 M1
M1' M2
M2'
0.4
0.2
a
0
b
0.2 10 20 30 40 50 60 70 x /cm
0.4
0.5
t=3T/4
谢谢欣赏!
Hale Waihona Puke A cos2
t
x
0
y(x,t) Acos( t k x 0) 其中 k 2
平面简谐波的波动表式
波动表式的意义:
x 一定。令x=x1,则质点位移y 仅是时间t 的函数。
即
y
A c os
t
2
x1
0
平面简谐波
解 根据题意设波源的振动方程为
y
0.01cos
200
t
x 400
0
vy00
0 0
即0.021csoins00
0 0
0
2
故
y
0.01cos
200
t
x 400
2
(1)B 和A 两点之间的振动相位差为
200
t
2 400
2
200
t
1 400
2
2
(2)以B 为坐标原点时有
t x
T
(t, x) (t t, x x)
x ut
讨论:如图简谐 波以余弦函数表示,
求 O、a、b、c 各点
振动初相位.
(π ~ π )
t =0 A y
Oa
A
A
O
y o π
O
A
O
y
a
π 2
O A
u
b c
A
y
y
t=T/4
x
b 0
c
π 2
讨论
1.同一波线上两个不同点的振动相位差
x 2 x
程、2)波函数。
2 y(102 m)
22
o
2
yo
t(s)
2 102 cos(2π t )m
4
A
oA2 y
π
3
t 0,x 0 y A 2 v 0
波函数
y 2 102 cos[2π( t x ) π ]m 44 3
x 0.5m 处质点的振动方程
y 1.0cos(π t π)m
y
y/m
3
1.0
3*
2
4
7.2平面简谐波表达式
7.2 平面简谐波表达式
解:
(1) 设原点处质元的振动方程为
y = A cos(ωt + ϕ 0 )
t = 0 时, o点处质元的位移 y = 0
所以
0 = A cos ϕ 0
ϕ0 = ±
由图可知
π
2
u t = 0时, = u 0 = −ωA sin ϕ 0 < 0
7.2 平面简谐波表达式
则 sin ϕ 0 > 0 ,应取 ϕ 0 = 2 应取 (2) 根据两质点间相位差与波程差的关系即
0
1.0
3 *
总结: 总结: 求解波动方程方法
1、求出坐标原点O振动方程 、求出坐标原点 振动方程
yO = A cos(ωt + ϕ )
2、得出波动方程 、 x y = Acos[ (t m ) + ϕ] ω v 3、波动方程其它形式 、
t x y = Acos[2π ( m ) + ϕ0 ] T λ
7.2 平面简谐波表达式
轴正方向传播, 例2 一平面简谐波沿Ox 轴正方向传播 已知振幅 A = 1.0 m , T = 2 .0 s , λ = 2.0 m .在 在 t = 0 时坐标原点处的质点在平衡位置沿 Oy 轴正向运动 求: 轴正向运动.求 (1) 波动方程; 波动方程; (2) t = 1 . 0 s 时的波形图; 时的波形图; (3) x = 0 .5 m处质点的振动规律并作图 处质点的振动规律并作图.
