平面简谐波的运动方程
合集下载
简谐振动 平面简谐波

答:初相是指 t = 0 时刻的位相,
初始时刻选择不同,初相值就不同; 另外,单摆作简谐振动是角位移。
因此,把一个单摆位开一个小角度 0
自由摆动,此 0 并不是初位相。
单摆绕悬点转动的角速度等于 d
dt
而简谐振动的圆频率
g
l
,然后放开让其
可见,单摆绕悬点转动的角速度是不是简谐振动的圆频率。
4.3 简谐振动的能量
E=Ek
+Ep
=1k 2
A2
(4.15)
w wj E k= T 10 TE kdt= T 10 T 1 2m2 A 2s2 i(n t+)d t= 1 4 k2A
wj E p= T 10 T E pd t= T 10 T 1 2 kA 2c2 o (ts+)d t= 1 4 k2A
(1/2)kA2
kx0 =mg
化简上式得
d2x dt 2
+
k m+
I
x=0
R2
可知:物体做简谐振动.且振动圆频率为
w=
k
m+ I
R2
另解: 静平衡时 物体 ( x 处 )
滑轮
mgT2 =mdd2t2x
T 2T 1R=I
d2 x dt2
=
R
T1=kxo+x
联立以上各式可得
dd2t2x+mkR2R2+I x=0
w =
o
v0
=
m m+M
u0
X
>0
A=
mu0 k(m+
M)
,
j
0
=
3
2
,
x= m0u cowst(+3)
14-2平面简谐波的波动方程

u
振动曲线 图形
A O
波形曲线
t A O t 0 P
t0 P
T
v
v
u x
研究 某质点位移随时间 对象 变化规律
由振动曲线可知
某时刻,波线上各质点 位移随位置变化规律
由波形曲线可知 该时刻各质点位移 波长 , 振幅A 只有t=0时刻波形才能提供初相
物理 周期 T 振幅 A 初相 0 意义
14-2 平面简谐波的波动方程
一、波函数的建立
波函数(wave function): 描述波传播媒质中不同质点的 运动规律,又称波动表达式(或波动方程).
y f x, t
依据:各质点沿波传播方 向相位依次落后. 平面波在传播过程中,波 线上的各质点都作同频率 同振幅的简谐运动—叫做 平面简谐行波(traveling wave). 波面为平面 传播中的波(相对于“驻波”而言)
x y A cos t u
(1)
P为任意点,波动表达式为
u O P( x )
x
方法2 波线上沿传播方向每走一个,相位落后2
P点相位比O落后
y P A cos(t
即
x
2π
x
y A cos(t
2π
P在 t=0 时刻过平衡位置向负向运动 ——波向左移
y(m)
0.2 O 1
t=0 P
2
yP(m) x(m)
0.2 O 0.1 0.2
t (s)
3 yO 0.2 cos(10πt π) 2 x 3 波向-x方向传播 y 0.2 cos[10 π(t ) π] 10 2 π π b) 以 P 为参考点 P yP 0 2cos( 10π t ) 2 2 波向-x方向传播 x 1 π 0 2 cos[10 π(t x ) π ] y 0 2 cos[10 π(t ) ] 10 2 10 2
平面简谐波 波动方程

