高一数学必修一第二章单元测试题.doc.docx

合集下载

人教版高中数学必修1第二章单元测试(二)- Word版含答案

人教版高中数学必修1第二章单元测试(二)- Word版含答案

2018-2019学年必修一第二章训练卷 基本初等函数(二) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()0aa >可以化简为( )A .32aB .18aC .34aD .38a2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25 B .0.20.121log <225< C .0.10.2212<2log 5< D .0.10.2212<log 25<3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B U =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+ 4.已知23x y =,则xy =( ) A .lg 2lg 3 B .lg 3lg 2 C .2lg 3 D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( ) A .1 B .3- C .3-或1 D .2 8.下列各函数中,值域为(0)∞,+的是( ) A .22x y -= B .12y x =- C .21y x x =++ D .113x y += 9.已知函数:①2x y =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )此卷只装订不密封 班级姓名准考证号考场号座位号A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有()()1212f x f x x x -<0-成立,则实数a 的取值范围为( )A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦ C .(2]-∞,- D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( )A .0个B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30x x x f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值范围是________. 16.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,2x y ⎛= ⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)3130.5log 511lg 81273-⎛⎫++ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.19.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1).(1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值;(2)求使f (x )-g (x )>0的x 的取值范围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).21.(12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.22.(12分)若函数f(x)满足21(log)1aaf x xxa⎛⎫=⋅-⎪-⎝⎭(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围.2018-2019学年必修一第二章训练卷基本初等函数(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}A B x x x x x x ><<>U U =-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B .5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠, 解得3m =-.故选B .8.【答案】A【解析】A,22x y x -==⎝⎭的值域为(0)∞,+. B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1. C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭, D ,因为()()1,00,1x ∈-∞+∞+U , 所以113x y +=的值域是()0,11()∞U ,+.故选A . 9.【答案】D 【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C 【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C . 11.【答案】B 【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩ 由此解得138a ≤,即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦,选B . 12.【答案】C 【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C . 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】4 【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-.16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212Ax ==⎝⎭,点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =.点()4C C y ,在函数x y =⎝⎭的图象上,所以414C y==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1.【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2x f x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422x x -⎛⎫-= ⎪⎝⎭,即112=42x x ⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭, 即 2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12x t ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即122x ⎛⎫= ⎪⎝⎭,解得x =-1. 19.【答案】(1)最小值为2,最大值为6;(2)见解析. 【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数, 因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ),满足111010x x x x +>-⎧⎪+>⎨⎪->⎩∴0<x <1 当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0 综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->, 当a >1时,函数y =a x 是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数,∴8-x 2<-2x ,解得x <-2或x >4. 故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}. 21.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x ,∴g (x )=f (2x )-f (x +2)=2222x x -+. 因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1. 于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x =(2x -2)2-4. ∵x ∈[0,1],∴2x ∈[1,2],∴当2x =2,即x =1时,g (x )取得最小值-4; 当2x =1,即x =0时,g (x )取得最大值-3.22.【答案】(1)2()()1x x a f x a a a -=-- (x ∈R ),见解析;(2))(21,2⎡⎣U . 【解析】(1)令log a x =t (t ∈R ),则x =a t ,∴2()()1t t a f t a a a -=--. ∴2()()1x x a f x a a a -=-- (x ∈R ). ∵()22()()()11x x x x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x 为增函数,x y a -=-为增函数,且201a a >-,∴f (x )为增函数. 当0<a <1时,y =a x 为减函数x y a -=-为减函数,且201a a <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数,只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭, ∴a 2+1≤4a ,∴a 2-4a +1≤0,∴22a ≤≤a ≠1,∴a的取值范围为)(21,2⎡⎣U .。

高一数学必修一第二章单元测试题.doc

高一数学必修一第二章单元测试题.doc

高一数学模块一第二章单元测试试题说明:本试题测试时间为50分钟,满分100分一、选择题:(本大题共8小题,每小题6分,共48分)答案填在答题卷答题卡内,否则不计分. 1、 函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( ) (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2、三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( )(A )b c a <<. (B ) c b a << (C )c a b << (D )a c b << 3、函数 的定义域为( )(A )[1,3] (B )),3()1,(+∞⋃-∞ (C )(1,3) (D )(1,2)∪(2,3) 4、已知镭经过1,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( ) (A )y =(0.9576)100x (B )y =(0.9576)100x (C )y =()x(D )y =1-(0.0424)100x5、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( )(A ) (B ) 2 (C ) 3 (D ) 6、下列函数中,在区间(0,2)上不是增函数的是( ) (A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22=7、函数 与 ( )在同一坐标系中的图像只可能是( ); ; ; 。

8、(4~10班做)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 ) ;③1212()()f x f x x x -->0;④1212()()()22x x f x f x f ++<.当f (x )=lo g 2 x 时,上述结论中正确结论的序号选项是(A ) ①④ (B ) ②④ (C )②③(D )①③8、(1~3班做)已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)7二、填空题(本大题共4小题,每小题5分,共9、 函数)5lg()(-=x x f 的定义域是 .1009576.02131xa y =x y a log -=1,0≠>a a 且)34(log 1)(22-+-=x x x f10、求值:013312log log 12(0.7)0.252-+-+=________ _. 11、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为 .12、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________ 三、解答题(第12题7分,13题10分,第14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤)13、求log 2.56.25+lg1001+ln e +3log 122+的值.14、已知m >1,试比较(lg m )0.9与(lg m )0.8的大小.15、已知()(01)xxf x a a a a -=+>≠且(Ⅰ)证明函数f ( x )的图象关于y 轴对称;(4分 )(Ⅱ)判断()f x 在(0,)+∞上的单调性,并用定义加以证明;(7分)(4~10班做)(Ⅲ)当x ∈[1,2]时函数f (x )的最大值为25,求此时a 的值. (4分)(1~3班做)(Ⅲ)当x ∈[-2,-1]时函数f (x )的最大值为25,求此时a 的值. (4分)高一数学模块一第二章单元测试答题卷班级座号姓名得分二、填空题(本大题共4小题,每小题5分,共9、;10、;11、;12、.三、解答题(第12题7分,13题10分、14题15分,共32分,解答应写出文字说明,证明过程或演算步骤)13、14、15、高一数学模块一第二章单元测试参考答案一、选择题 DBDA CCAC 7、取a =2和a = 作图筛选得A8、解:依题意,有0<a <1且3a -1<0,解得0<a <13,又当x <1时,(3a -1)x +4a >7a -1,当x ≥1时,log a x ≤0,所以7a -1≥0解得a ≥17故选C二、填空题8、 ;9、 4 ;10、 ;11、 .11、设这个幂函数的解析式为 ,将(3, )代入得21=α12、.【解析】1ln 2111(())(ln )222g g g e ===.三、解答题 (本大题有3小题,共32分) 解答应写出文字说明,证明过程或演算步骤)12、解: 原式=2-2+ ln e +6log 22…………3分= +6 …………5分=216 …………7分14、解:∵m >1,∴lg m >0;以下分类为①lg m >1,②lg m =1;③0<lg m <1三种情形讨论(lg m )0.9与(lg m )0.8的大小.…………2分①当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;…………5分②当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;…………7分③当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.…………10分15、解:(Ⅰ)要证明函数f ( x )的图象关于y 轴对称则只须证明函数f ( x )是偶函数…1分∵x ∈R …………2分 由)()(x f a a a ax f x x x x=+=+=--- …………3分∴函数f ( x )是偶函数,即函数f ( x )的图象关于y 轴对称…………4分(Ⅱ)证明:设210x x <<,则12()()f x f x -=21211111112211)1)(()11()()(x x x x x x x x x x x x x a a a a a a a a a a a a x ++----=-+-=+-+ (1)当a >1时,由0<12x x <,则x 1+x 2>0,则01>x a 、02>x a 、21x x a a <、121>+x x a ;12()()f x f x -<0即12()()f x f x <;(2)当0<a <1时,由0<12x x <,则x 1+x 2>0,则01>x a、02>x a 、21x x a a >、1021<<+x x a ;12()()f x f x -<0即12()()f x f x <;)5,(-∞21x y =21αx y =2121213所以,对于任意a (10≠>a a 且),f (x )在(0,)+∞上都为增函数.(4~10班做)(Ⅲ)由(Ⅱ)知f (x )在(0,)+∞上为增函数,则当x ∈[1,2]时,函数f (x )亦为增函数;由于函数f (x )的最大值为25,则f (2)= 25即25122=+aa ,解得2=a ,或22=a (1~3班做)(Ⅲ)由(Ⅰ)(Ⅱ)证知f (x ) 是偶函数且在(0,)+∞上为增函数,则知f (x )在)0,(-∞上为减函数;则当x ∈[-2,-1]时,函数f (x )为减函数 由于函数f (x )的最大值为25,则f (-2)= 25即25122=+a a ,解得2=a ,或22=a。

高中数学必修一第二章测试题(含答案)

