高中数学必修2期中测试卷
【压轴卷】高中必修二数学下期中第一次模拟试题(及答案)(1)
【压轴卷】高中必修二数学下期中第一次模拟试题(及答案)(1)一、选择题1.下列命题正确的是( )A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .两两相交且不共点的三条直线确定一个平面D .四边形确定一个平面2.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .42B .32C .322D .22 3.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2B .1-C .2D .不存在 4.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( )A .5B .6C .35D .415.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( ) A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭ 6.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56π C .14π D .64π7.正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+258.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A .15B .5C .64D .10 9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .160 10.如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是( )A .B .C .D .11.如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π12.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC V 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF,则1AF FA 的值为( )A .1B .12或2C .22或2D .13或3 二、填空题13.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u v u u u v ,则点A 的横坐标为________.14.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________.15.若直线y x b =+与曲线234y x x =+-有公共点,则b 的取值范围是______. 16.若圆的方程为2223()(1)124k x y k +++=-,则当圆的面积最大时,圆心坐标和半径分别为 、 .17.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2正三角形,,E F 分别是,PA AB 的中点,90CEF ︒∠=,则球O 的体积为_________________。
【典型题】高中必修二数学下期中第一次模拟试题含答案(1)
故选D.
【点睛】
本题主要考查了平面与平面平行的判定与性质的应用,其中解答中灵活运用平面与平面平行额判定与性质进行判定是解答的关键,着重考查学生严密的思维能力和空间想象能力,属于基础题.
在Rt△ 中, ,
由勾股定理 得 ,
∴球的表面积 ,故选A.
考点:球的体积和表面积
9.C
解析:C
【解析】
【分析】
由题意首先求得长方体的棱长,然后求解其外接球的表面积即可.
【详解】
设长方体的棱长分别为 ,则 ,
所以 ,于是 ,
设球的半径为 ,则 ,所以这个球面的表面积为 .
本题选择C选项.
【点睛】
与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
14.已知A,B,C,D是同一球面上的四个点,其中 是正三角形, 平面ABC, ,则该球的体积为_________.
15.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥 为鳖臑, 平面 , ,三棱锥 的四个顶点都在球 的球面上,则球 的表面积为__________.
【详解】
如图:连接 , ,
在三角形 中, ,故C正确.
平面 , , 与 垂直,故A正确;
【压轴卷】高中必修二数学下期中模拟试题附答案(1)
【压轴卷】高中必修二数学下期中模拟试题附答案(1)一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.已知三棱锥D ABC -的外接球的表面积为128π,4,42AB BC AC ===,则三棱锥D ABC -体积的最大值为( ) A .2732B .1086+ C .166+ D .322166+3.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .644.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦5.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -的体积为43,则球O 的半径为( ) A .3B .1C .2D .46.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8πB .12πC .20πD .24π7.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm8.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( ) A .26B .5C .26D .42+9.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .3010.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763 B .1603C .1283D .3211.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56πC .14πD .64π12.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC V 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF ,则1AFFA 的值为( )A .1B .12或2 C .22或2 D .13或3 二、填空题13.已知一束光线通过点()3,5A -,经直线l :0x y +=反射,如果反射光线通过点()2,5B ,则反射光线所在直线的方程是______.14.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 与△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①0BD AC ⋅≠u u u r u u u r;②∠BAC =60°;③三棱锥D ﹣ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确结论的序号是 .(请把正确结论的序号都填上)15.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.16.圆台的两个底面面积之比为4:9,母线与底面的夹角是60°,轴截面的面积为1803,则圆台的侧面积为_____.17.如图,AB 是底面圆O 的直径,点C 是圆O 上异于A 、B 的点,PO 垂直于圆O 所在的平面,且1,2PO OB BC ===,点E 在线段PB 上,则CE OE +的最小值为________.18.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______.19.函数2291041y x x x =++-+的最小值为_________.20.已知点()1,0A -,()2,0B ,直线l :50kx y k --=上存在点P ,使得2229PA PB +=成立,则实数k 的取值范围是______.三、解答题21.已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.22.如图1所示,在等腰梯形ABCD 中,4524AB CD BAD AB CD ∠=︒==∥,,,点E 为AB 的中点.将ADE ∆沿DE 折起,使点A 到达P 的位置,得到如图2所示的四棱锥P EBCD -,点M 为棱PB 的中点.(1)求证:PD MCE ∥平面;(2)若PDE EBCD ⊥平面平面,求三棱锥M BCE -的体积. 23.已知平面内两点(8,6),(2,2)A B -. (1)求AB 的中垂线方程;(2)求过点(2,3)P -且与直线AB 平行的直线l 的方程.24.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ⊥平面ABCD ,33DE AF ==.(1)证明:平面//ABF 平面DCE ;(2)在DE 上是否存在一点G ,使平面FBG 将几何体ABCDEF 分成上下两部分的体积比为3:11?若存在,求出点G 的位置;若不存在,请说明理由.25.已知点(3,4),(9,0)A B -,,C D 分别为线段,OA OB 上的动点,且满足AC BD = (1)若4,AC =求直线CD 的方程;(2)证明:OCD ∆的外接圆恒过定点(异于原点).26.如图,1AA 、1BB 为圆柱1OO 的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,DE ⊥平面1CBB .(1)证明:AC ⊥平面11AA B B ; (2)证明://DE 平面ABC .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=o,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积. 【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=o,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C. 【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.2.D解析:D 【解析】 【分析】先求出球心O 到底面距离的最大值,从而可求顶点D 到底面的距离的最大值,利用该最大值可求体积的最大值. 