含氧酸的酸性和氧化性

合集下载

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。

如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

酸性HClO4>HClO3>HClO2>HClO(氧化性HClO>HClO2>HClO3>HClO4)H2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸(气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl>H2S。

在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCl>HF(弱酸)②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’则酸性A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、Mg(OH)2、Al(OH)3、H2SiO3、H3PO4、H2SO4、HClO4。

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较

常见酸得酸性强弱得比较首先要瞧您就是哪种酸碱理论如果就是电离理论。

则Ka越大,越易电离,酸性越强。

如果就是质子理论。

则越容易给出质子,酸性越强含氧酸得酸性强弱得判据:在有氧酸根中,主元素得非金属性越强,与氧得结合能力就越强,于就是与氢之间得键得键能就越小,氢就越容易游离出来。

b5E2RGbCAP①不同元素得最高价含氧酸,成酸元素得非金属性越强,则酸性越强。

如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3p1EanqFDPw②同种元素得不同价态含氧酸,元素得化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就就是说通常这些酸都显氧化性而不显酸性,比如高锰酸与高氯酸。

在书写方程式得时候要注意不要忽略了酸得强氧化性。

DXDiTa9E3d酸性HClO4>HClO3>HClO2>HClO<氧化性HClO>HClO2>HClO3>HClO4)RTCrpUDGiTH2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸<气态氢化物得水溶液)酸性强弱得判据:对于无氧酸来说,在元素周期表中,卤素得无氧酸就是同周期中最强得,例如HCl > H2S。

5PCzVD7HxA在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢得结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢得酸性弱于盐酸得酸性。

jLBHrnAILg①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCl>HF(弱酸>②非同一主族元素得无氧酸酸性,需靠记忆。

如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’ 则酸性A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,xHAQX74J0X则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素得价态越来越高,半径越小,则R-OH得酸性越强,R元素得价态越低,半径越大,则R-O-H得碱性越强,如第三周期元素得最高价氧化物对应水化物:NaOH、Mg(OH>2、Al(OH>3、H2SiO3、H3PO4、H2SO4、HClO4。

2常见酸的酸性强弱的比较

2常见酸的酸性强弱的比较

常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。

如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

酸性HClO4>HClO3>HClO2>HClO(氧化性HClO>HClO2>HClO3>HClO4)H2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸(气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl > H2S。

在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCl>HF(弱酸)②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’则酸性 A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、Mg(OH)2、Al(OH)3、H2SiO3、H3PO4、H2SO4、HClO4。

无机含氧酸的酸性及氧化性的比较与影响因素

无机含氧酸的酸性及氧化性的比较与影响因素

无机含氧酸的酸性及氧化性的比较与影响因素1 无机含氧酸的酸性无机含氧酸可以的分子式为HmROn,其通式可以写成Hl-Rm--〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,.无机含氧酸在水溶液中的酸强度取决于酸分子中羟基-O-H的电离程度,也可以用Pka值来衡量。

酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R吸引羟基氧原子电子的能力。

如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。

原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。

含氧酸的酸性一般存在如下规律[1]:(1) 同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO〔原因:从HClO 到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕(2) 在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。

如H ClO>HBrO>HIO,HClO2>HBrO2>HIO2、HClO3>HBrO3>键HIO3、HClO4>HBrO4>HIO4〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。

〕(3) 在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左至右增强。

如HClO4>H2SO4>H3PO4〔原因:同一周期中,从左至右元素的非金属性逐渐增强,成酸元素的电负性逐渐增大,吸引电子对的能力逐渐减小,电子偏向成酸元素R一方的程度增大,含氧酸分子中的氢原子的极化程度增大,所以酸性增强.〕查阅相关资料可知此类酸的酸性强弱可以有鲍林规则来初步判断,具体规则如下:鲍林规则[2]:规则Ⅰ:多元酸的逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10-10…如:H3PO4 Ka1=7.6×10-3 Ka2=6.3×10-8 Ka3= 4.4×10-13在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它如H5IO6、H6TeO6、H2SiO3不符合规则Ⅰ。

含氧酸的酸性和氧化性

含氧酸的酸性和氧化性

无机含氧酸的酸性及氧化性的比较1无机含氧酸的酸性无机含氧酸可以的分子式为HmROn,其通式可以写成Hl-Rm--〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,.无机含氧酸在水溶液中的酸强度取决于酸分子中羟基-O-H的电离程度,也可以用Pka值来衡量。

酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R吸引羟基氧原子电子的能力。

如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。

原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。

含氧酸的酸性一般存在如下规律[1]:(1) 同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO〔原因:从HClO 到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕(2) 在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。

如H ClO>HBrO>HIO,HClO2>HBrO2>HIO2、HClO3>HBrO3>键HIO3、HClO4>HBrO4>HIO4〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。