3
式中x以m计。
§5-3 波的能量
能流
弹性波传播到介质中的某处,该处将具有动能和势 能。在波的传播过程中,能量从波源向外传播。
1. 波的能量
考虑棒中的体积V,其质量为m(m=V )。 当波动传播到该体积元时,将具有动能 Wk和弹性势 能Wp。
x 平面简谐波 y ( x, t ) A cos t u
在t1和t1+Δt时刻,对应的位移用x(1) 和x(2)表示,则
y(t1 )
x(1) A cos t1 0 u
x( 2) A cos t1 t 0 u
y(t1 t )
u
S
平均能流密度或波的强度 通过与波传播方向垂直的 单位面积的平均能流,用I 来表示,即
1 平均能流: P w Su uSA2 2 2
2 2 2
u
I wu u A 2 z A 2
2
波的强度
其中介质的特性阻抗 z u 。 I 的单位:瓦特/米2 (W.m-2) 平面余弦行波振幅不变的意义:
加速度
y x 2 A cos t 0 , 2 t u
2
任何物理量y ,若它与时间、坐标间的关系满足上 式,则这一物理量就按波的形式传播。
波动方程的推导
例题 频率为=12.5kHz的平面余弦纵波沿细长的金属棒传播, 棒的杨氏模量为 Y =1.91011N/m2,棒的密度 =7.6103kg/m3。 如以棒上某点取为坐标原点,已知原点处质点振动的振幅为A =0.1mm,试求:(1)原点处质点的振动表式,(2)波动表式,(3) 离原点 10cm 处质点的振动表式, (4) 离原点 20cm 和 30cm 两点 处质点振动的相位差,(5)在原点振动0.0021s时的波形。
式中x以m计。
§5-3 波的能量
能流
弹性波传播到介质中的某处,该处将具有动能和势 能。在波的传播过程中,能量从波源向外传播。
1. 波的能量
考虑棒中的体积V,其质量为m(m=V )。 当波动传播到该体积元时,将具有动能 Wk和弹性势 能Wp。
x 平面简谐波 y ( x, t ) A cos t u
在t1和t1+Δt时刻,对应的位移用x(1) 和x(2)表示,则
y(t1 )
x(1) A cos t1 0 u
x( 2) A cos t1 t 0 u
y(t1 t )
u
S
平均能流密度或波的强度 通过与波传播方向垂直的 单位面积的平均能流,用I 来表示,即
1 平均能流: P w Su uSA2 2 2
2 2 2
u
I wu u A 2 z A 2
2
波的强度
其中介质的特性阻抗 z u 。 I 的单位:瓦特/米2 (W.m-2) 平面余弦行波振幅不变的意义:
加速度
y x 2 A cos t 0 , 2 t u
2
任何物理量y ,若它与时间、坐标间的关系满足上 式,则这一物理量就按波的形式传播。
波动方程的推导
例题 频率为=12.5kHz的平面余弦纵波沿细长的金属棒传播, 棒的杨氏模量为 Y =1.91011N/m2,棒的密度 =7.6103kg/m3。 如以棒上某点取为坐标原点,已知原点处质点振动的振幅为A =0.1mm,试求:(1)原点处质点的振动表式,(2)波动表式,(3) 离原点 10cm 处质点的振动表式, (4) 离原点 20cm 和 30cm 两点 处质点振动的相位差,(5)在原点振动0.0021s时的波形。
平面简谐波的运动方程

y( x,t ) 310-2 cos(4 π t - kx) k 2 5
(310-2 ) cos(4πt - x )
5
u
8m 5m 9m
C
B oA
Dx
20
5-2 平面简谐波的波函数
(2) 以 B 为坐标原点,写出波动方程
yA y(5,t ) (310-2 ) cos(4 π t )
t0 x0
y 0, v y 0 - π
t
2
y cos[2π( t - x ) - π ] (m) 2.0 2.0 2
cos(t - x - )
2
O
y
A
18
5-2 平面简谐波的波函数
例2 一平面简谐波以速度u 20 m s-1
沿直线传播,波线上点 A 的简谐运动方 程
yA 310-2 cos(4 π t); ( y, t单位分别为m,s).
5
yC
y(-13,t )
(310-2 ) cos[4 π t
13 π] 5
yD
y(9,t )
( 3 10-2
)cos[4 π t
-
9 5
π]
u
yA (310 -2 )co1s(04mπ t )
8m 5m 9m
C
B oA
Dx
22
5-2 平面简谐波的波函数
(3) 写出传播方向上点C、D的运动方程
5-2 平面简谐波的波函数
5.2.1 平面简谐波的运动方程--波函数 一、波长 波的周期和频率 波速
1 波长
波传播方向上相邻两振动状态完全相同
的质点间的距离(一完整波的长度).
Ay
u
O
x
-A
(310-2 ) cos(4πt - x )
5
u
8m 5m 9m
C
B oA
Dx
20
5-2 平面简谐波的波函数
(2) 以 B 为坐标原点,写出波动方程
yA y(5,t ) (310-2 ) cos(4 π t )
t0 x0
y 0, v y 0 - π
t
2
y cos[2π( t - x ) - π ] (m) 2.0 2.0 2
cos(t - x - )
2
O
y
A
18
5-2 平面简谐波的波函数
例2 一平面简谐波以速度u 20 m s-1
沿直线传播,波线上点 A 的简谐运动方 程
yA 310-2 cos(4 π t); ( y, t单位分别为m,s).
5
yC
y(-13,t )
(310-2 ) cos[4 π t
13 π] 5
yD
y(9,t )
( 3 10-2
)cos[4 π t
-
9 5
π]
u
yA (310 -2 )co1s(04mπ t )
8m 5m 9m
C
B oA
Dx
22
5-2 平面简谐波的波函数
(3) 写出传播方向上点C、D的运动方程
5-2 平面简谐波的波函数
5.2.1 平面简谐波的运动方程--波函数 一、波长 波的周期和频率 波速
1 波长
波传播方向上相邻两振动状态完全相同
的质点间的距离(一完整波的长度).
Ay
u
O
x
-A
平面简谐波波函数