高中数学必修一第二章测试题(含答案)

精品文档高中数学必修一第二章测试题(2)7.若a<2贝V 化简4 2a - 1 2的结果是 A . a p a q a aB. p q C . a p a q D . p a aq2、 已 知 f(10x ) x ,贝V f (5) ( )A 、105B 、5C 、lg10D 、lg 5 一、选择题: 1 .已知p>q>1,0<a<1,则下列各式中正确 的是 ( )A. B . - 2a — 1C.D . — 1 — 2a2a - 1i 2a 3.函数y log a x 当x>2时恒有y >1, 则 a 的取值范围是A1 a2 且 a 12B 0 a 1或1 a 2C . 1 a 22B . [0,为1或0 D . a a 8 函数y = _ lg x + lg(5 — 3x)的定义域是A [0[1时, 和9.(1 2 函数 4.当 的图象只可能是 5.[1,)5] 幂函数的 递—[J[0, (05、设 y 1 4 0.90.48 ,y 2 8 ,y 312,则D .( )B 、1A、y y 1 y 2 y 2 y 1 y 3 、r. c 、y y 3 y 2 D 、 y 1 y 2y 3为 6.下列函数中,在区间 (0, 十0)上为增( 函 数的是( )B .Ay =In (x+2)B . y =— --,x + 1D .Cy=1 2x11A B1.5) ACoo函数 1 4,jl 则 它的单间是工J ■+oo )Doo, 0)2, 增 「区)y = 2+ log 2(x 2 + 3)(x > 1)的值域2)[3, +o )(2[4 1函数 y = a x — (a>0, aoo)且a 工1)的图象精品文档2lg 2 + lg 3A可log x3v log y3D .1 1 Qp x v(4)y二、填空题3ylog4x3xlog4y13.函数f(x)= a x_1+ 3的图象一定过定点P,贝V P点的坐标是14.函数f(x) = log5(2x+ 1)的单调增区间是15.设函数f(x)是定义在R上的奇函数,若当x€ (0, I )时,f(x)= lg x,则满足f(x) > 0的x的取值范围是13.将函数y 2x的图象向左平移一个单位,得到图象C1,再将C1向上平移一个单位得到图象C2,作出C2关于直线y=x对称的图象C3,贝V C3的解析式为.三、解答题17.化简下列各式:(1)[(0.064 5) -2-5]3_n;1 11 +2 lg 0.36 + 4© 1618.已知f(x)为定义在[—1,1]上的奇函数,1 a 当x€ [—1,0]时,函数解析式f(x) = 43—(a€ R).(1) 写出f(x)在[0,1]上的解析式;(2) 求f(x)在[0,1]上的最大值.419. 已知x> 1 且x工3,f(x) = 1 + log x3, g(x) = 2log x2,试比较f(x)与g(x)的大小.120. 已知函数f(x)= 2x—尹(1) 若f(x) = 2,求x 的值;(2) 若2t f(2t)+ mf(t) > 0 对于t€ [1,2]恒成立,求实数m的取值范围.21 .已知函数f(x)= axr(a>0 且a工1).(1) 若函数y = f(x)的图象经过P(3,4) 点,求a的值;(2) 若f(lg a) = 100,求a 的值;1(3) 比较f lg云与f( —2.1)的大小,并写出比较过程.10x—10—x22.已矢廿f(x)= 10X十10-X.(1) 求证f(x)是定义域内的增函数;(2) 求f(x)的值域.答案一.选择题1 —5.BDAAC 6—10.ACCCC 11 —12.DC二.填空题1 “ /13 . (1,4) 14. — -,+m15 .(—1,0) U (1 ,+8 )16. y log2(x 1) 1精品文档2-1=°.2lg 2 + lg 31 + 2ig °.612 3+4ig 24=2lg 2 + lg 3—2X 31+lg 百 + l g 24 4即当 1 v x v -时,f(x) v g(x);当x>-时,3 3f(x) > g(x).2°.解(1)当x v °时,f(x)= °;当x>°时, f(x) = 2x—p.= 2lg 2 + lg 32 + lg 2 + lg3 —lg 1°+ lg 2=2lg 2 + lg 3 = 1 =2lg 2 + lg 3 = .18. 解(1) •/ f(x)为定义在[—1,1]上的奇函数,且f(x)在x= °处有意义,•-f(°) = °,1 a即f(°) = 4°—2°= 1 —a= °.…a = "I.设x€ [0,1],则一x€ [ —1,°].1 1二f(—x)= 4^x- 2^x = 4x-2x.又f( —x) = —f(x),—f(x)= 4x—2x.••• f(x) = 2x—4x.(2)当x€ [°,1] , f(x) = 2x—4x= 2x—(2x)2,•••设t= 2x(t> °),则f(t)=t —t2.4 3 3当 1 v x v 3时,4x v 1, .log^x v °;当x>3时,^x> 1, • l°g x;x>°.1由条件可知2x—2= 2,即22x— 2 -2x—1 =°,解得2x= 1± 2.••• 2x> °, • x= log2(1 + 2).(2)当t € [1,2]时,2t 22t— $ + m 2t—寺> °,即m(2£—1) > —(24t—1).•/ 22t—1> °, • m> —(22t+ 1).••• t € [1,2], • —(1 + 221) € [ —17 ,—5],故m的取值范围是[—5, + ).• lg a lg a—1= 2(或lg a —1= log a1°°).21 .解(1) •••函数y = f(x)的图象经过P(3,4),• a3—1= 4, 即卩a2= 4.又a>°,所以a = 2.(2)由f(lg a) = 1°°知,a lg a—1= 1°°.• (lg a—1) lg a = 2.• lg2a—lg a —2 = °,• lg a=— 1 或lg a= 2,1 、• a=或a= 1°°.1°t丄1⑶当a>1 时,flg >f(— 2.1);1当°<a<1 时,f lg 1°° <f(— 2.1).1 —因为,fig 1°°=f(—2)= a5,••• x€ [°,1] , • t€ [1,2] •当t= 1 时,取最大值,最大值为1— 1 = °.19. 解f(x) —g(x) = 1 + log x3 —2log x2 = 1 +17•解⑴原式= -164 1 5 2 271 1 °°°523 8 34 105 X2- 331-1=52 3 2 3 2(2)原式=log x:= l°g x;x,f( — 2.1) = a ,当a>1时,y = a x 在(—^, + )上为增函数,•/ — 3>— 3.1 , ••• a —3>a—3.1.1即 f © 100 >f ( — 2.1); 当0<a<1时,y = a x 在(—m,+ m)上为减函数,•/ — 3>— 3.1 , • a —3<a—3.1,1即 f lg 而 <f ( — 2.1)- 22. (1)证明 因为f(x)的定义域为R , 所以f(x)为奇函数.10x — 10—x 102x— 1 2 f(x)=〔o x + 10-x = 1o 2x + 1= 1 — 102x+ 1.令X 2> X 1,则 2 f(X 2) — f(X 1) =(1 — ) — (1 — ' 2 102x 2+1 1'2 102x 1 + 1)小102x 2— 102x 1=2 •102x 2+ 1 102x 1+ 1 ' 因为y = 10x 为R 上的增函数,所以当 X 2>X 1 时,102x 2— 102x 1 > 0. 又因为 102X 1+ 1 > 0,102x 2+ 1> 0. 故当 X 2> X 1 时,f(X 2)— f(X 1)> 0, 即 f(X 2)> f(X 1). 所以f(x)是增函数.102x — 1⑵解令 y = f(x).由 y = 102x + 1,解 得倍=严.1 — y因为 102x > 0,所以一1 v y v 1. 即f(x)的值域为(一1,1).且 f( — x)= 10—x —诃10—x + 10x。

(完整word版)高中数学必修一第二章测试题(含答案)(word文档良心出品)

(完整word版)高中数学必修一第二章测试题(含答案)(word文档良心出品)