【详解】设外接球的球心为O ,半径为R ,则24128R ππ=,故42R =设球心O 在底面上的投影为E ,因为OA OC OB ==,故E 为ABC ∆的外心. 因为4AB BC ==,42AC =222AC AB BC =+,故ABC ∆为直角三角形, 故E 为AC 的中点,所以2226OE OA AE =-=, 设D 到底面ABC 的距离为h ,则2642h OE R ≤+= 所以三棱锥D ABC -的体积的最大值为(1132216644264232+⨯⨯⨯⨯=. 故选:D. 【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,注意球心在底面上的投影为底面外接圆的圆心.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.3.A解析:A 【解析】 【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值. 【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O . 则2a OA =,1PO ⊥平面ABCD . 则22211OO O A OA +=,即()2222332a h ⎛⎫+-= ⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=-令()()2122f h h hh =-,则()2246f h h h'=-当04h <<时,()0f h '>,()f h 单调递增. 当4h >时,()0f h '<,()f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯=. 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.4.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO …,即满足2PO …,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO …故2222000103634PO x y y y ==+-+… 解得0825y 剟,0605x 剟即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO …,从而得到不等式求出参数的取值范围.5.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.6.C解析:C 【解析】 【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC V 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC V 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C 【点睛】本题考查多面体外接球的表面积,是常考题型.7.B解析:B 【解析】 【分析】 【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4, ∴几何体的体积V =×3×4×5﹣××3×4×5=20(cm 3). 考点:1.三视图读图的能力;2.几何体的体积公式.8.A解析:A 【解析】 【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解. 【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min 26d ∴=. 故选:A. 【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.9.C解析:C 【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C .考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.10.B解析:B 【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.C解析:C 【解析】【分析】由题意首先求得长方体的棱长,然后求解其外接球的表面积即可. 【详解】设长方体的棱长分别为,,a b c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,所以()236abc =,于是213a b c =⎧⎪=⎨⎪=⎩,设球的半径为R ,则2222414R a b c =++=,所以这个球面的表面积为24R π=14π. 本题选择C 选项. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.12.B解析:B 【解析】 【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果. 【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点, 所以BD AC ⊥,又1AC CC C =I , 所以BD ⊥平面11AAC C ,1C F Q 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =I ,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143xx ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =,所以112AF FA =或者12AFFA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.【解析】【分析】计算关于直线的对称点为计算直线得到答案【详解】设关于直线的对称点为故故故反射光线为:化简得到故答案为:【点睛】本题考查了直线的反射问题找出对称点是解题的关键 解析:27310x y -+=【解析】 【分析】计算()3,5A -关于直线0x y +=的对称点为()15,3A -,计算直线1A B 得到答案.【详解】设()3,5A -关于直线0x y +=的对称点为()1,A x y ,故51335022y x x y -⎧=⎪⎪+⎨-+⎪+=⎪⎩,故()15,3A -. 故反射光线为1A B :()532525y x -=-++,化简得到27310x y -+=. 故答案为:27310x y -+=.【点睛】本题考查了直线的反射问题,找出对称点是解题的关键.14.②③【解析】【分析】①由折叠的原理可知BD ⊥平面ADC 可推知BD ⊥AC 数量积为零②由折叠后AB =AC =BC 三角形为等边三角形得∠BAC =60°;③由DA =DB =DC 根据正三棱锥的定义判断④平面ADC解析:②③ 【解析】 【分析】①由折叠的原理,可知BD ⊥平面ADC ,可推知BD ⊥AC ,数量积为零,②由折叠后AB =AC =BC ,三角形为等边三角形,得∠BAC =60°;③由DA =DB =DC ,根据正三棱锥的定义判断.④平面ADC 和平面ABC 不垂直. 【详解】BD ⊥平面ADC ,⇒BD ⊥AC ,①错; AB =AC =BC ,②对;DA =DB =DC ,结合②,③对④错. 故答案为②③ 【点睛】本题主要考查折叠前后线线,线面,面面关系的不变和改变,解题时要前后对应,仔细论证,属中档题.15.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角【解析】 【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离. 【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,11,,22AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题. 16.【解析】【分析】首先通过两个底面面积之比为得到半径比设出上底半径为下底半径为由因为母线与底面的夹角是得到母线长为高为就可以根据轴截面的面积解出代公式求出侧面积即可【详解】圆台的两个底面面积之比为则半解析:360π【解析】【分析】首先通过两个底面面积之比为4:9,得到半径比,设出上底半径为2k,下底半径为3k,由因为母线与底面的夹角是60o,得到母线长为2k,高为3k.就可以根据轴截面的面积k=,代公式求出侧面积即可.解出6【详解】圆台的两个底面面积之比为4:9,则半径比为2:3所以设圆台的上底半径为2k,下底半径为3k,由于母线与底面的夹角是60o,所以母线长为2k3k.由于轴截面的面积为1803, 所以()46318032k k k+⨯=,解得6k =.所以圆台的上底半径为12,下底半径为18.母线长为12. 所以圆台的侧面积为()121812360ππ+⨯=. 故答案为:360π 【点睛】本题主要考查圆台的性质以及圆台的侧面积,同时考查了线面成角问题,属于中档题.17.【解析】【分析】首先求出即有将三棱锥展开当三点共线时值最小可证为中点从而可求从而得解【详解】在中所以同理所以在三棱锥中将侧面绕旋转至平面使之与平面共面如图所示当共线时取得最小值又因为所以垂直平分即为 解析:26+ 【解析】 【分析】首先求出2PB PC ==,即有PB PC BC ==,将三棱锥展开,当三点共线时,值最小,可证E 为PB 中点,从而可求OC OE EC ''=+,从而得解.【详解】在POB V 中,1PO OB ==,90POB ∠=︒, 所以22112PB =+=,同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ', 使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值, 又因为OP OB =,C P C B '=', 所以OC '垂直平分PB ,即E 为PB 中点, 从而2626222OC OE EC ''=+=+= 亦即CE OE +26+ 26+【点睛】本题主要考查了空间中线段和最小值问题,考查了空间想象能力、推理论证能力,考查了数形结合思想、化归与转化思想,属于中档题.18.4【解析】因为圆=关于直线=对称所以圆心在直线=上所以即又圆的半径为当点(ab)与圆心的距离最小时切线长取得最小值又点(ab)与圆心的距离为=所以切线长的最小值为=故答案为4点睛:本题主要考查直线与解析:4 【解析】因为圆22:243C x y x y ++-+=0关于直线26ax by ++=0对称,所以圆心()1,2C -在直线26ax by ++=0上,所以2260a b -++=,即3a b -=,, 当点(a,b )与圆心的距离最小时,切线长取得最小值,又点(a,b )与圆心的距离为≥所以切线长的最小值为=4.