大学物理
波动学基础
第2讲 平面简谐波波函数
平面简谐波波函数
平面简谐波波函数
在均匀的、无吸收的介质中, 波源作简谐运动而形成 平面简谐波.
如何描述一维平面简谐波即建立波动表达式?其所表 示的物理意义是什么?
平面简谐波波函数
(一)波函数的建立 y = y(x,t )
任选参考点 O 为 x 轴的坐标原点, O 点处 质点的简谐运动方程 为
y
∆x
O x1
x2 x
y
=
A cos ω⎜⎛ t1 ⎝
−
x u
⎞ ⎟ ⎠
相位差为
∆ϕ
= ϕ1
−ϕ2
=
2π⎜⎛ t ⎝T
−
x1 λ
⎞ ⎟
−
2π⎜⎛
t
⎠ ⎝T
−
x2 λ
⎞ ⎟ ⎠
=
2π
x2
− λ
x1
波程差 ∆x = x2 − x1 相位差和波程差的关系: ∆ϕ = 2π ∆x
λ
平面简谐波波函数
(3)当 t , x 都变时, y = y(x, t), 表示所有质元在任意时刻 的位移情况.
解: 由图得
A = 2.5cm = 0.025m,λ = 40m,
T = 4s,ω = 2π = π s−1,u = λ = 10m ⋅s−1
y (cm )
T2
Tuv
20
5
x(m )
OP
波动表达式为
y
=
A
cos
⎡ ⎢ω ⎣
⎜⎛ t ⎝
−
x u
⎞ ⎟ ⎠
+
⎤ ϕ⎥
⎦
代入 t = 0, x = 0 , y = 0 ⇒ cosϕ = 0
波动学基础
第2讲 平面简谐波波函数
平面简谐波波函数
平面简谐波波函数
在均匀的、无吸收的介质中, 波源作简谐运动而形成 平面简谐波.
如何描述一维平面简谐波即建立波动表达式?其所表 示的物理意义是什么?
平面简谐波波函数
(一)波函数的建立 y = y(x,t )
任选参考点 O 为 x 轴的坐标原点, O 点处 质点的简谐运动方程 为
y
∆x
O x1
x2 x
y
=
A cos ω⎜⎛ t1 ⎝
−
x u
⎞ ⎟ ⎠
相位差为
∆ϕ
= ϕ1
−ϕ2
=
2π⎜⎛ t ⎝T
−
x1 λ
⎞ ⎟
−
2π⎜⎛
t
⎠ ⎝T
−
x2 λ
⎞ ⎟ ⎠
=
2π
x2
− λ
x1
波程差 ∆x = x2 − x1 相位差和波程差的关系: ∆ϕ = 2π ∆x
λ
平面简谐波波函数
(3)当 t , x 都变时, y = y(x, t), 表示所有质元在任意时刻 的位移情况.
解: 由图得
A = 2.5cm = 0.025m,λ = 40m,
T = 4s,ω = 2π = π s−1,u = λ = 10m ⋅s−1
y (cm )
T2
Tuv
20
5
x(m )
OP
波动表达式为
y
=
A
cos
⎡ ⎢ω ⎣
⎜⎛ t ⎝
−
x u
⎞ ⎟ ⎠
+
⎤ ϕ⎥
⎦
代入 t = 0, x = 0 , y = 0 ⇒ cosϕ = 0
平面简谐波的波动方程

方向的运动情况.
y
u
t 时刻
tt时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
xu t (行波)
例1 已知波动方程如下,求波长、周期和波速.
y ( 5 c) c m π [ o 2 (s - .) 1 t5 ( 0 .0 0 c- 1 s ) m 1 x ].
t
u
a 2 t2 y 2 A co (t su x )[ ]
严格区分两种速度(波速和振动速度)
波速(相速)
u
T
v y A si (n t x [ ) ]
t
u
二 波动方程的物理意义
y A co ( t x ) s ] [A c2 o π ( t s x ) [ ]
y co ( t x s ) u [ ] c2 o ( t s T x ) [] m
u2
222
2)求t1 .0 s波形图.
y 1 .0 co 2π (st[x)π ] m 2 .02 .0 2
t 1 .0 s
波形方程
y1.0coπsπ (x) m 2
1.0siπ nx)( m
波形图为 y / m
pO
2π
x
p 2 π x 2 π T x u u x ypA co ts (p)
点 P 振动方程
ypAcos(tu x)
如果原点的 初相位不为零
y A
u
x0,0 O A
x
点 O 振动方程 y O A co t s)(
波 yAco(st [x)]u沿x轴正向
动 方
yAco(st [u x)]u沿 x轴负向
u
T
y
u
t 时刻
tt时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
xu t (行波)
例1 已知波动方程如下,求波长、周期和波速.
y ( 5 c) c m π [ o 2 (s - .) 1 t5 ( 0 .0 0 c- 1 s ) m 1 x ].
t
u
a 2 t2 y 2 A co (t su x )[ ]
严格区分两种速度(波速和振动速度)
波速(相速)
u
T
v y A si (n t x [ ) ]
t
u
二 波动方程的物理意义
y A co ( t x ) s ] [A c2 o π ( t s x ) [ ]
y co ( t x s ) u [ ] c2 o ( t s T x ) [] m
u2
222
2)求t1 .0 s波形图.
y 1 .0 co 2π (st[x)π ] m 2 .02 .0 2
t 1 .0 s
波形方程
y1.0coπsπ (x) m 2
1.0siπ nx)( m
波形图为 y / m
pO
2π
x
p 2 π x 2 π T x u u x ypA co ts (p)
点 P 振动方程
ypAcos(tu x)
如果原点的 初相位不为零
y A
u
x0,0 O A
x
点 O 振动方程 y O A co t s)(
波 yAco(st [x)]u沿x轴正向
动 方
yAco(st [u x)]u沿 x轴负向
u
T
16-2平面简谐波 波动方程