〕(3) 在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左至右增强。

如HClO4>H2SO4>H3PO4〔原因:同一周期中,从左至右元素的非金属性逐渐增强,成酸元素的电负性逐渐增大,吸引电子对的能力逐渐减小,电子偏向成酸元素R一方的程度增大,含氧酸分子中的氢原子的极化程度增大,所以酸性增强.〕查阅相关资料可知此类酸的酸性强弱可以有鲍林规则来初步判断,具体规则如下:鲍林规则[2]:规则Ⅰ:多元酸的逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10-10…如:H3PO4Ka1=7.6×10-3Ka2=6.3×10-8Ka3= 4.4×10-13在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它如H5IO6、H6TeO6、H2SiO3不符合规则Ⅰ。

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

b5E2RGbCAP①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。

如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3p1EanqFDPw②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

DXDiTa9E3d酸性HClO4>HClO3>HClO2>HClO<氧化性HClO>HClO2>HClO3>HClO4)RTCrpUDGiTH2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸<气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl >H2S。

5PCzVD7HxA在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

jLBHrnAILg①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCl>HF(弱酸>②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’ 则酸性A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,xHAQX74J0X则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、Mg(OH>2、Al(OH>3、H2SiO3、H3PO4、H2SO4、HClO4。

(完整)常见酸的酸性强弱的比较

(完整)常见酸的酸性强弱的比较

(完整)常见酸的酸性强弱的比较常见酸的酸性强弱的比较
首先要看你是哪种酸碱理论
如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:
在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强.如非金属性Cl〉S〉P>C〉Si 则酸性:HClO4〉H2SO4〉H3PO4>H2CO3>H2SiO3
②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

酸性HClO4>HClO3>HClO2>HClO(氧化性HClO〉HClO2〉HClO3〉HClO4)H2SO4〉H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2
无氧酸(气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl 〉H2S。

在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI〉HBr>HCl>HF(弱酸)
②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCl〉HF>H2S
由反应方向判据:。

含氧酸的酸性和氧化性

含氧酸的酸性和氧化性

无机含氧酸得酸性及氧化性得比较1无机含氧酸得酸性无机含氧酸可以得分子式为HmROn,其通式可以写成Hl-Rm--〔O—H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm—nOHn,其中R称为成酸元素,、无机含氧酸在水溶液中得酸强度取决于酸分子中羟基—O-H得电离程度,也可以用Pka值来衡量。

酸分子羟基中得质子在电离过程中脱离氧原子,转移到水分子中得孤对电子对上,其转移得难易程度取决于成酸元素R吸引羟基氧原子电子得能力。

如果成酸无素R得电负性越大,R周围得非羟基氧原子数目越多,则其酸性越强。

原因就是成酸元素R得电负性越大,则其偏移O得电子越少,从而减小了O原子周围得电子密度增大得趋势,使得其对质子得吸引减弱,有利于质子得转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基—O—H键得极性,有利于质子得转移,其次使得整个酸基团周围得空间减小,阻碍了质子与O原子上孤对电子得结合,从而使得酸性增强。

含氧酸得酸性一般存在如下规律[1]:(1)同一成酸元素若能形成几种不同氧化态得含氧酸,其酸性依氧化数递增而递增;如HC lO4>HClO3>HClO2>HClO〔原因:从HClO到HClO4非羟基氧原子逐渐增多,羟基-O-H键得极性增强,质子转移程度增强,故酸性增强〕(2)在同一主族中,处于相同氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自上而下减弱。

如H ClO〉HBrO>HIO,HClO2>HBrO2>HIO2、HClO3〉HBrO3>键HIO3、HClO4>HBrO4>HIO4〔原因:同主族元素自上而下,成酸元素得电负性逐渐减小,原子半径增大,吸引羟基氧原子得能力依次减小,羟基—O—H键得极性依次减小,所以酸性依次减弱。

〕ﻫ(3) 在同一周期中,处于最高氧化态得成酸元素,其含氧酸得酸性随原子序数递增,自左至右增强。

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。

如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

酸性HClO4>HClO3>HClO2>HClO(氧化性HClO>HClO2>HClO3>HClO4)H2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸(气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl > H2S。

在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCl>HF(弱酸)②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’则酸性 A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、Mg(OH)2、Al(OH)3、H2SiO3、H3PO4、H2SO4、HClO4。