= A cos[ωt m
2πx
λ
+ ϕ]
7.2 平面简谐波表达式
注意
(1)关系式中的 x 是代数量 有 关系式中的 是代数量,有 正负之分 (2)这种形式的波动方程 (2)这种形式的波动方程,波源一 这种形式的波动方程,波源一 定在坐标原点
平面简谐波的波函数
x t u 若点P的振动落后于点O,则波动方程为 y yo t t
y yo t t
2.已知任意一点Q的振动方程,求解波动方程 方法一 利用点Q的振动方程和距点O的距离求解O 点振动方程后,利用1中的方法求波动方程。 方法二 考察点P的振动相对于Q点是超前还是落后 的,直接利用 y yo t t 来求波动方程。
5
物理学
第五版
10-2 平面简谐波的波函数
二
波函数的物理含义
2π
2πx y A cos t
1 x一定, t 变化 令
x
y
则 y A cost
O
t
表示 x点处质点的振动方程( y — t 的关系)
y ( x, t ) y ( x, t T ) (波具有时间的周期性)
第十章 波动
6
物理学
第五版
10-2 平面简谐波的波函数
2πx 2 t 一定 x 变化 y A cos t 令 t C(定值) 2πx 则 y A cos 该方程表示 t 时刻波传播方向上各质点 的位移, 即 t 时刻的波形(y — x的关系)
波在某点的相位反映该点媒质的“运动状态”。
所以简谐波的传播也是媒质振动相位的传播。
设 t 时刻 x 处的相位经 dt 传到(x +dx)处,
x x d x 则应有 (t ) ( t d t) u u
dx —— 相速度(相速) u 于是得到 dt 即简谐波的波速就是相速。
第十章 波动
t x x0 u
11
物理学
第五版
大学物理 平面简谐波的波函数
17
3)写出传播方向上点C、点D 的简谐运动方程
u
C
8m
y A 310 cos( 4 π t )m 10m 5m 9m
B
2
oA
D
x
AC
点 C 的相位比点 A 超前
cos( 4 π t 2 π )m 13 2 3 10 cos( 4 π t π)m 5 点 D 的相位落后于点 A AD 2 y D 3 10 cos( 4 π t 2 π )m 9 2 3 10 cos( 4 π t π)m 5
4
波动方程的其它形式
t x y ( x,t ) A cos[ 2 π( ) ] T λ y( x, t ) A cos(t kx )
质点的振动速度,加速度 角波数 k 2 π
(wave number)
y x v A sin[ (t ) ] t u
分析:
2 3 ( D) 2
( B)
,
由波形图可判定O点在该时刻的振动方向竖直向 上(如图示)
A x
3 由旋转矢量图可知此时的相位为 2
23
3.在下面几种说法中,正确的说法是: (C)
(A)波源不动时,波源的振动周期与波动的周期在数 值上是不同的。 (B)在波传播方向上的任一质点振动位相总是比波源 的位相超前。 (C)在波传播方向上的任一质点振动位相总是比波源 的位相滞后。 (D) 波源的振动速度与波速相同。
在t=1/v时刻:
1 v | x x2 2A sin 2 (1 ) 2A 4
即速度比为-1。
3 v | x x1 2A sin 2 (1 ) 2A 4
平面简谐波
dx
dt k
2 / T 2 / T
p
• 波传播过程中,波的等相位面是以速率
p / T 沿波传播方向推进的。
• 对于平面简谐波,波相速等于波速。
三、平面简谐波的波动方程
以最简形式的正向波为例,波函数为:
y( x, t) Acos( t-kx) Acos[(t x )]
u
2 y x 2
y( x, t) Acos( t kx)
(2) 给定 t = t0 时
y( x, t0 ) Acos( t0-kx)
——表示 t0 时刻的波形
y
u
y1
o
x1
t0时刻的波形曲线
x
二、平面简谐波的物理意义
y( x, t) Acos( t kx)
(3) 在 x 与 t 都变化时
y(x x, t t) Acos[(t t k(x x)]
1 u2
2 y t 2
(对正、负向波均成立)
三、平面简谐波的波动方程
一般平面波均可表示为平面简谐波的线性叠加。
y C1 y1 C2 y2
2y 1 2y x2 u2 t 2
平面波方程
意
对坐标x和时间t 的关系满足平面波方程的任 何物理量,必以平面波的形式沿x轴传播,
义 且传播速度为u.