高中数学必修一第二 1D . y = X +函 数 的 是A . (2 ,+OO) ()B . (— 0,2)A. y =In (x+2) C[4+O )B . y =—-,x+ 1D . [3,+o )Cy=1x11.函数xy = a-1 十0, 且a 工1)的图象( )A、 y 3 y 1 y 2B 、牡 * wc 、y 1 y 3 y 2 D 、% y ?出6. F 列函数中,在区间 (0, )上为增 ( ) 章14 —7.若a<2则化简 2的结果是的是A . a p a qB . a p a qC . a 』a 乂D -a p -a q2、 已知f( 1x0二 x ,则 f( 5=)( )A 、 105B 、 510C 、 Ig10D 、Ig52a — 13 .函数y = log a x 当x>2时恒有y >1, 则a的取值范围是1口A.' a < 2 且 a = 121B . 0 ::: a 或 1 :: a 乞2C . 1 :: a乞 2 21D. a _1或0 :: a _ —24.当 a = 0 时,函数 y = ax b 和 y = b ax& 函数y = . Ig x + lg(5 — 3x)的定义域是 [05B . [0,耳C .[15、设 * =40.9,y 2 =80.48,y 3 = 1 ,则12丿A A1 r4丿它的单间是工J ■+ 00 )Doo, 0)10.函数 y = 2+ Iog 2(x 2 + 3)(x > 1)的值域、选择1 .已知p>q>1,0<a<1,则下列各式中正确 ( )A. B . - 2a — 1C. D . — 1 — 2aA C . (—3y v 3xIog4x v Iog4y+ 3的图象一定过定点15.设函数f(x)是定义在R上的奇函数,若当x€ (0, )时,f(x)= lg x,则满足f(x) > 0的x的取值范围是13.将函数y=2x的图象向左平移一个单位,得到图象C1,再将G向上平移一个单位得到图象C2,作出C2关于直线y=x对称的图象C3,贝V C3的解析式为.三、解答题17. 化简下列各式:(2)2|g 2+ |g 3(2) 1 1 .1 +2 lg 0.36 + 砂16 18. 已知f(x)为定义在[—1,1]上的奇函数,1 a 当x€ [—1,0]时,函数解析式f(x)=才—(a€ R).(1) 写出f(x)在[0,1]上的解析式;(2) 求f(x)在[0,1]上的最大值.419. 已知x> 1 且x工3,f(x) = 1 + log x3,g(x) = 2log x2,试比较f(x)与g(x)的大小.x120. 已知函数f(x)= 2 —尹|.(1) 若f(x) = 2,求x 的值;(2) 若2t f(2t)+ mf(t) > 0 对于t€[1,2]恒成立,求实数m的取值范围.21 .已知函数f(x)= a x T(a>0 且a工1).(1) 若函数y = f(x)的图象经过P(3,4) 点,求a的值;(2) 若f(lg a) = 100,求a 的值;(3) 比较f lg 盘与f( —2.1)的大小,并写出比较过程.10x—10—x22•已矢口f(x)= 10X十10-X.(1) 求证f(x)是定义域内的增函数;(2) 求f(x)的值域.答案.选择题1 —5.BDAAC 6—10.ACCCC 11 —12.DC二.填空题13 . (1,4) 14. — ^,+m15 .(—1,0) U (1 ,+^ )16. y=log2(xT)-1( )AB. Iog x3v log y3C1 1D.(4)x<(4)y二、填空题13. 函数f(x)= a x「1P,则P点的坐标是__________ .14. 函数f(x) = Iog5(2x+ 1)的单调增区间是(1)[(0.064 5厂2.5]3-17. 解2lg 2 + lg 31 + 2lg 0.62+ 4|g 242lg 2 + lg 32lg 2 + lg 31 + lg2 + lg3 —lg 10 + lg 2=2lg 2 + lg 3 = 1—2lg 2 + lg 3 —.18. 解(1) •/ f(x)为定义在[—1,1]上的奇函数,且f(x)在x= 0处有意义,•-f(0) = 0,1 a即f(0) = 40—尹=1 —a= O..・.a = 1.4 4即当 1 v x v-时,f(x) v g(x);当x>4时,3 3f(x) > g(x).20. 解(1)当x v 0 时,f(x)= 0;当x>0 时,f(x) = 2x—*.1由条件可知2x— /= 2,即22x— 2 -2x—1 =0,解得2x= 1± 2.••• 2x> 0, • x= log2(1 + 2)./ 2t 1、f t 1(2)当t € [1,2]时,2 2 —尹 + m 2—2> 0,即m©—1) > —(24t—1).•/ 22—1> 0, • m> —(22t+ 1).•-1 € [1,2], • —(1 + 221) € [ —17 ,—5],故m的取值范围是[—5, + ).• lg a lg a—1= 2(或lg a —1= log a100).设x€ [0,1],则一x€ [ —1,0].21 .解(1) •••函数y = f(x)的图象经过又f( —x) = —f(x),—f(x)= 4x—2x.••• f(x) = 2x—4x.(2)当x€ [0,1] , f(x) = 2x—4x= 2x—(2x)2,•••设t= 2x(t> 0),则f(t)=t —『.••• x€ [0,1] , • t€ [1,2] •当t= 1 时,取最大值,最大值为 1 — 1 = 0.19. 解f(x) —g(x) = 1 + Iog x3 —2log x2 = 1 +log x4= log x4x,4 3 3当 1 v x v §时,4X V 1, • log^x v 0; P(3,4),• a31= 4, 即卩a2= 4.又a>0 ,所以a = 2.(2)原式=1 + lg2 X 310+ lg 2--f(— x)=⑴原式竝蟲升5卜眾(2)由f(lg a) = 100 知,a lg a」100. • (lg a—1) lg a = 2.• lg a—lg a — 2 = 0,• lg a=— 1 或lg a= 2,1 • a=或a= 100.10⑶当a>1 时,fig 盘>f(— 2.1);当x>4时,4x> 1, 3•- log x4x>0. 因为,f lg =f(—2)=a 3,当0<a<1 时,f lg f( —2.1).—3.1f( —2.1) = a ,当a>1时,y= a x在(—^, + )上为增函数,•/ —3>— 3.1 , ••• a—3>a—3.1.即f g疵>f(—巾;当0<a<1时,y= a x在(—m,+ m)上为减函数,•/ —3>— 3.1 , • a—3<a—3.1,即f g盅<f(—巾-22. (1)证明因为f(x)的定义域为R,口10—X—10x且f( —x) = —x x =—f(x),10 x+ 10x所以f(x)为奇函数.10x—10—x 102x— 1 2 f(x)= 10x+ 10-x- 1o2x+ 1= 1 —102x+ 1. 令X2> X1,则2f(X2)—f(x1)= (1 —102x2+ 1 ) —(1 —2102X1 + 1)- 102x2—102xi—2 • 102x2 + 1 102xi+ 1 .因为y= 10x为R上的增函数,所以当X2> X1 时,102x2 —102x1 > 0.又因为102x1+ 1 > 0,102X2+ 1> 0.故当X2> X1 时,f(X2)—f(X1)> 0,即f(X2)> f(X1).所以f(x)是增函数.102x— 1 “⑵解令y= f(x).由y=岳TR,解得102x-严.1 —y因为102x> 0,所以一1 v y v 1.即f(x)的值域为(一1,1).。

高中数学必修一第二章测试题正式

高中数学必修一第二章测试题正式

高中数学必修一第二章测试题正式Last updated on the afternoon of January 3, 2021秀全中学2012——2013学年第一学期高一数学第二章单元检测(满分120分)一、选择题(本大题共10小题,每小题4分,共40分。

在每小题只有一项是符合要求的)1.函数32+=-x a y (a >0且a ≠1)的图象必经过点 (A )(0,1) (B )(1,1)(C )(2,3) (D )(2,4) 2.函数lg y x =A.是偶函数,在区间(,0)-∞上单调递增B.是偶函数,在区间(,0)-∞上单调递减C.是奇函数,在区间(0,)+∞上单调递增D .是奇函数,在区间(0,)+∞上单调递减3.三个数60.70.70.76log 6,,的大小关系为 60.70.70.7log 66<<.60.70.7log 60.76<<C .0.760.7log 660.7<<D .60.70.70.76log 6<<4.函数y =A .[1,)+∞B .2(,)3+∞C .2(,1]3D .2[,1]35、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是 (A )y =(0.9576)100x (B )y =(0.9576)100x (C )y =()x (D )y =1-(0.0424)100x6、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a = (A )(B )2(C )3(D )7、下列函数中,在区间(0,2)上不是增函数的是 (A )0.5log (3)y x =-(B )12+=x y (C )2x y -=(D )x y 22=1009576.021318、函数与()在同一坐标系中的图像只可能是;;;。

9、对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③1212()()f x f x x x -->0;④1212()()()22x x f x f x f ++<. 当f (x )=lo g 2x 时,上述结论中正确结论的序号选项是 (A ) ①④ (B )②④(C )②③(D )①③10、已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)7二、填空题(本大题共5小题,每小题4分,共20分)11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是 12.函数1-+=m a y x (a>1且m<0),则其图象不经过第_________象限 13、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为.14、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________ 15.函数y=)124(log 221-+x x 的单调递增区间是.高一数学第二章单元测试题答卷(2012-10)班别___________学号___________姓名_____________分数_____二、 填空题(20分) 11、;12;13xa y =xy a log -=1,0≠>a a 且14;15三、解答题(解答应写出文字说明,证明过程或演算步骤)共60分 16.(本题满分10分)计算:(1)013312log log 12(0.7)0.252-+-+(2))6)(2(31212132b a b a -÷)3(6561b a-17、已知m >1,试比较(lg m )与(lg m )的大小.(10分) 18、(15分)已知)1()(>+=-a a a x f x x(Ⅰ)证明函数f (x )的图象关于y 轴对称;(5分)(Ⅱ)判断()f x 在(0,)+∞上的单调性,并用定义加以证明;(6分) (Ⅲ)当x ∈[-2,-1]时函数f (x )的最大值为25,求此时a 的值.(4分)19.(15分)已知定义域为R 的函数f (x )=ab-x x +2+21+是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围20(10分).如图,A ,B ,C 为函数x y 21log =的图象上的三点,它们的横坐标分别是t ,t +2,t +4(t ≥1).(1)设∆ABC 的面积为S 求S=f (t ); (2)判断函数S=f (t )的单调性;(3)求S=f (t)的最大值.测试题答案一、选择题:(40分)二、填空题(20分)11.(0,1)12.二21xy =21)6,(--∞三、解答题(解答应写出文字说明,证明过程或演算步骤)共60分 16.解:(1)原式=。