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论;则Ka越大,越易电离,酸性越强;如果是质子理论;则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来;①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强;如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强;有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸;在书写方程式的时候要注意不要忽略了酸的强氧化性;酸性HClO4>HClO3>HClO2>HClO氧化性HClO>HClO2>HClO3>HClO4H2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸气态氢化物的水溶液酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl > H2S;在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性;①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强;如酸性:HI>HBr>HCl>HF弱酸②非同一主族元素的无氧酸酸性,需靠记忆;如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’则酸性 A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、MgOH2、AlOH3、H2SiO3、H3PO4、H2SO4、HClO4;自左至右,碱性减弱,酸性增强;由电子效应来比较:羧酸酸性强弱跟烃基和羧基的相互影响有一定的关系,这种相互影响常用诱导效应诱导效应是指在有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变化,从而使化学键发生极化的现象,称为诱导效应;来加以解释;且有Cl3CCOOH>CHCl2COOH>CH2ClCOOH>CH3COOH有机酸的酸性:一般来说,分子量越大的酸酸性越弱;因为在有机酸中,酸显酸性是因为有羧基的存在;如果酸的原子量很大,与羧几相连的碳与羧基中的氧的碳氧键就越弱,相应的氧氢键就越强,所以氢就越不容易游离出来;碱的碱性强弱的比较总原则:根据碱的电离常数的大小:碱的电离常数越大,该碱的碱性越强;推论:金属阳离子的水解常数越大,由该金属原子在该价态组成的氢氧化物的碱性越弱; 1、金属元素的电负性越小,该金属的最高价氧化物对应的水化物即氢氧化物的碱性越强;A一般金属活动性越大即金属活动性顺序表中排位越靠前,该金属的最高价氧化物对应的水化物即氢氧化物的碱性越强;B元素周期表中,同周期的金属{主族}元素随着原子序数的递增,该金属的最高价氧化物对应的水化物即氢氧化物的碱性越弱;同周期的金属{副族}元素随着原子序数的递增,该金属的最高价氧化物对应的水化物即氢氧化物的碱性越弱;同周期的金属主族与副族元素之间不能应用此规律;C元素周期表中,同族的金属{主族}元素随着原子序数的递增,该金属的最高价氧化物对应的水化物即氢氧化物的碱性越强;一般同族的金属{副族}元素随着原子序数的递增,该金属的最高价氧化物对应的水化物即氢氧化物的碱性越弱;2、同种金属元素不同价态的氧化物对应的水化物即氢氧化物的碱性的判断方法可根据盐类水解的规律:盐中有弱酸或碱根就水解,越弱越水解,水解产物越稳定,判断而得:同种金属元素低价态的氧化物对应的水化物即氢氧化物的碱性比其高价态的氧化物对应的水化物即氢氧化物的碱性;其实氧化物对应水化物的酸碱性可用离子键理论解释R离子和氢离子中,谁对氧离子的吸引力若,就在谁处电离;在A处电离,该氢氧化物显碱性,在B处电离,该氢氧化物显酸性;随着同主族的R的原子序数的增大,R的半径也递增,对氧离子的引力自然减弱,越显碱性如:碱性:LiOH<NaOH<KOH<RbOH<CsOH;同样,随着同周期的R的原子序数的增大,R的半径减小,对氧离子的引力增强,越显酸性如:碱性:NaOH>MgOH2>AlOH3常见的弱碱有:FeOH2 、FeOH3 、CuOH2 、AgOH 、ZnOH2、AlOH3、MgOH2、NH3·H2O碱可以分为可溶性和不可溶性,常见的可溶的强碱有NaOH、KOH、BaOH2 、CaOH2常见的不可溶的弱碱有括号里写上颜色CuOH2蓝色FeOH2白色FeOH3红褐色MgOH2白色AlOH3白色。

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。

如非金属性CI>S>P>C>S则酸性:HCIO4>H2SO4>H3PO4>H2CO3>H2SiO3②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

酸性HCIO4>HCIO3>HCIO2>HCIO(氧化性HCIO>HCIO2>HCIO3>HCIO4 H2SO4>H2SO3 HNO3>HNO2, H3PO4>H3PO3>H3PO2无氧酸(气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCI > H2S在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCI>HF弱酸)②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCI>HF>H2SH.SO, >II1PO4>HF> CHA'OOH > HjCO, >ILS>OHHClO>xk. * H3SiO;CH5COOH>H J CO J由反应方向判据:。

无机含氧酸的氧化性

无机含氧酸的氧化性

无机含氧酸的氧化性(2005.5.28,2中)一、含氧酸氧化性强弱的规律性1、同周期元素最高价含氧酸的氧化性,随着中心元素原子序数的增加而增强。

H 2SiO 3<H 3PO 4<H 2SO 4<HClO 4φφ2、同族元素最高价含氧酸的氧化性,随着中心元素原子序数的增加,主族元素呈现起伏的 “锯齿形”变化,副族元素则表现出减弱的趋势。

HClO 4<HBrO 4>H 5IO 6;HMnO 4>HTeO 4>HReO 4高卤酸的氧化性2Mn +5H 5IO 6→2MnO - 4+5IO -3+7H 2O+11H在三种高卤酸中,BrO 4-/BrO 3-的电势最高(φ =1.76V )。

但是,在室温下HBrO 4的氧化性不易表现,要到100℃时反应才明显。

HClO 更不易表现氧化性。

3、同周期的族序相同的主、副元素最高价含氧酸的氧化性,一般说来,主族元素比副族元素为强。

例如,HBrO 4>HMnO 4;H 2SeO 4>H 2CrO 44、同一元素不同价态含氧酸的氧化性,在稀溶液中随着价态的升高而减弱(即低价态的氧.....化性较强....)。