2π x1 即 y = Acosω t λ 上式代表x1 处质点在其平衡位置附近以角频率ω 上式代表 作简谐运动。 作简谐运动。 y
A
O
t
t 一定。令t=t1,则质点位移y 仅是 的函数。 一定。 仅是x 的函数。
平面简谐波的波动表式
2π x 即 y = Acosω t1 λ
y /cm
0.5 0.4 0.2 0 0.2 0.4 0.5
M1
M2
a
10 20
b
30 40 50 60 70
x /cm
t=0
波动方程的推导
y /cm
由波形曲线图可看出: 解 由波形曲线图可看出: 0.5 0.4 (1) A=0.5cm; (2) λ=40cm; (3)由波速公式计算出 (3)由波速公式计算出
3 3
波动方程的推导
可见此点的振动相位比原点落后, 可见此点的振动相位比原点落后,相位差为 π 2,或 落后 T 4,即2×10-5s。 。 (4)该两点间的距离 (4)该两点间的距离 x = 10 cm = 0.10 m = λ 4 ,相应 的相位差为
25 × 103π t π m y = 0.1 × 10 cos 2
解
棒中的波速
u=
Y
1.9 × 1011 N m 2 = = 5.0 × 103 m/s 3 3 ρ 7.6 × 10 kg m
u 5.0 × 103 m s 1 波长 λ = = = 0.40 m 3 1 v 12.5 × 10 s
波动方程的推导
周期 T = 1 v = 8 × 10 s (1)原点处质点的振动表式 (1)原点处质点的振动表式 y0=Acosω t=0.1×10-3cos(2π×12.5×103t)m =0.1×10-3cos25×103πt m (2)波动表式
7-2平面简谐波的波动方程

时间推 点O 的振动状态
迟方法 yO A cost
t-x/u时刻点O 的运动状态
t x
点P
u
t 时刻点 P 的运动状态
点P 振动方程
yP
A cos (t
x) u
➢ 波动方程
A y u
y Acos (t x)
u
相位落后法
Ox
P
*
x 点 O 振动方程
设x 0 , 0 0
A
yo A cost
各质点都作简谐运动时,在介质中所形成的波.
➢ 平面简谐波:波面为平面的简谐波. 其特点
是在均匀的、无吸收的介质中各质点振幅相同
任何复杂的波都可以看成若干个简谐波叠加而成。
波动方程的推导
设有一以速度u 沿 x 轴正向传播的平面 简谐波 . 令原点O 的初相为零,其振
动方程
设x 0, 0 0
yO Acost
12
1 2
2π
x2 x1
2π
x21
波程差 x21 x2 x1
波程差与位相差
2π x
3 若 x, t 均变化,波动方程表示波形沿传播
方向的运动情况.
yu
t 时刻 t t 时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
x ut (行波)
例1 已知波动方程如下,求波长、周期和波速.
点 P 比点 O 落后的相位
p
O
2π x
p
2π
x
2π x Tu
x u
yp Acos(t p )
点 P 振动方程
yp
A cos (t
x) u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面简谐波的运动方程,即波函数,是描述波传播方向上任一点振动状态的数学表达式。它涉及波长、周期、频率和波速等关键物理量。波长是波传播方向上相邻两振动状态完全相同的质点间的距离,周期是波传过一波长所需的时间,频率是单位时间内波向前传播的完整波的数目,波速是波在介质中传播的速度。这些物理量之间存在紧密联系。波方程的建立基于质点的振动方程和波动传播的特性。设有一平面简谐波沿x轴正方向传播,通过坐标原点O的质点振动方程,可以推导出波线上任一点P的振动方程,即波动方程。波动方程具有多种形式,取决于所使用的物理量和表示方式。这些形式都体现了波的传播特性和质点的振动状态。波函数的物理含义丰富,波动是振动的传播,是波形的传播。这对于理解简谐运动的本质和波动现象具有重要意义。