故答案为4点睛:本题主要考查直线与圆的位置关系,考查了转化思想.利用勾股关系,切线长取得最小值时即为当点(a,b )与圆心的距离最小时.19.【解析】【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】【解析】 【分析】将y y =()0,3A ,()5,4B ,(),0C x ,则y AC BC =+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值; 【详解】解:y ==()0,3A ,()5,4B ,(),0C x ,则y AC BC +,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,1BA ==min y ∴=故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题.20.【解析】【分析】先求出直线经过的定点设直线上的点坐标由可求得点的轨迹方程进而求得斜率的取值范围【详解】解:由题意得:直线因此直线经过定点;设点坐标为;化简得:因此点为与直线的交点所以应当满足圆心到直解析:1515,1515⎡-⎢⎣⎦【解析】 【分析】先求出直线l 经过的定点,设直线上的p 点坐标,由2229PA PB +=可求得点P 的轨迹方程,进而求得斜率k 的取值范围. 【详解】解:由题意得:直线:(5)l y k x =-, 因此直线l 经过定点(5,0);设点P 坐标为0(x ,0)y ;2229PA PB +=Q ,∴22220000(1)22(2)9y x y x +++++=化简得:2200020x y x +-=,因此点p 为2220x y x +-=与直线:(5)l y k x =-的交点.所以应当满足圆心(1,0)到直线的距离小于等于半径∴211k +解得:[k ∈故答案为[k ∈ 【点睛】本题考查了求轨迹方程,一次函数的性质,考查了直线与圆的位置关系,是中档题.三、解答题21.(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)存在,77k -≤≤或34k =±. 【解析】 【分析】(1)通过将圆1C 的一般式方程化为标准方程即得结论;(2)设当直线l 的方程为y=kx ,通过联立直线l 与圆1C 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线l 与圆1C 的方程,利用根的判别式△=0及轨迹C 的端点与点(4,0)决定的直线斜率,即得结论 【详解】(1)由22650x y x +-+=得()2234x y -+=,∴ 圆1C 的圆心坐标为()3,0; (2)设(),M x y ,则∵ 点M 为弦AB 中点即1C M AB ⊥, ∴11⋅=-C M AB k k 即13y yx x⋅=--, ∴ 线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭; (3)由(2)知点M 的轨迹是以3,02C ⎛⎫⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且53E ⎛ ⎝⎭,5,33F ⎛⎫-⎪ ⎪⎝⎭,又直线L :()4y k x =-过定点()4,0D ,当直线L 与圆L 相切时,由223402321k k⎛⎫-- ⎪⎝⎭=+得34k =±,又202357554DE DFk k ⎛⎫-- ⎪⎝⎭=-=-=-,结合上图可知当332525,,44k ⎡⎤⎧⎫∈--⎨⎬⎢⎥⎩⎭⎣⎦U 时,直线L :()4y k x =-与曲线L 只有一个交点. 考点:1.轨迹方程;2.直线与圆相交的位置关系;3.圆的方程 22.(1)见解析;(2)2 【解析】 【分析】(1)连接BD ,交CE 于点O ,连接OM ,易知底面EBCD 是平行四边形,则O 为BD 中点,又M 是BP 中点,可知PD MO P ,则结论可证.(2)先证明ADE V 是等腰直角三角形,由条件中的面面垂直可得PD ⊥平面BCDE ,则由(1)可知MN ⊥平面BCDE ,则MN 为三棱锥M BCE -的高,底面BCE V 的面积容易求得,根据公式求三棱锥M BCE -的体积. 【详解】(1)在平面图中,因为12BE AB CD ==且//BE CD , 所以四边形EBCD 是平行四边形; 在立体图中,连接BD ,交CE 于点O ,连接OM ,所以点O 是BD 的中点,又因为点M 为棱PB 的中点,所以//OM PD ,因为PD ⊄平面MCE ,OM ⊂平面MCE ,所以//PD 平面MCE ;(2)在平面图中,因为EBCD 是平行四边形,所以DE BC =,因为四边形ABCD 是等腰梯形, 所以AD BC =,所以AD DE =,因为45BAD ∠=︒,所以AD DE ⊥;在立体图中,PD DE ⊥,又平面PDE ⊥平面EBCD ,且平面PDE ⋂平面EBCD DE =,PD ⊂平面PDE 所以PD ⊥平面EBCD ,由(1)知//OM PD ,所以OM ⊥平面EBCD ,在等腰直角三角形ADE 中,因为2AE =,所以2AD DE ==所以11222OM PD AD ===,又1BCE ADE S S ∆∆==, 所以1236M BCE BCE V S OM -∆=⋅⋅=. 【点睛】本题考查平面几何与立体几何的关系,线面平行的证明,面面垂直的性质等,有一定的综合性,属中等题.23.(1)34230x y --=; (2)4310x y ++=.【解析】试题分析:(1)首先求得中点坐标,然后求得斜率,最后利用点斜式公式即可求得直线方程;(2)利用点斜式可得直线方程为4310x y ++=.试题解析:(1)8252+=,6222-+=- ∴AB 的中点坐标为()5,2- 624823AB k --==--,∴AB 的中垂线斜率为34∴由点斜式可得()3254y x +=- ∴AB 的中垂线方程为34230x y --= (2)由点斜式()4323y x +=-- ∴直线l 的方程4310x y ++= 24.(1)见解析(2)存在点G 且1EG =满足条件.【解析】试题分析:(1)根据//,//DE AF AB CD ,结合面面平行的判定定理可知两个平面平行;(2)先求出整个几何体的体积.假设存在一点G ,过G 作//MG BF 交EC 于M ,连接,BG BM ,设EG t =,求得几何体GFBME 的体积,将其分割成两个三棱锥,B EFG B EGM --,利用t 表示出两个三棱锥的高,再利用体积建立方程,解方程组求得t 的值. 试题解析:解:(1)∵DE ⊥平面ABCD ,AF ⊥平面ABCD ,∴//DE AF ,∴//AF 平面DCE ,∵ABCD 是正方形,//AB CD ,∴//AB 平面DCE ,∵AB AF A ⋂=,AB ⊂平面ABF ,AF ⊂平面ABF ,∴平面//ABF 平面DCE .(2)假设存在一点G ,过G 作//MG BF 交EC 于M ,连接,BG BM ,()1331133213332322ABCDEF B ADEF B CDE V V V --+⨯⨯=+=⨯⨯+⨯⨯=, 设EG t =,则21392144GFBME B EFG B EGM V V V --=+=⨯=, 设M 到ED 的距离为h ,则331h EM t EC ==-,32h t =,234EGM S t ∆= ∴2131393334324t t ⨯⨯+⨯⨯=,解得1t =,即存在点G 且1EG =满足条件. 点睛:本题主要考查空间点线面的位置关系,考查几何体体积的求法,考查探究性问题的解决方法.第一问要证明面面平行,根据面面平行的判定定理可知,只需找到平面的两条相交直线和另一个平面的两条相交直线平行即可.第二问要对几何体进行分割,先假设存在,接着计算出总的体积,然后再次利用分割法用体积来列方程组,求解出G 的位置的值. 25.(1)750x y +-=(2)详见解析【解析】试题分析:(1)求直线CD的方程,只需确定C,D坐标即可:34 (,)55C-,(5,0)D,直线CD的斜率40153755-=-⎛⎫-- ⎪⎝⎭,直线CD的方程为750x y+-=.(2)证明动圆过定点,关键在于表示出圆的方程,本题适宜设圆的一般式:22+0x y Dx Ey F+++=设(3,4)(01)C m m m-<≤,则D(5+4,0)m,从而()()2220,{916340,54540.Fm m mD mE Fm m D F=+-++=++++=解之得(54),0D m F=-+=,103E m=--,整理得22435(2)0x y x y m x y+---+=,所以△OCD的外接圆恒过定点为(2,1)-.试题解析:(1)因为(3,4)A-,所以22(3)45OA=-+=, 1分又因为4AC=,所以1OC=,所以34(,)55C-, 3分由4BD=,得(5,0)D, 4分所以直线CD的斜率40153755-=-⎛⎫-- ⎪⎝⎭, 5分所以直线CD的方程为1(5)7y x=--,即750x y+-=. 6分(2)设(3,4)(01)C m m m-<≤,则5OC m=. 7分则55AC OA OC m=-=-,因为AC BD=,所以5+4OD OB BD m=-=,所以D点的坐标为(5+4,0)m8分又设OCD∆的外接圆的方程为22+0x y Dx Ey F+++=,则有()()2220,{916340,54540.Fm m mD mE Fm m D F=+-++=++++=10分解之得(54),0D m F =-+=,103E m =--,所以OCD ∆的外接圆的方程为22(54)(103)0x y m x m y +-+-+=, 12分整理得22435(2)0x y x y m x y +---+=, 令2243=0,{+2=0x y x y x y +--,所以0,{0.x y ==(舍)或2,{ 1.x y ==- 所以△OCD 的外接圆恒过定点为(2,1)-. 14分考点:直线与圆方程26.(1)证明见解析;(2)证明见解析【解析】【分析】(1)通过证明1A A AC ⊥和AB AC ⊥,即可证得AC ⊥平面11AA B B ;(2)通过证明//DE AO ,即可证得//DE 平面ABC .【详解】(1)由题,得1A A ⊥平面ABC ,所以1A A AC ⊥,又BC 是底面圆O 的直径,所以AB AC ⊥,因为1AB AA A =I ,所以AC ⊥平面11AA B B ;(2)连接,OE OA ,因为,E O 分别为1,B C BC 的中点,所以1//OE BB 且112OE BB =, 易得1//AD BB 且112AD BB =, 所以//AD OE 且AD OE =,所以四边形OADE 为平行四边形,则//DE AO ,因为AO ⊂平面ABC ,DE ⊄平面ABC ,DE平面ABC.所以//【点睛】本题主要考查线面垂直和线面平行的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.。
【典型题】高中必修二数学下期中一模试题(带答案)