HClO ~HClO 2>HClO 3>HClO 4,HNO 2>HNO 3(稀),H 2SO 3>H 2SO 4(稀),H 2SeO 3>H 2SeO 4(稀)NO - 3+4H ++3e-NO+2H 2O φ 3/NO)=0.96V, HNO 2+H ++e -NO+H 2O φ0(HNO 2/NO)=1.00V, H 2SO 4+6H ++6e -S+4H 2O ,φ=0.37V ;H 2SO 3+4H ++4e -S+3H 2O ,φ=0.45V ;MnO 4-+4H ++3e -=MnO 2+2H 2O ,φ ;MnO 2- 4+4H ++2e -=MnO 2+2H 2O ,φ ; MnO 4-+4H ++3e -=MnO 2+2H 2O ,φ =1.69V ;MnO 2- 4+4H ++2e -=MnO 2+2H 2O ,φ =2.26V ; MnO 4-+2H 2O+3e -=MnO 2+4OH -,φ=0.60V ;MnO 2- 4+2H 2O+2e -=MnO 2+4OH -,φ=0.62V ; {次卤酸不稳定,至今尚未制得纯的HOX 。

2常见酸的酸性强弱的比较

2常见酸的酸性强弱的比较

常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。

如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

酸性HClO4>HClO3>HClO2>HClO(氧化性HClO>HClO2>HClO3>HClO4)H2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸(气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl > H2S。

在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCl>HF(弱酸)②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’则酸性 A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、Mg(OH)2、Al(OH)3、H 2SiO3、H3PO4、H2SO4、HClO4。

无机含氧酸的氧化性的研究

无机含氧酸的氧化性的研究

无机含氧酸的氧化性1 结构无机含氧酸的氧化性具有明显的区域性和递变规律。

例如,p 区高价含氧酸就随着周期变化而变化。

在第二周期 p 区元素的高价含氧酸分子中均存在有∏64 键。

第三周期P区元素高价含氧酸分子中均存在有∏85 键。

由于π键离域的范围越大,体系的能量越低,分子越稳定,所以第三周期 p 区各元素的高价含氧酸与其同族第二周期的元素相比,其氧化性减弱。

第四周期的 p 区元素的 4d 轨道与氧原子的 2p 轨道相比,能量相差较大,不能进行有效地组合,其含氧酸分子中无离域的∏85 键存在,分子的稳定性减小,氧化性较第二、三周期同族元素含氧酸的氧化性强。

第五周期的 p 区元素,其中心原子半径较大,且 5d 轨道的成键倾向又较强,故它们能以激发态 sp3d2 杂化轨道形成八面体结构,其周围的 R-O 数目增加,稳定性增大,氧化性减弱。

第六周期元素于惰性电子对效应而造成其含氧酸氧化性增大。

表1 p 区高价含氧酸的电极电势(Φ/eV)同时,酸的氧化性还受到中心原子电负性、离子电荷半径比的影响。

但其影响对各元素最高氧化态含氧酸氧化性的影响完全可以归于对其中心离子电子云形状的影响,该电子云形状偏离球形对称结构的程度越大,含氧酸氧化性就越强。

能够这样考虑的实质在于中心离子的球形对称结构就像一个弹性球体,当受到外来阳离子、负电荷作用时,部分区域受到压缩而靠近原子核,因受到离子内部电子的排斥具有抵制压缩的能力;其它部分区域被挤出而远离原子核,由于原子核对电子的吸引力而具有抵制被挤出的能力。

当中心离子受到外来正电荷、正离子作用时,可得出相近的结论。

另外,中心离子有一定数目的正电荷,它可以排斥外来正电荷、正离子的干扰,也可以中和外来阴离子的负电荷,减小影响使其电子形状尽量保持球形对称结构。

总之,中心离子是球形对称结构时,对外来电荷有强的抵抗和缓冲能力而保持其自身稳定性。

但是,中心离子成酸后,就偏离了球形对称结构,这种缓冲能力下降或消失,易受还原剂影响,因而氧化性就强。

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较

常见酸的酸性强弱的比较(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见酸的酸性强弱的比较首先要看你是哪种酸碱理论如果是电离理论。

则Ka越大,越易电离,酸性越强。

如果是质子理论。

则越容易给出质子,酸性越强含氧酸的酸性强弱的判据:在有氧酸根中,主元素的非金属性越强,与氧的结合能力就越强,于是与氢之间的键的键能就越小,氢就越容易游离出来。

①不同元素的最高价含氧酸,成酸元素的非金属性越强,则酸性越强。

如非金属性Cl>S>P>C>Si则酸性:HClO4>H2SO4>H3PO4>H2CO3>H2SiO3②同种元素的不同价态含氧酸,元素的化合价越高,酸性越强。

有些高价酸在通常情况下氧化性强于酸性,就是说通常这些酸都显氧化性而不显酸性,比如高锰酸和高氯酸。

在书写方程式的时候要注意不要忽略了酸的强氧化性。

酸性HClO4>HClO3>HClO2>HClO(氧化性HClO>HClO2>HClO3>HClO4)H2SO4>H2SO3,HNO3>HNO2,H3PO4>H3PO3>H3PO2无氧酸(气态氢化物的水溶液)酸性强弱的判据:对于无氧酸来说,在元素周期表中,卤素的无氧酸是同周期中最强的,例如HCl>H2S。