三、平面简谐波的波动方程
u P
x
随堂练习
3、简谐波沿x轴正向传播,频率为=0.5Hz, 波速为u=18ms-1, t=0.5s时刻的波形如图,求 波函数。
y 0.1
x 0.05
y(x,t) Acos(t kx 0)
欢迎网上答疑
(1) 若某物理量(设为 )在三维空间中以平面波形式
平面简谐波的波动方程三种形式
一、平面简谐波的概念平面简谐波是一种特殊的波动现象,它具有特定的波动方程和波动特性。
简谐波的振幅随时间以正弦或余弦函数变化,具有周期性和频率性,是物理学中常见的一种波动形式。
二、平面简谐波的波动方程1. 时间域的波动方程在时间域内,平面简谐波的波动方程可以表示为:\[y(x,t) = A\sin(kx - \omega t + \phi)\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。
2. 空间域的波动方程在空间域内,平面简谐波的波动方程可以表示为:\[y(x,t) = A\sin(kx - \omega t + \phi)\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。
3. 复数形式的波动方程在复数形式下,平面简谐波的波动方程可以表示为:\[y(x,t) = A\cos(kx - \omega t + \phi) = \Re(Ae^{i(kx - \omega t + \phi)})\]其中,y表示波动的位移,A表示振幅,k表示波数,ω表示角频率,φ表示初相位。
三、不同形式的波动方程之间的关系1. 时间域的波动方程和空间域的波动方程时间域的波动方程和空间域的波动方程在形式上是相似的,都可以表示为简谐波的位移随时间和空间的变化而发生正弦或余弦函数的周期性振荡。
它们之间通过变量的不同而具有不同的物理意义,但是描述的是同一种波动现象。
2. 复数形式的波动方程和实数形式的波动方程在复数形式下,简谐波的波动方程可以更加简洁地描述,通过复数的指数函数形式可以很方便地进行波动的运算和分析。
复数形式的波动方程和实数形式的波动方程是等价的,可以相互转化,但在不同的数学和物理背景下有着不同的应用优势。
四、平面简谐波的应用领域平面简谐波作为一种特殊的波动形式,广泛应用于物理学、工程学、生物学等领域。
它在声学、光学、电磁学、机械振动、信号传输等方面有着重要的应用价值,可以用来描述和分析各种复杂的波动现象。
7-2平面谐波的表达式
y
A 0
己计算出 0 2
t0
3 p 2 2
简谐波波动方程:
u
x
P
x y A cos[ ( t ) ] u 2
例3 一平面简谐波沿 Ox 轴正方向传播, 已知振幅 A 1.0m , T 2.0s, 2.0m. 在 t 0 时坐标原点处的质点在平衡位置沿 Oy 轴正向 (1)波动方程;(2) t 1.0s波形图; 运动. 求:
把题中波动方程改写成
2.5 0.01 y 5 cos 2 π [ t x] 比较得 2 2 2 2 T 0.8 s 200 cm v 250 cm s 1 0.01 2.5 T
振动在弹性媒质中传播时,两质点之间的相位差 和波程差的关系
u
0 x x1 2 y1 A cos ( t ) y2 A cos ( t ) n n u u x1 x 2 2 2 1 ( x1 x 2 ) 真空或空气 u 0
2 1
相位差
0
x1
x2
2
n
( x1 x2 )
2
0
n( x1 x2 )
波程差
任一介质
二、平面简谐波波动方程的物理意义 1)当 x 为某一定 值(x =x0) 时 x0 y( x0 , t ) y( t ) A cos[ ( t ) 0 ] u 即x=5m 处质点的振动方程
y/m
3 *
4 2 * * 1.0 O O 2 2.0 * t / s * 1 -1.0*1 x 0.5 m 处质点的振动曲线
例4 一平面简谐波以速度 u 20m s -1 沿 直线传播,波线上点 A 的简谐运动方 程 y A 3102 cos( 4 π t ) ; ( y, t 单位分别为m,s). 求:(1)以 A 为坐标原点,写出波动方程; (2)以 B 为坐标原点,写出波动方程; (3)求传播方向上点C、D 的简谐运动方程; (4)分别求出 BC ,CD 两点间的相位差.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。