完整word版,高中数学必修一第二章测试题(含答案)(K12教育文档)

完整word版,高中数学必修一第二章测试题(含答案)(K12教育文档)

完整word版,高中数学必修一第二章测试题(含答案)(word版可编辑修改) 完整word版,高中数学必修一第二章测试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(完整word版,高中数学必修一第二章测试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为完整word版,高中数学必修一第二章测试题(含答案)(word版可编辑修改)的全部内容。

高中数学必修一第二章测试题(2)一、选择题: 1.已知p 〉q >1,0<a 〈1,则下列各式中正确的是 ( ) A .q p a a > B .aa q p >C .q p a a -->D .a a q p -->2、已知(10)x f x =,则(5)f =( ) A 、510 B 、105C 、lg10D 、lg 53.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是 ( )A .1221≠≤≤a a 且 B .02121≤<≤<a a 或C .21≤<aD .2101≤<≥a a 或4.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是( )5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>6. 下列函数中,在区间(0,+∞)上为增函数的是 ( )A.y =ln(x +2) B .y =-错误!C .y =错误!xD .y =x +错误!7. 若a 〈12,则化简错误!的结果是 ( )A.错误! B .-错误! C 。

高一数学必修一第二章测试题及答案

高一数学必修一第二章测试题及答案

人教版高中数学必修一第二章 《一元二次函数、方程和不等式》测试题及答案解析(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式x 2≥2x 的解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2}解析:选D 由x 2≥2x 得x (x -2)≥0,解得x ≤0或x ≥2,故选D. 2.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >BD .A >B解析:选B ∵A-B =a 2+3ab -(4ab -b 2)=⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,∴A ≥B.3.不等式组⎩⎨⎧x 2-1<0,x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:选C 由⎩⎨⎧x2-1<0,x2-3x<0,得⎩⎨⎧-1<x<1,0<x<3,所以0<x<1,即不等式组的解集为{x|0<x<1},故选C.4.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是( ) A .{x |x <5a 或x >-a } B .{x |x >5a 或x <-a } C .{x |-a <x <5a }D .{x |5a <x <-a }解析:选A 方程x 2-4ax -5a 2=0的两根为-a ,5a.因为2a +1<0,所以a<-12,所以-a>5a.结合二次函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x|x<5a 或x>-a},故选A.5.已知a ,b ,c ∈R ,则下列说法中错误的是( ) A .a >b ⇒ac 2≥bc 2 B.a c >b c,c <0⇒a <b C .a 3>b 3,ab >0⇒1a <1bD .a 2>b 2,ab >0⇒1a <1b解析:选D 对于A ,c 2≥0,则由a>b 可得ac 2≥bc 2,故A 中说法正确; 对于B ,由a c >b c ,得a c -b c =a -bc >0,当c<0时,有a -b<0,则a<b ,故B 中说法正确;对于C ,∵a 3>b 3,ab>0,∴a 3>b 3两边同乘1a3b3,得到1b3>1a3,∴1a <1b,故C 中说法正确;对于D ,∵a 2>b 2,ab>0,∴a 2>b 2两边同乘1a2b2, 得到1b2>1a2,不一定有1a <1b,故D 中说法错误.故选D.6.若关于x 的一元二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( )A .m ≤-2或m ≥2B .-2≤m ≤2C .m <-2或m >2D .-2<m <2解析:选B 因为不等式x 2+mx +1≥0的解集为R ,所以Δ=m 2-4≤0,解得-2≤m≤2.7.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-300x +80 000,为使平均处理成本最低,该厂每月处理量应为( )A .300吨B .400吨C .500吨D .600吨解析:选B 由题意,月处理成本y(元)与月处理量x(吨)的函数关系为y=12x 2-300x +80 000,所以平均处理成本为s =y x =12x2-300x +80 000x =x 2+80 000x -300,其中300≤x≤600,又x 2+80 000x-300≥2x 2·80 000x-300=400-300=100,当且仅当x 2=80 000x 时等号成立,所以x =400时,平均处理成本最低.故选B.8.设正数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y-2z的最大值是( ) A .0 B .1 C.94D .3解析:选B 由题意得xy z =xy x2-3xy +4y2=1x y +4y x -3≤14-3=1,当且仅当x=2y 时,等号成立,此时z =2y 2.故2x +1y -2z =-1y2+2y =-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时,等号成立,故所求的最大值为1.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知不等式ax 2+bx +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2,则下列结论正确的是( )A .a >0B .b >0C .c >0D .a +b +c >0解析:选BCD 因为不等式ax 2+bx +c>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2,故相应的二次函数y =ax 2+bx +c 的图象开口向下,所以a<0,故A 错误;易知2和-12是关于x 的方程ax 2+bx +c =0的两个根,则有c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,-b a =2+⎝ ⎛⎭⎪⎫-12=32>0,又a<0,故b>0,c>0,故B 、C 正确;因为ca =-1,所以a +c =0,又b>0,所以a +b +c>0,故D 正确.故选B 、C 、D.10.下列结论中正确的有( )A .若a ,b 为正实数,a ≠b ,则a 3+b 3>a 2b +ab 2B .若a ,b ,m 为正实数,a <b ,则a +m b +m <a bC .若a c 2>bc2,则a >bD .当x >0时,x +2x的最小值为2 2解析:选ACD 对于A ,∵a ,b 为正实数,a ≠b ,∴a 3+b 3-(a 2b +ab 2)=(a -b)2(a +b)>0,∴a 3+b 3>a 2b +ab 2,故A 正确;对于B ,若a ,b ,m 为正实数,a<b ,则a +m b +m -a b =m (b -a )b (b +m )>0,则a +m b +m >ab,故B 错误;对于C ,若a c2>bc2,则a>b ,故C 正确; 对于D ,当x>0时,x +2x 的最小值为22,当且仅当x =2时取等号,故D正确.故选A 、C 、D.11.下列各式中,最大值是12的是( )A .y =x 2+116x 2B .y =x 1-x 2(0≤x ≤1)C .y =x 2x 4+1D .y =x +4x +2(x >-2) 解析:选BCA中,y =x 2+116x2≥2x2·116x2=12⎝ ⎛⎭⎪⎫当且仅当x =±12时取等号,因此式子无最大值;B 中,y 2=x 2(1-x2)≤⎝⎛⎭⎪⎫x2+1-x222=14,y ≥0, ∴0≤y ≤12,当且仅当x =22时y 取到最大值12; C 中,当x =0时,y =0,当x≠0时,y =1x2+1x2≤12x2·1x2=12,当且仅当x =±1时y 取到最大值12;D 中,y =x +4x +2=x +2+4x +2-2≥2(x +2)·4x +2-2=2(x>-2)(当且仅当x =0时取等号),无最大值,故选B 、C.12.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏,若售价每提高1元,则日销售量将减少2盏.为了使这批台灯每天获得400元以上(不含400)的销售收入,则这批台灯的售价x (元)的取值可以是( )A .10B .15C .16D .20解析:选BC 设这批台灯的售价定为x 元,x ≥15,则[30-(x -15)×2]·x>400,即x 2-30x +200<0,因为方程 x 2-30x +200=0的两根分别为x 1=10,x 2=20,所以x 2-30x +200<0的解集为{x|10<x<20},又因为x≥15,所以15≤x<20.故选B 、C.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知a >b ,a -1a >b -1b同时成立,则ab 应满足的条件是________.解析:因为a -1a >b -1b ,所以⎝ ⎛⎭⎪⎫a -1a -⎝ ⎛⎭⎪⎫b -1b =(a -b )(ab +1)ab >0.又a>b ,即a -b>0,所以ab +1ab>0,从而ab(ab +1)>0,所以ab<-1或ab>0.答案:ab<-1或ab>014.一个大于50小于60的两位数,其个位数字b 比十位数字a 大2.则这个两位数为________.解析:由题意知⎩⎨⎧50<10a +b<60,b -a =2,0<a ≤9,0≤b ≤9,解得4411<a<5311. 又a∈N*,∴a =5.∴b =7,∴所求的两位数为57. 答案:5715.一元二次不等式x 2+ax +b >0的解集为{x |x <-3或x >1},则a +b =________,一元一次不等式ax +b <0的解集为________.解析:由题意知,-3和1是方程x 2+ax +b =0的两根, 所以⎩⎨⎧-3+1=-a ,-3×1=b ,解得⎩⎨⎧a =2,b =-3, 故a +b =-1.不等式ax +b<0即为2x -3<0, 所以x<32.答案:-1⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<32 16.已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为________. 解析:因为x ,y 为正数,且x +2y =2,所以x 2+y =1,所以x +8yxy =⎝ ⎛⎭⎪⎫1y +8x ·⎝ ⎛⎭⎪⎫x 2+y =x 2y +8yx +5≥2x 2y ·8y x +5=9,当且仅当x =4y =43时,等号成立,所以x +8yxy的最小值为9. 答案:9四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解:(1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2. (2)原不等式可化为2x 2-x -1≥0. 所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≤-12或x≥1.18.(本小题满分12分)当p ,q 都为正数且p +q =1时,试比较代数式(px +qy )2与px 2+qy 2的大小.解:(px +qy)2-(px 2+qy 2)=p(p -1)x 2+q(q -1)y 2+2pqxy. 因为p +q =1,所以p -1=-q ,q -1=-p ,所以(px +qy)2-(px 2+qy 2)=-pq(x 2+y 2-2xy)=-pq(x -y)2. 因为p ,q 都为正数,所以-pq(x -y)2≤0,因此(px +qy)2≤px 2+qy 2,当且仅当x =y 时等号成立.19.(本小题满分12分)已知关于x 的方程x 2-2x +a =0.当a 为何值时, (1)方程的一个根大于1,另一个根小于1?(2)方程的一个根大于-1且小于1,另一个根大于2且小于3?解:(1)已知方程的一个根大于1,另一个根小于1,结合二次函数y =x 2-2x +a 的图象(如图所示)知,当x =1时,函数值小于0,即12-2+a<0,所以a<1.因此a 的取值范围是{a|a<1}.(2)由方程的一个根大于-1且小于1,另一个根大于2且小于3,结合二次函数y =x 2-2x +a 的图象(如图所示)知,x 取-1,3时函数值为正,x 取1,2时函数值为负,即⎩⎨⎧1+2+a>0,1-2+a<0,4-4+a<0,9-6+a>0,解得-3<a<0.因此a 的取值范围是{a|-3<a<0}.20.(本小题满分12分)已知a >0,b >0且1a +2b=1.(1)求ab 的最小值; (2)求a +b 的最小值.解:(1)因为a>0,b>0且1a +2b =1,所以1a +2b≥21a ·2b=22ab,则22ab≤1, 即ab≥8,当且仅当⎩⎪⎨⎪⎧1a +2b =1,1a =2b ,即⎩⎨⎧a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a>0,b>0且1a +2b =1,所以a +b =⎝ ⎛⎭⎪⎫1a +2b (a +b)=3+b a +2ab≥3+2b a ·2ab=3+22, 当且仅当⎩⎪⎨⎪⎧1a +2b =1,b a =2a b ,即⎩⎪⎨⎪⎧a =1+2,b =2+2时取等号,所以a +b 的最小值是3+2 2.21.(本小题满分12分)设y =ax 2+(1-a )x +a -2.(1)若不等式y ≥-2对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式ax 2+(1-a )x +a -2<a -1(a ∈R).解:(1)ax 2+(1-a)x +a -2≥-2对于一切实数x 恒成立等价于ax 2+(1-a)x +a≥0对于一切实数x 恒成立.当a =0时,不等式可化为x≥0,不满足题意; 当a≠0时,由题意得⎩⎨⎧a>0,(1-a )2-4a2≤0,解得a≥13.所以实数a的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥13.(2)不等式ax 2+(1-a)x +a -2<a -1等价于ax 2+(1-a)x -1<0. 当a =0时,不等式可化为x<1,所以不等式的解集为{x|x<1}; 当a>0时,不等式可化为(ax +1)(x -1)<0,此时-1a<1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1; 当a<0时,不等式可化为(ax +1)(x -1)<0,①当a =-1时,-1a=1,不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;③当a<-1时,-1a <1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1. 综上所述,当a<-1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1;当a =-1时,不等式的解集为{x|x≠1};当-1<a<0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;当a =0时,不等式的解集为{x|x<1};当a>0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1. 22.(本小题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的关系式为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W (万元)与年广告费x (万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少? 解:(1)由题意可得,每年产品的生产成本为(32Q +3)万元,每万件销售价为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%万元, ∴年销售收入为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%·Q =32(32Q +3)+12x , ∴W =32(32Q +3)+12x -(32Q +3)-x=12(32Q +3)-12x =12(32Q +3-x) =-x2+98x +352(x +1)(x≥0).(2)由(1)得,W =-x2+98x +352(x +1)=-(x +1)2+100(x +1)-642(x +1)=-x +12-32x +1+50.∵x +1≥1,∴x +12+32x +1≥2x +12·32x +1=8, ∴W ≤42,当且仅当x +12=32x +1,即x =7时,W 有最大值42,即当年广告费投入7万元时,企业年利润最大,最大年利润为42万元.。