在氢硫酸溶液里,硫化氢分子内存在着氢键,这个氢键使硫化氢的结构更加稳定,所以氢在水中更加不容易电离出来,所以硫化氢的酸性弱于盐酸的酸性。

①同一主族元素,核电荷数越多,原子半径越大,氢化物酸性越强。

如酸性:HI>HBr>HCl>HF(弱酸)②非同一主族元素的无氧酸酸性,需靠记忆。

如酸性:HCl>HF>H2S由反应方向判据:酸A+盐B→盐A’+酸B’则酸性A>B’如:CO2+2H2O+NaBO2=H3BO3+NaHCO3,H3BO3+Na2CO3=NaBO2+NaHCO3+H2O,则酸性:H2CO3>H3BO3>HCO3-由R-O-H模型来判据:R元素的价态越来越高,半径越小,则R-OH的酸性越强,R元素的价态越低,半径越大,则R-O-H的碱性越强,如第三周期元素的最高价氧化物对应水化物:NaOH、Mg(OH)2、Al(OH)3、H2SiO3、H3PO4、H2SO4、HClO4。

无机含氧酸的氧化性

无机含氧酸的氧化性

无机含氧酸的氧化性(2005.5.28,2中)一、含氧酸氧化性强弱的规律性1、同周期元素最高价含氧酸的氧化性,随着中心元素原子序数的增加而增强。

H 2SiO 3<H 3PO 4<H 2SO 4<HClO 4φφ2、同族元素最高价含氧酸的氧化性,随着中心元素原子序数的增加,主族元素呈现起伏的 “锯齿形”变化,副族元素则表现出减弱的趋势。

HClO 4<HBrO 4>H 5IO 6;HMnO 4>HTeO 4>HReO 4高卤酸的氧化性2Mn +5H 5IO 6→2MnO - 4+5IO -3+7H 2O+11H在三种高卤酸中,BrO 4-/BrO 3-的电势最高(φ =1.76V )。

但是,在室温下HBrO 4的氧化性不易表现,要到100℃时反应才明显。

HClO 更不易表现氧化性。

3、同周期的族序相同的主、副元素最高价含氧酸的氧化性,一般说来,主族元素比副族元素为强。

例如,HBrO 4>HMnO 4;H 2SeO 4>H 2CrO 44、同一元素不同价态含氧酸的氧化性,在稀溶液中随着价态的升高而减弱(即低价态的氧.....化性较强....)。

HClO ~HClO 2>HClO 3>HClO 4,HNO 2>HNO 3(稀),H 2SO 3>H 2SO 4(稀),H 2SeO 3>H 2SeO 4(稀)NO - 3+4H ++3e-NO+2H 2O φ 3/NO)=0.96V, HNO 2+H ++e -NO+H 2O φ0(HNO 2/NO)=1.00V, H 2SO 4+6H ++6e -S+4H 2O ,φ=0.37V ;H 2SO 3+4H ++4e -S+3H 2O ,φ=0.45V ;MnO 4-+4H ++3e -=MnO 2+2H 2O ,φ ;MnO 2- 4+4H ++2e -=MnO 2+2H 2O ,φ ; MnO 4-+4H ++3e -=MnO 2+2H 2O ,φ =1.69V ;MnO 2- 4+4H ++2e -=MnO 2+2H 2O ,φ =2.26V ; MnO 4-+2H 2O+3e -=MnO 2+4OH -,φ=0.60V ;MnO 2- 4+2H 2O+2e -=MnO 2+4OH -,φ=0.62V ; {次卤酸不稳定,至今尚未制得纯的HOX 。

高中化学:含氧酸的方程式

高中化学:含氧酸的方程式

高中化学:含氧酸的方程式(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高中化学:含氧酸的方程式(摘要):高三就是到了冲刺的阶段,大家在大量练习习题的时候,也不要忘记巩固知识点,只有很好的掌握知识点,才能运用到解题中。

氧化酸 非氧化酸

氧化酸 非氧化酸

氧化酸非氧化酸
氧化性酸和非氧化性酸的区别如下:
- 氧化性:氧化性酸一般是含氧酸,是指酸中除了氢、氧元素之外的中心元素在化学反应中表现出强氧化性;非氧化性酸则由于绝大多数酸溶于水都能电离出H+,氢离子具有弱氧化性,所以,酸都有弱氧化性。