【典型题】高中必修二数学下期中一模试题(带答案)一、选择题1.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .323π 2.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .2B .3C .2D .2 3.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π4.已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个B .有有限多个C .有无限多个D .不存在 5.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = ) A .1B .1-C .2-或1D .2或1 6.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( )A .5B .6C .35D 417.用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形 8.在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 3P ABC -的外接球的表面积是( )A .92πB .92πC .18πD .40π 9.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( )A .26B .5C .26D .42+10.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56π C .14π D .64π11.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ;(3)平面//EAB 平面FGT ;(4)直线//BC 直线AE .A .1个B .2个C .3个D .4个12.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1二、填空题13.已知点1232M N (,),(,),点F 是直线l:3y x =-上的一个动点,当MFN ∠最大时,过点M ,N ,F 的圆的方程是__________.14.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2正三角形,,E F 分别是,PA AB 的中点,90CEF ︒∠=,则球O 的体积为_________________。
高二上学期数学期中测试卷
名师把关. 一路护航XX市XX学校高级教师策划期中测试卷02(本卷满分150分,考试时间120分钟)测试范围:人教A 版 必修5全册+选修1-1第一章、第二章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.已知R y x ∈,,若p :422>+y x ,q :2>+y x ,则p 是q 的( )。
A 、必要不充分条件B 、充分不必要条件C 、充分且必要条件D 、既不充分也不必要条件 【答案】A【解析】p 不能推出q ,当2=x 、3-=y 时,满足p :422>+y x ,但不满足q :2>+y x ,q 能推出p ,当2>+y x 时,42222222222=>=⋅≥++y x y x y x ,∴p 是q 的必要不充分条件,选A 。
2.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比。
如果在距离车站10km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )。
A 、2km 处B 、3km 处C 、4km 处D 、5km 处 【答案】A【解析】设仓库建在离车站x km 处,则土地费用xk y 11=(01≠k ),运输费用x k y 22=(02≠k ), 把10=x ,21=y 代入得201=k ,把10=x ,82=y 代入得542=k ,人教版高中数学试题3故总费用8542025420=⋅≥+=x x x x y , 当且仅当x x 5420=,即5=x 时等号成立,故选A 。
3.已知等比数列}{n a 的前n 项积n T 满足3227=T T ,则=9T ( )。
A 、128 B 、256 C 、512 D 、1024 【答案】C 【解析】∵32557654327==⋅⋅⋅⋅=a a a a a a T T ,∴25=a ,512959==a T ,故选C 。
2020年温州市高中必修二数学下期中第一次模拟试题(含答案)
2020年温州市高中必修二数学下期中第一次模拟试题(含答案)一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .26B .36C .23D .223.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<4.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 5.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = ) A .1B .1-C .2-或1D .2或16.椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( ) A 31+ B 31C 2D 51- 7.若圆22240x y x y +--=的圆心到直线0x y a -+=2,则a 的值为( ) A .-2或2B .12或32C .2或0D .-2或08.如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .49.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .16010.如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立11.已知平面αβ⊥且l αβ=I ,M 是平面α内一点,m ,n 是异于l 且不重合的两条直线,则下列说法中错误的是( ). A .若//m α且//m β,则//m l B .若m α⊥且n β⊥,则m n ⊥ C .若M m ∈且//m l ,则//m βD .若M m ∈且m l ⊥,则m β⊥12.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC V 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF ,则1AFFA 的值为( )A .1B .12或2 C .22或2 D .13或3 二、填空题13.在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.14.已知点1232M N (,),(,),点F 是直线l:3y x =-上的一个动点,当MFN ∠最大时,过点M ,N ,F 的圆的方程是__________. 15.若圆的方程为2223()(1)124kx y k +++=-,则当圆的面积最大时,圆心坐标和半径分别为 、 .16.已知圆O :224x y +=, 则圆O 在点(1,3)A 处的切线的方程是___________. 17.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60o ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60o ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.18.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______.19.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.20.已知圆225x y +=和点()1,2A ,则过点A 的圆的切线方程为______三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,2AD =,25PD =,4AB PB ==,60BAD ∠=︒.(1)求证:AD PB ⊥;(2)E 是侧棱PC 上一点,记PEPCλ=,当PB ⊥平面ADE 时,求实数λ的值 22.如图,矩形ABCD 所在平面与半圆弧»CD所在平面垂直,M 是»CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.23.在直角坐标系xOy 中,直线l 的参数方程为3112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 所在直线为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为22)4πρθ=-.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长度.24.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ⊥平面ABCD ,33DE AF ==.(1)证明:平面//ABF 平面DCE ;(2)在DE 上是否存在一点G ,使平面FBG 将几何体ABCDEF 分成上下两部分的体积比为3:11?若存在,求出点G 的位置;若不存在,请说明理由.25.已知过点()0,2P -的圆M 的圆心(),0a 在x 轴的非负半轴上,且圆M 截直线20x y +-=所得弦长为22.(1)求M 的标准方程;(2)若过点()0,1Q 且斜率为k 的直线l 交圆M 于A 、B 两点,若PAB △的面积为33,求直线l 的方程.26.(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形: ①直线l 在平面α内; ②直线m 不在平面α内; ③直线m 与平面α交于点A ; ④直线l 不经过点A .(2)如图,在长方体1111ABCD A B C D -中,E 为棱1BB 的中点,F 为棱1CC 的三等分点,画出由1,,D E F 三点所确定的平面β与平面ABCD 的交线.(保留作图痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=o,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积. 【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=o,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C. 