高一人教版数学必修一第二章检测题(附答案).

高一人教版数学必修一第二章检测题(附答案).

章末检测一、选择题1. 下列函数中,在区间(0,+∞)上为增函数的是 ( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x2. 若a <12,则化简4(2a -1)2的结果是 ( )A.2a -1 B .-2a -1 C.1-2a D .-1-2a3. 函数y =lg x +lg(5-3x )的定义域是 ( )A .[0,53)B .[0,53]C .[1,53)D .[1,53]4.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对5. 幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是 ( ) A .(0,+∞) B .[0,+∞) C .(-∞,0) D .(-∞,+∞)6. 函数y =2+log 2(x 2+3)(x ≥1)的值域为 ( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)7. 比较1.513.1、23.1、213.1的大小关系是 ( )A .23.1<213.1<1.513.1 B .1.513.1<23.1<213.1C .1.513.1<213.1<23.1D .213.1<1.513.1<23.18. 函数y =a x -1a(a >0,且a ≠1)的图象可能是 ( )9. 若0<x <y <1,则 ( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4yD .(14)x <(14)y10.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是 ( )A .(0,10) B.⎝⎛⎭⎫110,10 C.⎝⎛⎭⎫110,+∞ D.⎝⎛⎭⎫0,110∪(10,+∞) 11.方程log 2x +log 2(x -1)=1的解集为M ,方程22x +1-9·2x +4=0的解集为N ,那么M 与N的关系是 ( ) A .M =N B .M N C .M N D .M ∩N =∅12.设偶函数f (x )=log a |x +b |在(0,+∞)上具有单调性,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)=f (a +1)B .f (b -2)>f (a +1)C .f (b -2)<f (a +1)D .不能确定 二、填空题13.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是________. 14.函数f (x )=log 5(2x +1)的单调增区间是________.15.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是______.16.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.三、解答题 17.化简下列各式:(1)[(0.06415)-2.5]23-3338-π0;(2)2lg 2+lg 31+12 lg 0.36+14lg 16.18.已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R ).(1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.19.已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.20.已知函数f (x )=2x -12|x |.(1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 21.已知函数f (x )=a x -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过P (3,4)点,求a 的值; (2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 22.已知f (x )=10x -10-x10x +10-x.(1)求证f (x )是定义域内的增函数; (2)求f (x )的值域.答案1.A 2.C 3.C 4.B 5.C 6.C 7.D 8.D 9.C 10.D 11.B 12.C 13.(1,4) 14.⎝⎛⎭⎫-12,+∞ 15.(-1,0)∪(1,+∞)16.15417.解 (1)原式=⎩⎨⎧⎭⎬⎫⎣⎡⎦⎤⎝⎛⎭⎫641 00015-5223-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫410315×⎝⎛⎭⎫-52×23-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0. (2)原式=2lg 2+lg 31+12lg 0.62+14lg 24=2lg 2+lg 31+lg 2×310+lg 2=2lg 2+lg 31+lg 2+lg 3-lg 10+lg 2=2lg 2+lg 32lg 2+lg 3=1.18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a20=1-a =0.∴a =1.设x ∈[0,1],则-x ∈[-1,0]. ∴f (-x )=14-x -12-x =4x -2x .又∵f (-x )=-f (x ), ∴-f (x )=4x -2x . ∴f (x )=2x -4x .(2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2, ∴设t =2x (t >0),则f (t )=t -t 2.∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0. 19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x =1±2.∵2x >0,∴x =log 2(1+2).(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1). ∵22t -1>0,∴m ≥-(22t +1).∵t ∈[1,2], ∴-(1+22t )∈[-17,-5], 故m 的取值范围是[-5,+∞). ∴lg a lg a -1=2(或lg a -1=log a 100).21.解 (1)∵函数y =f (x )的图象经过P (3,4),∴a 3-1=4,即a 2=4. 又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100. ∴(lg a -1)·lg a =2. ∴lg 2a -lg a -2=0, ∴lg a =-1或lg a =2, ∴a =110或a =100.(3)当a >1时,f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,f ⎝⎛⎭⎫lg 1100<f (-2.1). 因为,f ⎝⎛⎭⎫lg 1100=f (-2)=a -3, f (-2.1)=a-3.1,当a >1时,y =a x 在(-∞,+∞)上为增函数, ∵-3>-3.1,∴a -3>a-3.1.即f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a-3.1,即f ⎝⎛⎭⎫lg 1100<f (-2.1). 22.(1)证明 因为f (x )的定义域为R ,且f (-x )=10-x -10x 10-x +10x =-f (x ),所以f (x )为奇函数.f (x )=10x -10-x 10x +10-x =102x -1102x +1=1-2102x +1. 令x 2>x 1,则 f (x 2)-f (x 1)=(1-2102x 2+1)-(1-2102x 1+1)=2·102x 2-102x 1(102x 2+1)(102x 1+1).因为y =10x 为R 上的增函数, 所以当x 2>x 1时,102x 2-102x 1>0. 又因为102x 1+1>0,102x 2+1>0. 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1). 所以f (x )是增函数.(2)解 令y =f (x ).由y =102x -1102x +1,解得102x =1+y1-y .因为102x >0,所以-1<y <1.。