- 特点:氧化性酸特点化学反应显示出强烈的氧化作用;非氧化性酸特点它的酸基没有直接氧化的能力,只反映了H+的性质,即酸度,而不是酸基的氧化。

常见的氧化性酸有浓硫酸、硝酸、高氯(溴、碘)酸、氯(溴、碘)酸、次氯(溴、碘)酸、亚氯(溴、碘)酸等;常见的非氧化性酸有盐酸、HBr、HF、磷酸、稀硫酸等。

含氧酸的定义

含氧酸的定义

含氧酸的定义含氧酸是一类具有特定结构的化合物,其分子中含有氧原子与氢原子和其他原子(通常是非金属元素)连接。

这些氧酸在化学和生物学中具有重要的作用。

本文将介绍含氧酸的定义、性质以及一些常见的含氧酸。

一、含氧酸的定义含氧酸是指分子中含有氧原子的化合物,其氧原子与氢原子和其他非金属元素结合。

一般来说,含氧酸的名称以“酸”结尾,例如硫酸、硝酸、亚硝酸等。

这些酸性物质通常具有酸性的性质,能够与碱反应产生盐和水。

二、含氧酸的性质1. 酸性:含氧酸通常具有酸性的性质,可以与碱反应生成盐和水。

酸性的强弱可以通过酸的酸解离常数来衡量,酸解离常数越大,酸性越强。

2. 腐蚀性:含氧酸具有一定的腐蚀性,可以腐蚀金属和有机物。

因此在实验室和工业生产中需要注意安全措施,避免对人体和环境造成伤害。

3. 氧化性:一些含氧酸具有氧化性,可以与其他物质发生氧化反应。

例如硝酸可以氧化金属,亚硝酸可以氧化亚硫酸盐。

4. 溶解性:含氧酸的溶解性较好,可以在水中溶解形成酸溶液。

溶解度与酸的结构和性质有关。

三、常见的含氧酸1. 硫酸:化学式为H2SO4,是一种无色、无臭的液体。

硫酸是一种强酸,具有强烈的腐蚀性,常用于工业生产中的脱水、制造化肥等。

2. 硝酸:化学式为HNO3,是一种无色液体。

硝酸也是一种强酸,具有强烈的氧化性和腐蚀性,常用于制造炸药、肥料等。

3. 亚硝酸:化学式为HNO2,是一种无色气体。

亚硝酸具有一定的氧化性,可以用作染料和药物的原料。

4. 磷酸:化学式为H3PO4,是一种无色液体。

磷酸是一种中强酸,广泛用于工业生产和化学实验中。

5. 碳酸:化学式为H2CO3,是一种无色液体。

碳酸是一种弱酸,常见于自然界中的矿物和生物体内。

四、含氧酸的应用含氧酸在化学和生物学中具有广泛的应用。

例如,硫酸广泛用于工业生产中的脱水、电镀、制造肥料等;硝酸用于制造炸药、染料等;亚硝酸用于食品添加剂和染料的生产;磷酸用于肥料、食品添加剂和医药等领域;碳酸用于饮料制造和工业生产中的酸碱中和等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无机含氧酸的酸性及氧化性的比较1无机含氧酸的酸性无机含氧酸可以的分子式为HmROn,其通式可以写成Hl-Rm--〔O-H〕n,〔其中l,m可以为0,n≥0〕,也可写成ROm-nOHn,其中R称为成酸元素,.无机含氧酸在水溶液中的酸强度取决于酸分子中羟基-O-H的电离程度,也可以用Pka值来衡量。

酸分子羟基中的质子在电离过程中脱离氧原子,转移到水分子中的孤对电子对上,其转移的难易程度取决于成酸元素R吸引羟基氧原子电子的能力。

如果成酸无素R的电负性越大,R周围的非羟基氧原子数目越多,则其酸性越强。

原因是成酸元素R的电负性越大,则其偏移O的电子越少,从而减小了O原子周围的电子密度增大的趋势,使得其对质子的吸引减弱,有利于质子的转移;非羟基氧原子越多,则分子周围越易形成离域π键,这种键将成酸R原子及O原子包裹在其中,一方面增强了羟基-O-H键的极性,有利于质子的转移,其次使得整个酸基团周围的空间减小,阻碍了质子与O原子上孤对电子的结合,从而使得酸性增强。

含氧酸的酸性一般存在如下规律[1]:(1) 同一成酸元素若能形成几种不同氧化态的含氧酸,其酸性依氧化数递增而递增;如HClO4>HClO3>HClO2>HClO〔原因:从HClO 到HClO4非羟基氧原子逐渐增多,羟基-O-H键的极性增强,质子转移程度增强,故酸性增强〕(2) 在同一主族中,处于相同氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自上而下减弱。

如H ClO>HBrO>HIO,HClO2>HBrO2>HIO2、HClO3>HBrO3>键HIO3、HClO4>HBrO4>HIO4〔原因:同主族元素自上而下,成酸元素的电负性逐渐减小,原子半径增大,吸引羟基氧原子的能力依次减小,羟基-O-H键的极性依次减小,所以酸性依次减弱。