【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.2.A解析:A 【解析】 【分析】 【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC , 延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴11613OO =-=∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34,∴132623436S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积. 【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.3.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.4.A解析:A 【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC P P ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则PM =又1122MN BD NP AC ==== ∴PNM ∆为等边三角形, ∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值.5.D解析:D 【解析】 【分析】根据题意讨论直线它在两坐标轴上的截距为0和在两坐标轴上的截距不为0时,求出对应a 的值,即可得到答案.【详解】由题意,当2a 0-+=,即a 2=时,直线ax y 2a 0+-+=化为2x y 0+=, 此时直线在两坐标轴上的截距都为0,满足题意;当2a 0-+≠,即a 2≠时,直线ax y 2a 0+-+=化为122x y a a a+=--,由直线在两坐标轴上的截距相等,可得2a2a a-=-,解得a 1=; 综上所述,实数a 2=或a 1=. 故选:D . 【点睛】本题主要考查了直线方程的应用,以及直线在坐标轴上的截距的应用,其中解答中熟记直线在坐标轴上的截距定义,合理分类讨论求解是解答的关键,着重考查了运算与求解能力,属于基础题.6.B解析:B 【解析】 【分析】根据椭圆的定义可知12||||2PF PF a +=,又1PF 恰好与圆2F 相切于点P ,可知2||PF c=且12PF PF ⊥,即可列出方程求椭圆的离心率. 【详解】由1PF 恰好与圆2F 相切于点P ,可知2||PF c =,且 12PF PF ⊥, 又12||||2PF PF a +=,可知1||2PF a c =-, 在12Rt PF F ∆中,222(2)4a c c c -+=, 即2222a ac c -= 所以2220,(0,1)e e e +-=∈,解得212e -==, 故选:B 【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,圆的切线的性质,属于中档题.7.C解析:C 【解析】 【分析】把圆的方程化为标准方程,找出圆心坐标,根据点到直线的距离公式列出关于a 的方程,求出方程的解得到a 的值即可. 【详解】把圆的方程化为标准式为:22(1)(2)5x y -+-=,所以圆心坐标为(1,2).则圆心到直线0x y a -+=的距离2d ==, 即11a -=,化简得11a -=或11a -=-,解得:2a =或0a =. 所以a 的值为0或2. 故选C. 【点睛】本题考查学生会将圆的一般式方程化为标准式方程,灵活运用点到直线的距离公式化简求值.8.B解析:B 【解析】 【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案. 【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确. ∴正确命题的个数是2个. 故选:B . 【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.9.D解析:D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A =,可得221156AC AC A A =-= 同理可得2211200102BD D B D D =-==,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分, 所以2211()()1450822AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.10.C解析:C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD中,,E F分别是线段AC的三等分点,P是线段AB的中点,G是直线BD的动点,⊥成立,故A错误;在A中,不存在点G,使PG EF⊥成立,故B错误;在B中,不存在点G,使FG EP在C中,不存在点G,使平面EFG⊥平面ACD成立,故C正确;在D中,存在点G,使平面EFG⊥平面ABD成立,故D错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.11.D解析:D【解析】【分析】根据已知条件和线面位置关系一一进行判断即可.【详解】选项A :一条直线平行于两个相交平面,必平行于两个面交线,故A 正确;选项B :垂直于两垂直面的两条直线相互垂直,故B 正确;选项C :M m ∈且//m l 得m α⊂且//m β,故C 正确;选项D :M m ∈且m l ⊥不一定得到m α⊂,所以,m l 可以异面,不一定得到m β⊥. 故选:D .【点睛】本题主要考查的是空间点、线、面的位置关系的判定,掌握线面、线线之间的判定定理和性质定理是解决本题的关键,是基础题.12.B解析:B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =I ,所以BD ⊥平面11AAC C ,1C F Q 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =I ,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =, 所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为 解析:62【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D V 是等边三角形,则当N 为11B D 中点时,NA 距离最小,易知最小值为6214.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C (2a )当∠MFN 最大时过点MNF 的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN<90解析:22(2)(1)2x y -+-=【解析】【分析】【详解】试题分析:根据题意,设圆心坐标为C (2,a ),当∠MFN 最大时,过点M ,N ,F 的圆与直线y=x-3相切. ()()22232122a a ---+-=,∴a=1或9,a=1时,2,∠MCN=90°,∠MFN=45°,a=9时,r=MCN <90°,∠MFN <45°,则所求圆的方程为22(2)(1)2x y -+-=考点:圆的标准方程 15.【解析】试题分析:圆的面积最大即半径最大此时所以圆心为半径为1考点:圆的方程解析:(0,1)-,1【解析】试题分析:圆的面积最大即半径最大,此时0k =()2211x y ∴++=,所以圆心为(0,1)-半径为1考点:圆的方程 16.【解析】【分析】先求出kOA=从而圆O 在点处的切线的方程的斜率由此能出圆O 在点处的切线的方程【详解】kOA=∴圆O 在点处的切线的方程的斜率∴圆O 在点A 处的切线的方程整理得即答案为【点睛】本题考查圆的30y +-=【解析】【分析】先求出k OA ,从而圆O 在点(处的切线的方程的斜率k = ,由此能出圆O在点A 处的切线的方程.【详解】k OA =O 在点(处的切线的方程的斜率k =,∴圆O 在点A (处的切线的方程1y x =-) ,30y +-=.30y +-=.【点睛】本题考查圆的切线方程的求法,属中档题. 17.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E 是BD 的中点易得∠AED =90°即为此直二面角的平面角对于命题①AB 与平面BCD解析:②③④【解析】【分析】作出此直二面角的图象,由图形中所给的位置关系对命题逐一判断,即可得出正确结论.【详解】作出如图的图象,E是BD的中点,易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD所成的线面角的平面角是∠ABE=45°,故AB与平面BCD成60°的角不正确;对于命题②,在等腰直角三角形AEC中AC等于正方形的边长,故△ACD是等边三角形,此命题正确;对于命题③可取AD中点F,AC的中点H,连接EF,EH,FH,则EF,FH是中位线,故∠EFH或其补角为异面直线AB与CD所成角,又EF,FH其长度为正方形边长的一半,而EH是直角三角形AEC的中线,其长度是AC的一半即正方形边长的一半,故△EFH是等边三角形,由此AB与CD所成的角为60°,此命题正确;对于命题④,BD⊥面AEC,故AC⊥BD,此命题正确;对于命题⑤,连接BH,HD,则BH⊥AC, DH⊥AC,则∠BHD为二面角B AC D--的平面角,又BH=DH=32AC,BD=2,AC cos∠BHD=-1,3故二面角B AC D--不是120︒综上知②③④是正确的故答案为②③④【点睛】本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.18.4【解析】因为圆=关于直线=对称所以圆心在直线=上所以即又圆的半径为当点(ab)与圆心的距离最小时切线长取得最小值又点(ab)与圆心的距离为=所以切线长的最小值为=故答案为4点睛:本题主要考查直线与解析:4【解析】因为圆22:243C x y x y ++-+=0关于直线26ax by ++=0对称,所以圆心()1,2C -在直线26ax by ++=0上,所以2260a b -++=,即3a b -=,,当点(a,b )与圆心的距离最小时,切线长取得最小值,又点(a,b )与圆心的距离为≥所以切线长的最小值为=4.故答案为4 点睛:本题主要考查直线与圆的位置关系,考查了转化思想.利用勾股关系,切线长取得最小值时即为当点(a,b )与圆心的距离最小时.19.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB .【详解】PA ⊥Q 平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥I 平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π. 