高一数学必修1第二章单元测试题.doc

高一数学必修1第二章单元测试题.doc

高一数学必修1第二章单元测试题(A 卷)班级 姓名 分数一、选择题:(每小题5分,共30分)。

1.若0a >,且,m n 为整数,则下列各式中正确的是 ( ) A 、m mnnaa a÷= B 、nm n maa a⋅=⋅ C 、()nm m n a a += D 、01n n a a -÷=2.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 3.式子82log 9log 3的值为 ( )(A )23 (B )32(C )2 (D )34.已知(10)xf x =,则()100f = ( )A 、100B 、10010C 、lg10D 、25.已知0<a <1,log log 0a a m n <<,则( ).A .1<n <mB .1<m <nC .m <n <1D .n <m <16.已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 二、填空题:请把答案填在题中横线上(每小题5分,共20分).7.若24log =x ,则x = . 8.则,3lg 4lg lg +=x x = .9.函数2)23x (lg )x (f +-=恒过定点 。

10.已知37222--<x x , 则x 的取值范围为 。

三、解答题:解答应写出文字说明、证明过程或演算步骤(共50分). 11.(16分)计算:(1)7log 263log 33-; (2)63735a a a ÷⋅;12.(16分)解不等式:(1)13232)1()1(-++<+x x a a (0≠a )13.(18分)已知函数f (x )=)2(log 2-x a , 若(f 2)=1;(1) 求a 的值; (2)求)23(f 的值;(3)解不等式)2()(+<x f x f .14.(附加题)已知函数()22xax bf x +=+,且f (1)=52,f (2)=174.(1)求a b 、;(2)判断f (x )的奇偶性;(3)试判断函数在(,0]-∞上的单调性,并证明;高一数学必修1第二章单元测试题(B 卷)班级 姓名 分数一、选择题:(每小题5分,共30分)。

(完整word版)高中数学必修一第二章测试题(正式)

(完整word版)高中数学必修一第二章测试题(正式)

秀全中学2012—— 2013学年第一学期高一数学第二章单元检测(满分120分)、选择题(本大题共10小题,每小题4分,共40分。

在每小题只有一项是符合要求的)1 •函数y a x 23 ( a >0且a 丰1)的图象必经过点(A )( 0,1 )( B ) (1,1) ( C ) (2,3)2.函数y |g xA •是偶函数,在区间(,0)上单调递增 C.是奇函数,在区间(0,)上单调递增60 73•三个数0.7 ,6 . , log 0.7 6的大小关系为A. 0.76log 0.7 6 60.7B. log 0.7 6B.是偶函数,在区间(,0)上单调递减 D •是奇函数,在区间(0,)上单调递减0.76 60.70.7660.7C. log 0.7 6 6 0.7D. 0.7 6log 0.7 64•函数y log 1(3x 2)的定义域是22 2A [1,)B • (-,) C . (-,1] D . [-,1]3 3 35、已知镭经过100年,剩留原来质量的 95• 76%设质量为1的镭经过x 年的剩留量为y ,贝U y 与x的函数关系是(a 0,且a 1)在同一坐标系中的图像只可能是(A ) y =(0 • 9576) 100(B ) y =(0 • 9576)100x( C )(D) y =1—( 0 • 0424) 1006、函数 y =g g a x 在[1,3] (A )2上的最大值与最小值的和为1,则a (B ) (C ) 3(D )7、下列函数中,在区间( 0, 上不是增函数的是 (A ) y log% x)(B )x 2 1 (0 yx 2 (D ) 2xy 2(D ) (2,4) 8、函数y a x 与 y log a x① f (X l +X 2)=f (X i )+f (X 2); ② f (X i • X 2)=f (X l )+ f ( X 2 )二、填空题(本大题共5小题,每小题4分,共20分)11 •已知函数f (x )的定义域是(1, 2),则函数f(2X )的定义域是 ___________________________ 12. 函数y a x m 1 (a>1且m<0,则其图象不经过第 ___________________ 象限13、 已知幕函数y f(x)的图象经过点(3, .3),那么这个幕函数的解析式为 __________________ .XC1 14设 g(x) e,X 0-则 g(g(-))________In x, x 0.215•函数y=log 1 (x 1 2 4x 12)的单调递增区间是2④ f (X 1 X 2 ) f(X 1) f(X 2).2 2当f (x )=lo g 2 X 时,上述结论中正确结论的序号选项是X 1,X 2 9、对于函数f (x )定义域中任意的 (X i M X 2),有如下结论:③ f(x) f(X 2)>0;X 1 X 2(A) ①④ (B )②④ (C )②③ (D )①③10、已知 f(x)(3a log1)x x,x 4a, x1 )上的减函数,那么 a 的取值范围是(A ) (0,1)(B )1(0,3)(Q[7,3)(D )$1)高一数学第二章单元测试题答卷(2012-10)15 _______________三、解答题(解答应写出文字说明,证明过程或演算步骤 )共60分16.(本题满分10分)计算:2 1 1 1 ] £班别 ___________ 学号 ______________二、 填空题(20分)姓名 _____________ 分数 _______11、1213 _________________14(1)2iog3^ iog312 (0.7)0 0.25 1(2)(2a3b2)( 6a2b3)十(3a6b6)217、已知m>1,试比较(Ig m)0.9与(Ig m)0.8的大小.(10分)18、( 15分)已知f(x) a x a x(a 1)(I)证明函数f ( x )的图象关于y轴对称;(5分)(n)判断f(x)在(0,)上的单调性,并用定义加以证明;(6分)(川)当x € [—2, - 1]时函数f (X )的最大值为5,求此时a的值.2(4分)—2 + b19.( 15分)已知定义域为R的函数f(x)= 丄厂b是奇函数.2x+1+ a(1) 求a, b的值;⑵若对任意的t € R,不等式f(t2—2t) + f (2t2—k) V 0恒成立,求k的取值范围20 (10分).如图,A, B, C为函数y log 1 x的图象上的三点,2它们的横坐标分别是t, t+2, t+4(t 1).(1) 设ABC勺面积为S求S=f (t);(2) 判断函数S=f ( t)的单调性;(3) 求S=f (t)的最大值.测试题答案111. (0, 1)12.二13. y x214. - 15. (, 6)2_三、解答题(解答应写出文字说明,证明过程或演算步骤)共60分16.解:(1)原式=。