〕(3) 在同一周期中,处于最高氧化态的成酸元素,其含氧酸的酸性随原子序数递增,自左至右增强。

如HClO4>H2SO4>H3PO4〔原因:同一周期中,从左至右元素的非金属性逐渐增强,成酸元素的电负性逐渐增大,吸引电子对的能力逐渐减小,电子偏向成酸元素R一方的程度增大,含氧酸分子中的氢原子的极化程度增大,所以酸性增强.〕查阅相关资料可知此类酸的酸性强弱可以有鲍林规则来初步判断,具体规则如下:鲍林规则[2]:规则Ⅰ:多元酸的逐级电离常数Ka1、Ka2、Ka3…其数值之比为1∶1×10-5∶1×10-10…如:H3PO4 Ka1=7.6×10-3 Ka2=6.3×10-8 Ka3= 4.4×10-13在P区元素中,其它含氧酸如H2SO3,H2CO3,H3AsO4等均符合规则Ⅰ,其它如 H5IO6、H6TeO6、H2SiO3不符合规则Ⅰ。

规则Ⅱ:具有ROm-n(OH)n形式的酸,其Ka值与n的关系是Ka1=105(m-n)-7, m-n为非羟基氧原子的数目。

第一类:当m-n=0,是很弱的酸,Ka1<10-7;第二类:当m-n=1,是弱酸,Ka1=10-2~10-3;第三类:当m-n=2,是强酸,Ka1=102~103;第四类:当m-n=3,是极强的酸, Ka1>108。

m-n与酸的强度关系见下表:①表中例外的是H3PO3和H3PO2,对亚磷酸来说,若取P(OH)3的形式,则m-n=0估算其Ka1≈10-7,这是因为亚磷酸是二元酸,其结构简式为HPO(OH)2,它有二个羟基,一个非羟基氧原子,亦即m-n=1,于是:Ka1≈105(m-n)-7=10-2②同理次磷酸(H3PO2)的结构简式为H2PO(OH)为一元酸,它有一个羟基和一个非羟基氧原子,亦即(m-n)=1,所以Ka1≈10-2。

另外,H2CO3的Ka1值过去测得为4.16×10-7,现经纠正后为2×10-4。

③碳酸(H2CO3)违背上述的理由则不同,按它的结构简式Co(OH)2,预计H2CO3的Ka1≈10-2,但实验测得的Ka1≈10-7,原因是溶质CO2在溶液中所形成的“碳酸”是松驰的水化CO2,不是以Co(OH)2形式存在的。

查阅相关资料[3]可知:298K时,1L水中溶1.45克约〔0.033mol〕,溶解在水中CO2的大部分以弱的水合分子存在,只有1%~4%的CO2与H2O反应生成H2CO3,实验测得:「CO2」/「H2CO3」=600..经改进实验所测得的Ka1≈2×10-4,这与预料的结果相接近。

④H3BO3R的结构结构简式可以写成B〔OH〕3,每个硼原子用3个SP3杂化轨道与3个羟基中的氧原子以共价键结合,但硼酸是一元弱酸也有人认为其为三元弱酸,但它的酸性不是由它本身给出的质子,而是由于它是缺电子分子,接受了来自H2O分子上的孤对电子,而释放出质子,所以才显微弱酸性,所以其不符合上述规则。

补充说明:(不同周期元素的含氧酸之间的关系)纵观p区同族元素最高氧化态含氧酸的酸性,通过不同周期的对比可得出结论[4]:a. 第二周期最高氧化态含氧酸的酸性比同族第三周期要强。

如硝酸(103)大于磷酸(10-2);b. 第四周期最高氧化态含氧酸的酸性比同族第三周期有的略强如H4GeO4(10-9)大于H4SiO4(10-10);有的相近如H3PO4与H3AsO4(10-2)。

c. 第五周期最高氧化态含氧酸的酸性明显地弱于第三、四周期。

如H5IO6(10-3)、H6TeO6(10-7)均为弱酸;2无机含氧酸的氧化性(1)无机含氧酸的氧化性反映的实质是指其成酸元素得电子的能力,成酸元素得电子能力越强,则其氧化性越强。

(2) 氧化性酸的强氧化性表现在如下几个方面:①能与排在常见金属活动性顺序表中氢后面的金属单质反应。

如:Cu+2H2SO4(浓)= CuSO4+SO2↑+2H2O3Ag+4HNO3(稀)= 3AgNO3+NO↑+O2↑②能将变价金属从零价氧化成较高的价态。

如:2Fe+6H2SO4(浓)= Fe2(SO4)3+3SO2↑+6H2O3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O③能与不太活泼的非金属单质反应。

如:C+2H2SO4(浓)= CO2↑+2SO2↑+2H2OC+4HNO3(浓)= CO2↑+4NO2↑+2H2OP+5HNO3(浓)= H3PO4↑+5NO2↑+H2OI2+10HNO3(浓)= 2HIO3↑+10NO2↑+4H2O④能多种元素从较低价态氧化到较高介态。