【点睛】 本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.20.【解析】【分析】先由题得到点A 在圆上再设出切线方程为利用直线和圆相切得到k 的值即得过点A 的圆的切线方程【详解】因为所以点在圆上设切线方程为即kx-y-k+2=0因为直线和圆相切所以所以切线方程为所以解析:25x y +=【解析】【分析】先由题得到点A 在圆上,再设出切线方程为2(1),y k x -=-利用直线和圆相切得到k 的值,即得过点A 的圆的切线方程.【详解】因为22125+=,所以点()1,2A 在圆上,设切线方程为2(1),y k x -=-即kx-y-k+2=0,12k =∴=-, 所以切线方程为112022x y --++=, 所以切线方程为25x y +=, 故答案为:25x y +=【点睛】(1)本题主要考查圆的切线方程的求法,意在考查学生对该知识的掌握水平和分析推理能力.(2) 点00(,)P x y 到直线:0l Ax By C ++=的距离d =.三、解答题21.(1)证明见解析;(2)34. 【解析】【分析】(1)证明AD BD ⊥,利用平面PBD ⊥平面ABCD ,交线为BD ,可得AD ⊥平面PBD ,从而AD PB ⊥;(2)作//EF BC ,交PB 于点F ,连接AF ,连接DF ,PBD ∆中,由余弦定理求得cos BPD ∠=【详解】 (1)证明:在ABD △中,2AD =Q ,4AB =,60BAD ∠=︒,∴由余弦定理可得BD =222AD BD AB ∴+=,AD BD ∴⊥.∵平面PBD ⊥平面ABCD ,交线为BD ,AD ∴⊥平面PBD ,又PB ⊂平面PBDAD PB ∴⊥.(2)解:作//EF BC ,交PB 于点F ,连接AF ,由////EF BC AD 可知A ,D ,E ,F 四点共面,连接DF ,所以由(1)的结论可知,PB ⊥平面ADE ,当且仅当PB DF ⊥. 在PBD △中,由4PB =,23BD =25PD = 余弦定理求得cos 25BPD ∠=,∴在Rt PDF V中,cos 3PF PD BPD =∠=, 因此34PE PF PC PB λ=== 【点睛】 本题考查立体几何有关知识,考查线面、面面垂直,考查运算能力,属于中档题.22.(1)证明见解析(2)存在,理由见解析【解析】【分析】【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明.(2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可.详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.23.(1)22220x y x y +--=;(27【解析】【分析】 (1)由公式cos sin x y ρθρθ=⎧⎨=⎩可得曲线C 的直角坐标方程; (2)把直线参数方程化为普通方程,曲线C 是圆,因此由垂径定理计算弦长,即求出圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为22)4πρθ=-,所以()22cos cos sin sin 2cos sin 44ππρθθθθ⎫=+=+⎪⎭ 即()22cos sin ρρθρθ=+.因为222cos ,sin ,x y x y ρθρθρ===+,所以222()x y x y +=+,所以曲线C 的直角坐标方程为22220x y x y +--= (2)因为直线l 的参数方程为32112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),所以333(3)3x -=-= 所以l 的直角坐标方程为330x -+=所以圆心()1,1到直线l 的距离()21331213d -+==+, 所以21222274AB d =-=-=AB 7 【点睛】 本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化.考查圆的弦长问题.求圆弦长,一般用几何方法,即求出圆心到弦所在直线距离(弦心距),由勾股定理计算弦长.24.(1)见解析(2)存在点G 且1EG =满足条件.【解析】试题分析:(1)根据//,//DE AF AB CD ,结合面面平行的判定定理可知两个平面平行;(2)先求出整个几何体的体积.假设存在一点G ,过G 作//MG BF 交EC 于M ,连接,BG BM ,设EG t =,求得几何体GFBME 的体积,将其分割成两个三棱锥,B EFG B EGM --,利用t 表示出两个三棱锥的高,再利用体积建立方程,解方程组求得t 的值.试题解析:解:(1)∵DE ⊥平面ABCD ,AF ⊥平面ABCD ,∴//DE AF ,∴//AF 平面DCE ,∵ABCD 是正方形,//AB CD ,∴//AB 平面DCE ,∵AB AF A ⋂=,AB ⊂平面ABF ,AF ⊂平面ABF ,∴平面//ABF 平面DCE .(2)假设存在一点G ,过G 作//MG BF 交EC 于M ,连接,BG BM ,()1331133213332322ABCDEF B ADEF B CDE V V V --+⨯⨯=+=⨯⨯+⨯⨯=, 设EG t =,则21392144GFBME B EFG B EGM V V V --=+=⨯=, 设M 到ED 的距离为h ,则331h EM t EC ==-,32h t =,234EGM S t ∆= ∴2131393334324t t ⨯⨯+⨯⨯=,解得1t =,即存在点G 且1EG =满足条件. 点睛:本题主要考查空间点线面的位置关系,考查几何体体积的求法,考查探究性问题的解决方法.第一问要证明面面平行,根据面面平行的判定定理可知,只需找到平面的两条相交直线和另一个平面的两条相交直线平行即可.第二问要对几何体进行分割,先假设存在,接着计算出总的体积,然后再次利用分割法用体积来列方程组,求解出G 的位置的值.25.(1)224x y +=;(2)1y =.【解析】【分析】(1)根据题意可得圆M 的方程为()2224x a y a -+=+,求出圆心到直线20x y +-=的距离,结合M 截直线20x y +-=所得弦长为利用勾股定理列方程可得a 的值,代入圆M 的方程即可得结果;(2)设直线l 的方程为1y kx =+,结合直线与圆的位置关系可得AB 的值,求出点P 到直线AB的距离,由三角形面积公式可得21321d AB k⨯⨯=⨯=+'k 的值,代入直线l 的方程即可得结果. 【详解】(1)根据题意,圆M 的圆心(),0a 且经过点()0,2-,则圆M 的方程为()2224x a y a -+=+,圆心M 到直线20x y +-=的距离d =,若圆M 截直线20x y +-=所得弦长为则有22242a ⎛+=+ ⎝⎭, 解可得:0a =,则2244r a =+=,则圆M 的方程为224x y +=;(2)根据题意,设直线l 的方程为1y kx =+,即10kx y -+=,圆M 的方程为224x y +=,则圆心M 到直线l的距离d =,则2AB == 又由()0,2P -,则P 到直线l的距离'd ==,若PAB △的面积为132d AB ⨯⨯==' 解可得:0k =,则直线l 的方程为1y =.【点睛】本题主要考查圆的方程、直线与圆方的位置关系,以及点到直线的距离公式与三角形面积公式的应用,涉及直线与圆相交弦长的计算,属于基础题.求圆的弦长有两种方法:一是利用弦长公式12l x =-,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.26.(1)①l α⊂;②m α⊄;③m A α=I ;④A l ∉,示意图答案见解析(2)答案见解析【解析】【分析】(1)根据题意,作出示意图即可;(2)根据题意,作出示意图即可.【详解】(1)l α⊂;m α⊄;m A α=I ;A l ∉;示意图如下:(2)如图,直线IL 即为所求.【点睛】本题考查了空间点、线、面之间的位置关系,属于基础题.。
2020-2021北京市高中必修二数学下期中第一次模拟试卷附答案
2020-2021北京市⾼中必修⼆数学下期中第⼀次模拟试卷附答案2020-2021北京市⾼中必修⼆数学下期中第⼀次模拟试卷附答案⼀、选择题1.三棱锥P -ABC 中,P A ⊥平⾯ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表⾯积为() A .6πB .5πC .4πD .3π2.已知(2,0)A -,(0,2)B ,实数k 是常数,M ,N 是圆220x y kx ++=上两个不同点,P 是圆220x y kx ++=上的动点,如果M ,N 关于直线10x y --=对称,则PAB ?⾯积的最⼤值是()A .32-B .4C .6D .32+3.已知三棱锥S ABC -的所有顶点都在球O 的球⾯上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三⾓形,三棱锥S ABC -的体积为43,则球O 的半径为( ) A .3B .1C .2D .44.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是() A .-3B .-4C .-6D .36-5.如图,已知正⽅体1111ABCD A B C D -中,异⾯直线1AD 与1A C 所成的⾓的⼤⼩是()A .30oB .60oC .90oD .120o6.已知⼀个三棱锥的三视图如图所⽰,其中俯视图是等腰直⾓三⾓形,则该三棱锥的外接球表⾯积为()A .3πB .23πC .43πD .12π7.已知三棱锥S ABC -的每个顶点都在球O 的表⾯上,ABC ?是边长为43的等边三⾓形,SA ⊥平⾯ABC ,且SB 与平⾯ABC 所成的⾓为6π,则球O 的表⾯积为() A .20πB .40πC .80πD .160π8.某⼏何体的三视图如图所⽰,则该⼏何体的体积为( )A .12B .18C .24D .30 9.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b10.已知实数,x y 满⾜250x y ++=,那么22x y +的最⼩值为() A .5B .10C .25D .21011.已知ABC V 的三个顶点在以O 为球⼼的球⾯上,且2AB =,4AC =,25BC =,三棱锥O ABC -的体积为43,则球O 的表⾯积为() A .22πB .743πC .24πD .36π12.如图,⽹格纸上⼩正⽅形的边长为1,粗实(虚)线画出的是某多⾯体的三视图,则该多⾯体的体积为()A .64B .643C .16D .163⼆、填空题13.