人教版高中数学必修1第二章单元测试(二)- Word版含答案

人教版高中数学必修1第二章单元测试(二)- Word版含答案

高中数学高中数学2018-2019学年必修一第二章训练卷基本初等函数(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1)ABCD2.三个数21log 5,0.12,0.22的大小关系是( )A .0.10.221log <2<25B .0.20.121log <225<C .0.10.2212<2log 5<D .0.10.2212<log 25<3.设集合2R {|}x A y y x ∈==,,21{|}0B x x <=-,则A B =( )A .()1,1-B .()0,1C .()1-∞,+D .(0)∞,+4.已知23xy=,则xy =( )A .lg 2lg 3B .lg 3lg 2C .2lg 3D .3lg 25.函数()ln f x x x =的图象大致是( )6.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则( ) A .()f x 与()g x 均为偶函数 B .()f x 为奇函数,()g x 为偶函数 C .()f x 与()g x 均为奇函数 D .()f x 为偶函数,()g x 为奇函数 7.函数121(22)m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .28.下列各函数中,值域为(0)∞,+的是( ) A .22x y -=B.y =C .21y x x =++D .113x y +=9.已知函数:①2xy =;②2log y x =;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()22log ()12f f -+=( )A .3B .6C .9D .1211.已知函数()22()1122xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠都有()()1212f x f x x x -<0-成立,则实数a 的取值范围为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .()2-∞,B .13,8⎛⎤-∞ ⎥⎝⎦C .(2]-∞,-D .13,28⎡⎫⎪⎢⎣⎭12.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点()1,1M ,()1,2N ,()2,1P ,()2,2Q ,1G 2,2⎛⎫⎪⎝⎭中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知124(0)9a a =>,则23log a =________.14.已知函数2log 0()30xxx f x x >⎧⎪⎨≤⎪⎩,则14f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________. 15.若函数212log (35)y x ax =-+在[)1-∞,+上是减函数,则实数a 的取值范围是________.16.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2, 则点D 的坐标为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)3130.5log 511lg 81273-⎛⎫+++ ⎪⎝⎭.18.(12分)已知函数1()=2axf x ⎛⎫⎪⎝⎭,a 为常数,且函数的图象过点()1,2-.(1)求a 的值;(2)若()42x g x --=,且g (x )=f (x ),求满足条件的x 的值.高中数学高中数学19.(12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(12分)求使不等式2821x x a a --⎛⎫> ⎪⎝⎭成立的x 的集合(其中a >0,且a ≠1).21.(12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.22.(12分)若函数f(x)满足21(log)1aaf x xxa⎛⎫=⋅-⎪-⎝⎭(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围.高中数学基本初等函数(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】因为0a >,所以B .2.【答案】A【解析】∵21log <05,0.10.2022<<,∴0.10.221log <2<25,故选A .3.【答案】C【解析】{}2R {|}0|x A y y x y y ∈>==,=.2{|}{1011|}B x x x x <<<=-=-, ∴{}0111|{|}{|}AB x x x x x x ><<>=-=-,故选C .4.【答案】B【解析】由23x y =得lg 2lg3x y =,∴lg2lg3x y =,∴lg3lg 2x y =,故选B . 5.【答案】A【解析】由()ln l ()n ||f x x x x x f x --=-=-=-知,函数()f x 是奇函数,故排除C ,D ,又110f e e ⎛⎫=-< ⎪⎝⎭,从而排除B ,故选A .6.【答案】D【解析】因为()()33x x f x f x --=+=,()()33x x g x g x ---==-,所以()f x 是偶函数, ()g x 为奇函数,故选D .7.【答案】B【解析】因为函数121(22)m y m m x -=+-是幂函数,所以2221m m -+=且1m ≠,解得3m =-.故选B . 8.【答案】A⎝⎭B ,因为120x -≥,所以21x ≤,0x ≤,y =(0],-∞, 所以021x <≤,所以0121x ≤-<,所以y =[)0,1.C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是3,4⎡⎫+∞⎪⎢⎣⎭,D ,因为()()1,00,1x ∈-∞+∞+,所以113x y +=的值域是()0,11()∞,+.故选A .9.【答案】D【解析】根据幂函数、指数函数、对数函数的图象可知选D . 10.【答案】C【解析】221log ()(())223f -+--==,()221216log log 2log 12226f -===, ∴()22log (19)2f f -+=,故选C . 11.【答案】B【解析】由题意知函数()f x 是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤-⎪ ⎪⎝⎭⎩由此解得138a ≤,即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦,选B .12.【答案】C【解析】设指数函数为()01x y a a a >≠=,,显然不过点M 、P ,若设对数函数为()log 01b y x b b >≠=,,显然不过N 点,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】4【解析】∵124(0)9a a =>,∴2221223a ⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦,即423a ⎛⎫= ⎪⎝⎭,∴422332log log 4.3a ⎛⎫== ⎪⎝⎭14.【答案】19【解析】∵14>0,∴211log 244f ⎛⎫==- ⎪⎝⎭.则104f ⎛⎫< ⎪⎝⎭,∴211349f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.15.【答案】(]86-,-【解析】令()235g x x ax =-+,其对称轴为直线6a x =,依题意,有()1610ag ⎧≤-⎪⎨⎪->⎩,即68a a ≤-⎧⎨>-⎩,∴86(]a ∈-,-.16.【答案】11,24⎛⎫⎪⎝⎭【解析】由图象可知,点(),2A A x在函数y x =的图象上,所以2A x =,212A x ==⎝⎭,点(),2B B x 在函数12y x =的图象上,所以122B x =,4B x =. 点()4C C y ,在函数xy =⎝⎭的图象上,所以414C y ==⎝⎭. 又12D A x x ==,14D C y y ==,所以点D 的坐标为11,24⎛⎫⎪⎝⎭.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析. 【解析】原式3310.5log 5253log 1431(3)231lg3lg3lg3(3()03).5---++=++-++325log 6362531=+=+=.18.【答案】(1)1;(2)-1. 【解析】(1)由已知得122a-⎛⎫= ⎪⎝⎭,解得a =1.(2)由(1)知1()2x f x ⎛⎫= ⎪⎝⎭,又g (x )=f (x ),则1422x x -⎛⎫-= ⎪⎝⎭,即112=42x x⎛⎫⎛⎫--0 ⎪ ⎪⎝⎭⎝⎭,即 2112022x x ⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令12xt ⎛⎫= ⎪⎝⎭,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即122x⎛⎫= ⎪⎝⎭,解得x =-1.19.【答案】(1)最小值为2,最大值为6;(2)见解析. 【解析】(1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数, 因此当x =3时,f (x )最小值为2.当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x )当a >1时,log a (1+x )>log a (1-x ),满足111010x xx x +>-⎧⎪+>⎨⎪->⎩∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ),满足111010x x x x +<-⎧⎪+>⎨⎪->⎩∴-1<x <0综上a >1时,解集为{x |0<x <1},0<a <1时解集为{x |-1<x <0}. 20.【答案】见解析. 【解析】∵22881x x a a --⎛⎫= ⎪⎝⎭,∴原不等式化为282x x a a -->,当a >1时,函数y =a x 是增函数,∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数,∴8-x 2<-2x ,解得x <-2或x >4.故当a >1时,x 的集合是{x |-2<x <4};当0<a <1时,x 的集合是{x |x <-2或x >4}. 21.【答案】(1)g (x )=2222x x -+,{x |0≤x ≤1}(2)-3,-4. 【解析】(1)∵f (x )=2x ,∴g (x )=f (2x )-f (x +2)=2222x x -+. 因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1.于是g (x )的定义域为{x |0≤x ≤1}. (2)设g (x )=(2x )2-4×2x =(2x -2)2-4.∵x ∈[0,1],∴2x ∈[1,2],∴当2x =2,即x =1时,g (x )取得最小值-4; 当2x =1,即x =0时,g (x )取得最大值-3.高中数学22.【答案】(1)2()()1x xa f x a a a -=-- (x ∈R ),见解析;(2))(21,23⎡⎤+⎣. 【解析】(1)令log a x =t (t ∈R ),则x =a t ,∴2()()1t t af t a a a -=--. ∴2()()1x xa f x a a a -=-- (x ∈R ). ∵()22()()()11x xx x a a f x a a a a f x a a ---=-=--=---,∴f (x )为奇函数. 当a >1时,y =a x 为增函数,x y a -=-为增函数,且201aa >-,∴f (x )为增函数. 当0<a <1时,y =a x 为减函数x y a -=-为减函数,且201aa <-, ∴f (x )为增函数.∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即2224()1a a a a --≤-,∴422141a a a a ⎛⎫-≤ ⎪-⎝⎭,∴a 2+1≤4a ,∴a 2-4a+1≤0,∴22a ≤≤a ≠1,∴a 的取值范围为)(21,23⎡⎤+⎣.。

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。

完整版)高中数学必修一第二章测试题(含答案)

完整版)高中数学必修一第二章测试题(含答案)

完整版)高中数学必修一第二章测试题(含答案)1.已知p>q>1,0<a<1,则下列各式中正确的是:A。

ap>aq B。

pa>qa C。

a-p>a-q D。

p-a>q-a正确答案:A解析:因为p>q>1,所以p-q>0,又因为0<a<1,所以a 的p-q次方小于1,即a^p-q<1,所以ap<aq,即选项A正确。

2.已知f(10x)=x,则f(5)=?A。

105 B。

510 C。

lg10 D。

lg5正确答案:B解析:将f(10x)=x代入x=5/10=1/2中,得到f(1/2)=5,又因为f(5)=f(1/2)/10=5/10=1/2,所以选项B正确。

3.当a≠0时,函数y=ax+b和y=ba^x的图象只可能是?正确答案:直线和指数函数曲线解析:当a=1时,y=x+b和y=be^x,即两个函数都是直线;当a>1时,y=ax+b的图象是一条上升的直线,y=ba^x的图象是一条上升的指数函数曲线;当0<a<1时,y=ax+b的图象是一条下降的直线,y=ba^x的图象是一条下降的指数函数曲线。