例如:4HNO3(稀)+FeS=Fe(NO3)3+S↓+NO↑+2H2OHClO+H2SO3=HCl+H2SO4(3) 氧化性酸的氧化性强弱,一般情况下存在以下规律:①对于同一氧化性酸,浓度越大(或溶液中氢离子浓度越大)氧化性越强。

例如:浓硝酸比稀硝酸氧化性强,稀的高氯酸氧化性很弱,但浓高氯酸却有很强的氧化性。

从电极电势上看,增大酸根或氢离子的浓度,氧化能力增强,例如:硝酸根及氢离子浓度增大(尤其是氢离子浓度)电极电势的值变大。

这可由Nernst方程解释:E=Eθ+0,0591/n lg(ox)m/(red)n〔对于有H+ 参加的反应,氧化态物质应包括H+ 和酸根,否则不用考虑H+〕由此方程式可知:增大H+和酸根离子的浓度,均可提高电极电位,从而使酸的氧化性增强。

②同一种元素形成的不同价态的含氧酸,一般低价态的比高价态的氧化性强。

例如:HClO>HClO2>HClO3>HClO4 HNO2>HNO3③同周期主族元素形成的最高价含氧酸或相对应的低价含氧酸,从左到右,氧化性依次增强。

例如,高氯酸常温下氧化性很强,硫酸浓度大加热时才表现出强氧化性,磷酸则几乎无氧化性。

HClO3>H2SO3④同族副族元素含氧酸的氧化性随原子序数Z的增加而略有下降。

⑤同主族元素形成的同价态含氧酸,氧化性强弱的规律复杂,一些常见各族元素含氧酸的氧化性强弱顺序如下:HBrO4≈H5IO6>HClO4 HBrO3>HClO3>HIO3 HClO>HBrO>HBrOH2SeO4≈H6TeO6>H2SO4 HNO3>H3AsO4>H3PO4(4) 影响含氧酸氧化能力强弱的因素一种含氧酸被还原的难易程度主要取决于四方面的因素[4]:①中心原子(即成酸元素的原子,用R表示)结合电子的能力中心原子电负性愈大,愈容易获得电子而被还原,因而氧化性愈强。

该因素可说明主族元素含氧酸氧化还原能力强弱。

如:HNO3>H2SO4>H3PO4例外情况 H2SeO3≈ H6TeO6>H2SO4HBrO3>HClO3>HIO3②中心原子和氧原子之间键(R-O键)的强度含氧酸还原为低氧化态或单质的过程包括R-O键的断裂。

影响R-O键强度的因素有中心原子的电子层结构、成键情况、H+离子反极化作用等。

下面是一些含氧酸根的分子构型及成键情况:③在含氧酸还原过程中伴随发生的其它过程的能量效应在实际的反应中常伴随有一些非氧化还原过程的发生,如水的生成、溶剂化和去溶剂化作用、离解、沉淀的生成、缔合等。

这些过程的能量效应有时在总的能量效应中占有很大比重。

如果这些过程放出的净能量愈多,则总反应进行趋势愈大,即含氧酸的氧化性愈强。

④含氧酸根自身的稳定性(其稳定性与酸根的结构构型,对称性及R-O键强度有关)。

如:硫酸根比亚硫酸根稳定,硝酸根比亚硝根稳定,所以氧化性:H2SO4(稀)<H2SO3;HNO3(稀)<HNO2。

3含氧酸的氧化性与酸性的关系(1) 同一族过渡元素随周期增加其含氧酸的R- O键增强,使酸稳定性增大,酸性依次增强,氧化性逐渐减弱。

原因:含氧酸中心原子和氧原子之间存在着配位键和d-pπ键,相当于一个双键。

根据组成分子轨道的能量近似原则,生成的d-pπ键的倾向顺序是3d<4d<5d。

,。

如Tc、Re的R-O 键强,不易断裂。

(2) 对于同一元素形成的几种没同氧化态的酸来说,一般是弱酸(低氧化态)的氧化性强于稀的强酸(高氧化态)。

例如: HNO2强于稀HNO3;H2SO3强于稀H2SO4,这是因为在弱酸分子中存在着H+离子对含氧酸中心原子的反极化作用,使R-O键易断裂。

(3) 同一元素不同氧化态的含氧酸,通常是高氧化态酸的氧化能力弱,而酸性强。

例如:酸性 HClO4>HClO3>HClO2>HClO H2SO4 >H2SO3 HNO3>HNO2 氧化性:HClO >HClO2 >HClO3 >HClO4 H2SO4(稀)<H2SO3;HNO3(稀)<HNO2。

其原因可能是因为在还原过程中氧化态愈高的含氧酸需要断裂的R-O键愈多的缘故。

酸根离子愈稳定,氧化性愈弱。

相关文档
最新文档