如图,在长⽅形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上⼀动点,现将AFD V 沿AF 折起,使平⾯ABD ⊥平⾯ABC ,在平⾯ABD 内过点D 作DK AB ⊥,K 为垂⾜,设AK t =,则t 的取值范围是__________.14.过点(1,2)-且与直线2390x y -+=垂直的直线⽅程为____________.15.⼀个直三棱柱的每条棱长都是3,且每个顶点都在球O 的表⾯上,则球O 的表⾯积为________16.若圆1C :220x y ax by c ++++=与圆2C :224x y +=关于直线21y x =-对称,则c =______.17.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______. 18.⼩明在解题中发现函数()32x f x x -=-,[]0,1x ∈的⼏何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22,类似地,他研究了函数()32x g x x -=-,[]0,1x ∈,则函数()g x 的值域为_____19.已知棱长等于23的正⽅体1111ABCD A B C D -,它的外接球的球⼼为O ﹐点E 是AB 的中点,则过点E 的平⾯截球O 的截⾯⾯积的最⼩值为________.20.如图所⽰,⼆⾯⾓l αβ--为60,,A B o是棱l 上的两点,,AC BD 分别在半平⾯内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥⾯ABCD ,//AB CD ,且22,22CD AB BC ===,90ABC ∠=?,M 为BC 的中点.(1)求证:平⾯PDM ⊥平⾯PAM ;(2)若⼆⾯⾓P DM A --为30°,求直线PC 与平⾯PDM 所成⾓的正弦值. 22.如图,四棱锥P -ABCD 的底⾯ABCD 是平⾏四边形,BA =BD =2,AD =2,PA =PD =5,E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平⾯PAB ;(2)若⼆⾯⾓P -AD -B 为60°.①证明:平⾯PBC ⊥平⾯ABCD ;②求直线EF 与平⾯PBC 所成⾓的正弦值.23.在梯形ABCD 中,//AD BC ,AC BD ⊥于点O ,2BC AD =,9AC =,将ABD ?沿着BD 折起,使得A 点到P 点的位置,35PC =.(Ⅰ)求证:平⾯PBD ⊥平⾯BCD ;(Ⅱ)M 为BC 上⼀点,且2BM CM =,求证://OM 平⾯PCD .24.已知点(3,4),(9,0)A B -,,C D 分别为线段,OA OB 上的动点,且满⾜AC BD = (1)若4,AC =求直线CD 的⽅程;(2)证明:OCD ?的外接圆恒过定点(异于原点).25.已知直线1:20l ax y a +--=,22:0l x ay ++=,点(5,0)P - (1)当12//l l 时,求a 的值;(2)求直线1l 所过的定点Q ,并求当点P 到直线1l 的距离最⼤时直线1l 的⽅程. 26.已知三⾓形ABC 的顶点坐标分别为A (4,1),B (1,5),C (3,2)-;(1)求直线AB ⽅程的⼀般式;(2)证明△ABC 为直⾓三⾓形;(3)求△ABC 外接圆⽅程.【参考答案】***试卷处理标记,请不要删除⼀、选择题 1.A 解析:A 【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽⾼的长⽅体的外接球,从⽽可得球半径,进⽽可得结果.详解:因为PA ⊥平⾯AB ,,AB BC ?平⾯ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥Q ,所以三棱锥的外接球,就是以,,AP AB BC 为长宽⾼的长⽅体的外接球,外接球的直径等于长⽅体的对⾓线,即2R ==246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表⾯积的求法,属于难题.要求外接球的表⾯积和体积,关键是求出求的半径,求外接球半径的常见⽅法有:①若三条棱两垂直则⽤22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥⾯ABC (SA a =),则22244R r a =+(r 为ABC ?外接圆半径)③可以转化为长⽅体的外接球;④特殊⼏何体可以直接找出球⼼和半径.2.D解析:D 【解析】【分析】根据圆上两点,M N 关于直线10x y --=对称,可知圆⼼在该直线上,从⽽求出圆⼼坐标与半径,要使得PAB ?⾯积最⼤,则要使得圆上点P 到直线AB 的距离最⼤,所以⾼最⼤1+,PAB S ?最⼤值为3 【详解】由题意,圆x 2+y 2+kx=0的圆⼼(-2k,0)在直线x-y-1=0上,∴-2k-1=0,∴k=-2,∴圆x 2+y 2+kx=0的圆⼼坐标为(1,0),半径为1 ∵A (-2,0),B (0,2),∴直线AB 的⽅程为2x -+2y=1,即x-y+2=0∴圆⼼到直线AB 的距离为2.∴△PAB ⾯积的最⼤值是1321322||(1)222222AB ++=??=3+2 故选D .【点睛】主要考查了与圆有关的最值问题,属于中档题.该题涉及到圆上动点到定直线(圆与直线相离)的最⼤距离.⽽圆上动点到定直线的最⼩距离为圆⼼到直线距离减去半径,最⼤距离为圆⼼到直线距离加上半径.3.C解析:C 【解析】【分析】根据题意作出图形,欲求球的半径r .利⽤截⾯的性质即可得到三棱锥S ABC -的体积可看成是两个⼩三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从⽽建⽴关于r 的⽅程,即可求出r ,从⽽解决问题.【详解】解:根据题意作出图形:设球⼼为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平⾯AOB ,三棱锥S ABC -的体积可看成是两个⼩三棱锥S ABO -和C ABO -的体积和. 2343123S ABC S ABO C ABO V V V r r ---∴=+==三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多⾯体,解题的关键是确定将三棱锥S ABC -的体积看成是两个⼩三棱锥S ABO -和C ABO -的体积和,属于中档题.4.A解析:A 【解析】【分析】求出圆⼼坐标和半径,根据圆的弦长公式,进⾏求解即可. 【详解】由题意,根据圆的⽅程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-,则圆⼼坐标为(1,1)-,半径1r a =-,⼜由圆⼼到直线的距离为11222d -++==,所以由圆的弦长公式可得222(1)(2)4a --=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应⽤,其中根据圆的⽅程,求得圆⼼坐标和半径,合理利⽤圆的弦长公式列出⽅程求解是解答的关键,着重考查了推理与运算能⼒.5.C解析:C 【解析】【分析】在正⽅体1111ABCD A B C D -中,利⽤线⾯垂直的判定定理,证得1AD ⊥平⾯1A DC ,由此能求出结果.【详解】如图所⽰,在正⽅体1111ABCD A B C D -中,连结1A D ,则1AD DC ⊥,11A D AD ⊥,由线⾯垂直的判定定理得1AD ⊥平⾯1A DC ,所以11AD AC ⊥, 所以异⾯直线1AD 与1A C 所成的⾓的⼤⼩是90o .故选C .【点睛】本题主要考查了直线与平⾯垂直的判定与证明,以及异⾯直线所成⾓的求解,其中解答中牢记异⾯直线所成的求解⽅法和转化思想的应⽤是解答的关键,平时注意空间思维能⼒的培养,着重考查了推理与论证能⼒,属于基础题.6.C解析:C 【解析】【分析】2的等腰直⾓三⾓形,与底⾯垂直的侧⾯是个等腰三⾓形,底边长为2,⾼为2,故三棱锥的外接球与以棱长为2的正⽅体的外接球相同,由此可得结论【详解】由三视图知⼏何体是⼀个侧棱与底⾯垂直的三棱锥,底⾯是斜边上的⾼为2的等腰直⾓三⾓形,与底⾯垂直的侧⾯是个等腰三⾓形,底边长为2,⾼为2,故三棱锥的外接球与以棱长为2的正⽅体的外接球相同,其直径为23,半径为3∴三棱锥的外接球体积为()343433ππ?=故选C 【点睛】本题主要考查了三视图,⼏何体的外接球的体积,考查了空间想象能⼒,计算能⼒,属于中档题.7.C解析:C 【解析】【分析】根据线⾯夹⾓得到4SA =,计算ABC ?的外接圆半径为42sin ar A==,2222SA R r ??=+,解得答案.【详解】SA ⊥平⾯ABC ,则SB 与平⾯ABC 所成的⾓为6SBA π∠=,故4SA =. ABC ?的外接圆半径为42sin ar A==,设球O 的半径为R ,则2222SA R r ??=+ ?,解得25R =,故球O 的表⾯积为2480R ππ=. 故选:C . 【点睛】本题考查了三棱锥的外接球问题,意在考查学⽣的计算能⼒和空间想象能⼒.8.C解析:C 【解析】试题分析:由三视图可知,⼏何体是三棱柱消去⼀个同底的三棱锥,如图所⽰,三棱柱的⾼为,消去的三棱锥的⾼为,三棱锥与三棱柱的底⾯为直⾓边长分别为和的直⾓三⾓形,所以⼏何体的体积为,故选C .考点:⼏何体的三视图及体积的计算.【⽅法点晴】本题主要考查了⼏何体的三视图的应⽤及体积的计算,着重考查了推理和运算能⼒及空间想象能⼒,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、⾼平齐”的原则,还原出原⼏何体的形状,本题的解答的难点在于根据⼏何体的三视图还原出原⼏何体和⼏何体的度量关系,属于中档试题.9.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <">,所以lg lg a b >,但不能确定lg lg a b 、"的正负,所以它们的⼤⼩不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以⼀个负数1lg c改变不等号⽅向,所以选项B 正确;对于选项C ,利⽤cy x =在第⼀象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利⽤xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】⽐较幂或对数值的⼤⼩,若幂的底数相同或对数的底数相同,通常利⽤指数函数或对数函数的单调性进⾏⽐较;若底数不同,可考虑利⽤中间量进⾏⽐较.10.A解析:A 【解析】22x y +(,)x y 到坐标原点的距离,⼜原点到直线250x y ++=的距离为225521d ==+22x y +5 A.11.C解析:C 【解析】【分析】由已知可得三⾓形ABC 为直⾓三⾓形,斜边BC 的中点O '就是ABC V 的外接圆圆⼼,利⽤三棱锥O ABC -的体积,求出O 到底⾯的距离,可求出球的半径,然后代⼊球的表⾯积公式求解.