4.当a≠1时,函数y=a^(x+b)和y=b^(ax)的图象只可能是?正确答案:指数函数曲线解析:y=a^(x+b)可以化为y=a^b*a^x,因此是一条上升的指数函数曲线;y=b^(ax)可以化为y=(b^a)^x,因此也是一条上升的指数函数曲线。

5.设y1=4,y2=80.90.48,y3=1/2,则递增区间是?正确答案:(0,+∞)解析:因为y1<y3<y2,所以递增区间是(0,+∞)。

6.下列函数中,在区间(0,+∞)上为增函数的是?A。

y=ln(x+2) B。

y=-x+1 C。

y=1/(1+x) D。

y=sin(x)正确答案:A解析:求导可得y'=(1/(x+2))>0,所以y在区间(0,+∞)上为增函数,因此选项A正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学模块一第二章单元测试试题
说明 :本试题测试时间为 50 分钟 ,满分 100 分
一、选择题 :(本大题共 8 小题 ,每小题 6 分 ,共 48 分 )答案填在答题卷答题卡内 ,否则不计分 .
1、 函数 y
a x 2
3 ( a >0 且 a ≠ 1)的图象必经过点 ( )
( A )( 0,1) ( B ) (1,1)
( C ) (2,3) ( D ) (2,4)
2、三个数 a 0.32 , b log 2 0.3,c
20 .3 之间的大小关系是(

(A ) a c b . ( B ) a b
c
( C ) b
a c
( D ) b c a
3、函数
f ( x)
1
的定义域为


log 2 ( x 2
4 x 3)
(A )[1,3] (B ) (
,1) (3, )
( C )( 1,3) ( D )( 1, 2)∪( 2, 3)
4、已知镭经过 1,剩留原来质量的 95.76%,设质量为 1 的镭经过 x 年的剩留量为
y ,则 y
与 x 的函数关系是(

x
0.9576
x (A )y=(0.9576)
100
( B )y=(0.9576)
100x
( C )y=(
100
) x
(D )y=1-(0.0424)
100
5、函数 y=log a x 在 [1,3] 上的最大值与最小值的和为
1,则 a =(

1
1
(A ) 2 (B ) 2 (C ) 3
(D ) 3 6、下列函数中,在区间( 0,2)上不是增函数的是( )
(A ) y
log 0.5 (3 x) (B ) y
x 2
1(C ) y
x 2 ( D ) y 2 2x
x
y
log
x
a 0, 且a
1
7、函数
y
a 与
a



)在同一坐标系中的图像只可能是


;。

8、( 4~ 10 班做) 对于函数 f(x)定义域中任意的
x 1, x 2( x 1≠ x 2),有如下结论: ① f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 )
;③ f (x 1 ) f (x 2 ) >0;
x 1 x 2
④ f (
x
1
x
2
)
f ( x 1
)f (x 2
)
.当 f( x)=lo g 2
x 时,上述结论中正确结论的序号选项是
2
2
(A ) ①④ (B ) ②④ (C )②③
( D )①③
8、( 1~ 3 班做) 已知 f (x)
(3a 1)x 4a, x 1是 ( , ) 上的减函数, 那么 a 的取值范围是
log a x, x
1
(A ) (0,1)
(B ) (0, 1
)
( C )[ 1 , 1 )
(D )[ 1
,1)
3
7 3
7
二、填空题 (本大题共 4 小题 ,每小题 5 分,共
9、 函数 f ( x)
lg( x 5) 的定义域是

10、求值:2log31
log3 12(0.7) 0 0.251= ________ _ .2
11、已知幂函数y f (x) 的图象经过点(3, 3 ),那么这个幂函数的解析式为.
12、设g(x)e x , x 0.
则 g ( g (
1
)) __________
lnx , x0.2
三、解答题 (第12题7分,13题10分,第14题15分,共32分,解答应写出文字说明,证明过程或演算步骤 )
1
e +21 log23
13、求 log2.5 6. 25+lg+ln的值.
100
14、已知 m>1,试比较( lgm)0.9与( lgm)0.8的大小.
15、已知f ( x)a x a x( a 0且 a 1)
(Ⅰ)证明函数 f ( x )的图象关于y轴对称;( 4 分)
(Ⅱ)判断 f ( x) 在 (0,) 上的单调性,并用定义加以证明;(7 分)
( 4~ 10 班做)(Ⅲ)当x∈[1,2]时函数 f (x )的最大值为5
,求此时 a 的值.( 4分)2
( 1~ 3 班做)(Ⅲ)当x∈[-2,-1]时函数 f (x )的最大值为5
,求此时a的值 .( 4
2
分)
班级座号姓名得分
一、选择题答题卡 (本大题共 8小题 ,每小题 6分,共 48 分)
题号12345678
答案
二、填空题 (本大题共 4 小题 ,每小题 5分,共
9、;10、;11、;12、.
三、解答题(第 12题 7分,13题 10 分、 14 题 15 分,共 32 分, 解答应写出文字说明,证明过程或演算
步骤 )
13、
14、
15、
一、 DBDA CCAC
7、取 a=2 和 a =
1
作 得 A
2
8、解:依 意,有 0 a 1 且 3a - 1 0,解得 0 a
1
,又当 x 1 ,(3a - 1)x + 4a
7a - 1,
3
当 x ≥ 1 , log a x ≤ 0,所以 7a - 1
0 解得 a 1 故 C
7
二、填空
1
1
y
8、
( ,5)
;9、
4
; 10、
x 2
; 11、
2
.
11、 个 函数的解析式
y x
,将 (3,
) 3 代入得
1
2
12、 .【解析】 g( g (
1
)) g(ln 1
) e ln 1
1 .
2
2
2 2
三、解答 (本大 有 3 小 ,共 32 分 ) 解答应写出文字说明,证明过程或演算步骤
)
12、解: 原式= 2-2+
1
ln e + 2log 2 6 ⋯⋯⋯⋯ 3 分
1
2

+ 6 ⋯⋯⋯⋯ 5 分
2
= 6
1
⋯⋯⋯⋯ 7 分
2
14、解:∵ m>1,∴ lgm >0;以下分 ① lgm > 1,② lg m=1 ;③ 0< lgm <1
三种情形 ( lgm ) 0 .9 与( lgm ) 0.
8 的大小.⋯⋯⋯⋯
2 分
①当 lgm > 1 即 m > 10 ,( lgm ) 0. 9>( lg m ) 0.
8;⋯⋯⋯⋯ 5 分
②当 lgm=1 即 m=10 ,( lgm ) 0 .
9
=( lgm )
0.
8
;⋯⋯⋯⋯ 7 分
③当 0< lg m < 1 即 1< m <10
,(lg m ) 0.
9<( lg m ) 0.
8.⋯⋯⋯⋯ 10 分
15、解:(Ⅰ)要 明函数
f ( x )的 象关于 y 称 只 明函数
f ( x )是偶函数 ⋯1 分
∵x ∈ R ⋯⋯⋯⋯ 2 分
由 f ( x)
a x a x a x a x
f ( x)
⋯⋯⋯⋯ 3 分
∴函数 f ( x )是偶函数,即函数
f ( x )的 象关于 y 称 ⋯⋯⋯⋯ 4

(Ⅱ) 明: 0
x 1
x 2 ,
f (x 1) f ( x 2 ) =
a x 1
a x 1
x 2
a x 2
) ( a x 1
a x 1
) ( 1
1
( a x 1
a x 1
)( a x 1 x 2
1)
(a
a x 1
a x 1
) a x 1
x 2
( 1)当 a>1 ,
由 0< x 1
x 2 , x 1+x 2>0, a
x 1
0 、 a
x 2
0、 a
x 1
a x 2

a x
1 x
2
1 ;
f (x 1) f ( x 2 ) <0 即 f (x 1 ) f ( x 2 ) ;
( 2)当 0<a<1 ,
由 0<
x 1
x 2 , x 1+x 2>0, a
x 1
0 、 a
x 2
0、 a
x 1
a x
2
、 0a x 1 x 2
1 ;
1 2 <0 即
1
2 ;
f (x )
f ( x ) f (x ) f ( x )
所以,对于任意 a(a0且a 1),f(x)在(0,) 上都为增函数.
( 4~ 10 班做)(Ⅲ)由(Ⅱ)知f(x)在(0,) 上为增函数,则当x∈[1,2]时,函数f (x )亦为增函数;
由于函数 f(x)的最大值为5,则 f(2)=5
22
即 a215,解得 a 2 ,或 a2
a222
( 1~ 3 班做)(Ⅲ)由(Ⅰ)(Ⅱ)证知f(x) 是偶函数且在(0,) 上为增函数,则知f(x)在 (,0) 上为减函数;
则当 x∈[- 2,- 1]时,函数 f (x ) 为减函数
由于函数 f(x)的最大值为5,则 f(- 2)=
5
22

1
a 2
5
,解得 a 2 ,或 a2 a 222。

相关文档
最新文档