【详解】在ABC V 中,∵2AB =,4AC =,25BC =得AB AC ⊥,则斜边BC 的中点O '就是ABC V 的外接圆的圆⼼,∵三棱锥O ABC -的体积为43, 11424323OO '=,解得1OO '=,221(5)6R =+=,球O 的表⾯积为2424R ππ=.故选C .【点睛】本题考查球的表⾯积的求法,考查锥体体积公式的应⽤,考查空间想象能⼒和计算能⼒,属于基础题.12.D解析:D 【解析】根据三视图知⼏何体是:三棱锥D ABC -为棱长为4的正⽅体⼀部分,直观图如图所⽰:B 是棱的中点,由正⽅体的性质得,CD ⊥平⾯,ABC ABC ?的⾯积12442S =??=,所以该多⾯体的体积1164433V =??=,故选D.⼆、填空题13.【解析】当位于的中点点与中点重合随点到点由得平⾯则⼜则因为所以故综上的取值范围为点睛:⽴体⼏何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件解析:1,12【解析】当F 位于DC 的中点,点D 与AB 中点重合,1t =.随F 点到C 点,由CB AB ⊥,CB DK ⊥,得CB ⊥平⾯ADB ,则CB BD ⊥.⼜2CD =,1BC =,则BD =.因为1AD =,2AB =,所以AD BD ⊥,故12t =.综上,t 的取值范围为1,12??.点睛:⽴体⼏何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.14.【解析】【分析】因为直线l 与已知直线垂直根据两直线垂直时斜率的乘积为-1由已知直线的斜率求出直线l 的斜率然后根据(-12)和求出的斜率写出直线l 的⽅程即可【详解】因为直线2x-3y+9=0的斜率为所解析:3210x y +-=【解析】【分析】因为直线l 与已知直线垂直,根据两直线垂直时斜率的乘积为-1,由已知直线的斜率求出直线l 的斜率,然后根据(-1,2)和求出的斜率写出直线l 的⽅程即可.【详解】因为直线2x-3y+9=0的斜率为23 ,所以直线l 的斜率为32- ,则直线l 的⽅程为:3212y x -=-+(),化简得3210x y +-=.即答案为3210x y +-=.【点睛】本题考查学⽣掌握两直线垂直时斜率的关系,会根据⼀点和斜率写出直线的点斜式⽅程,是⼀道基础题.15.【解析】【分析】设此直三棱柱两底⾯的中⼼分别为则球⼼为线段的中点利⽤勾股定理求出球的半径由此能求出球的表⾯积【详解】∵⼀个直三棱柱的每条棱长都是且每个顶点都在球的球⾯上∴设此直三棱柱两底⾯的中⼼分别解析:21π【解析】【分析】设此直三棱柱两底⾯的中⼼分别为12,O O ,则球⼼O 为线段12O O 的中点,利⽤勾股定理求出球O 的半径2R ,由此能求出球O 的表⾯积.【详解】∵⼀个直三棱柱的每条棱长都是3,且每个顶点都在球O 的球⾯上,∴设此直三棱柱两底⾯的中⼼分别为12,O O ,则球⼼O 为线段12O O 的中点,设球O 的半径为R ,则2223232132324R =+??= ? ? ?∴球O 的表⾯积2S 4R 21ππ== . 故答案为:21π.【点睛】本题考查球的表⾯积的求法,空间思维能⼒,考查转化化归思想、数形结合思想、属于中档题.16.【解析】【分析】两圆关于直线对称即圆⼼关于直线对称则两圆的圆⼼的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆⼼半径由题意得与关于直线对称则解得圆的半径解得故答案为解析:165-【解析】【分析】两圆关于直线对称即圆⼼关于直线对称,则两圆的圆⼼的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值. 【详解】解:因为圆1C :220x y ax by c ++++=,即22224224ab a b cx y 骣骣+-琪琪+++=琪琪桫桫,圆⼼111,22C a b ??--,半径r =由题意,得111,22C a b ??-- 与()20,0C 关于直线21y x =-对称,则112,122112221,22b a ba ?-?=-??-??--??=?-?解得85=-a ,45b =,圆1C的半径22r ==,解得165c =-. 故答案为:165-【点睛】本题考查圆关于直线对称求参数的值,属于中档题.17.【解析】【分析】根据空间直⾓坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直⾓坐标系中点坐标公式考查基本分析求解能⼒属基础题解析:()1,4,1--【解析】【分析】根据空间直⾓坐标系中点坐标公式求结果. 【详解】设B (),,x y z ,则1230,1,2222x y z+++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--.【点睛】本题考查空间直⾓坐标系中点坐标公式,考查基本分析求解能⼒,属基础题.18.【解析】【分析】根据斜率的⼏何意义表⽰函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最⼤值为最⼩值为过点与图象相切的切线斜率设为切线⽅程为代⼊得解析:3[2]4+ 【解析】【分析】根据斜率的⼏何意义,()32x g x x -=-表⽰函数y x =图象上的点与点(2,3)连线的斜率,数形结合,即可求解. 【详解】()32x g x x -=-为点(,)x x 与点(2,3)连线的斜率,点(,),[0,1]x x x ∈在函数,[0,1]y x x =∈图像上,(1,1)B 在抛物线图象上,()g x 的最⼤值为31221AB k -==-,最⼩值为过A 点与,[0,1]y x x =∈图象相切的切线斜率,设为k ,切线⽅程为(2)3y k x =-+,代⼊,[0,1]y x x =∈得,320,0,14(32)0kx x k k k k -+-=≠?=--=,即281210k k -+=,解得37k +=或37k -= 当374k +=时,37[0,1]372x ==-∈+?,当374k -=时,37[0,1]3724x ==+?-? 不合题意,舍去,()g x 值域为37[,2]4+.故答案为:37[,2]+.【点睛】本题考查函数的值域、斜率的⼏何意义,考查数形结合思想,属于中档题.19.【解析】【分析】当过球内⼀点的截⾯与垂直时截⾯⾯积最⼩可求截⾯半径即可求出过点的平⾯截球的截⾯⾯积的最⼩值【详解】解:棱长等于的正⽅体它的外接球的半径为3当过点的平⾯与垂直时截⾯⾯积最⼩故答案为:【解析:3π. 【解析】【分析】当过球内⼀点E 的截⾯与OE 垂直时,截⾯⾯积最⼩可求截⾯半径,即可求出过点E 的平⾯截球O 的截⾯⾯积的最⼩值.【详解】解:棱长等于23的正⽅体1111ABCD A B C D -,它的外接球的半径为3,||6OE = 当过点E 的平⾯与OE 垂直时,截⾯⾯积最⼩,963r =-=,33S ππ=?=,故答案为:3π.【点睛】本题考查过点E 的平⾯截球O 的截⾯⾯积的最⼩值及接体问题,找准量化关系是关键,属于中档题.20.【解析】【分析】推导出两边平⽅可得的长【详解】⼆⾯⾓为是棱上的两点分别在半平⾯内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线⾯⾯⾯间的位置关系等基础知识考查运算求解能⼒考查函数与⽅程解析:217. 【解析】【分析】推导出CD CA AB BD =++u u u r u u u r u u u r u u u r,两边平⽅可得CD 的长.【详解】Q ⼆⾯⾓l αβ--为60?,A 、B 是棱l 上的两点,AC 、BD 分别在半平⾯α、β内,且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++u u u r u u u r u u u r u u u r,∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222CA AB BD CA BD =+++u u u r u u u r u u u r u u u r u u u r g361664268cos12068=+++=,CD ∴的长||68217CD ==u u u r.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线⾯、⾯⾯间的位置关系等基础知识,考查运算求解能⼒,考查函数与⽅程思想,是中档题.三、解答题21.(1)详见解析;(2)30.【解析】【分析】(1)在直⾓梯形ABCD 中,由条件可得222AD AM DM =+,即DM AM ⊥.再由PA ⊥⾯ABCD ,得DM PA ⊥,利⽤线⾯垂直的判定可得DM ⊥平⾯PAM ,进⼀步得到平⾯PDM ⊥平⾯PAM ;(2)由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为⼆⾯⾓P DM A --的平⾯⾓为30°,求得tan301PA AM =??=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建⽴空间直⾓坐标系,求出PC u u u r 的坐标及平⾯PDM 的⼀个法向量,由PC u u u r与n r 所成⾓的余弦值可得直线PC 与平⾯PDM 所成⾓的正弦值.【详解】(1)证明:在直⾓梯形ABCD 中,由已知可得,1,2,2AB CD BM CM ====可得223,6AM DM ==,过A 作AE CD ⊥,垂⾜为E ,则1,22DE AE ==29AD =,则222AD AM DM =+,∴DM AM ⊥.∵PA ⊥⾯ABCD ,∴DM PA ⊥,⼜PA AM A =I ,∴DM ⊥平⾯PAM ,∵DM ?平⾯PDM ,∴平⾯PDM ⊥平⾯PAM ;(2)解:由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为⼆⾯⾓P DM A --的平⾯⾓为30°,则tan301PA AM =??=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建⽴空间直⾓坐标系,则()0,0,1P ,(22,1,0)D -,2,1,0)C ,(2,1,0)M ,1),1,1),1)PC PD PM =-=--=-u u u r u u u r u u u u r.设平⾯PDM 的⼀个法向量为(,,)n x y z =,由00n PD y z n PM y z ??=--=?=+-=u u u v v u u u u v v ,取1x =,得n ?= ??r .∴直线PC 与平⾯PDM 所成⾓的正弦值为:|||cos ,|||||PC n PC n PC n ?<>===?u u u r ru u u r r u u u r r【点睛】向量法是求⽴体⼏何中的线线⾓、线⾯⾓、⾯⾯⾓时常⽤⽅法. 22.(1)证明见解析;(2)①证明见解析;②11.【解析】试题分析:(1)要证明//EF 平⾯PAB ,可以先证明平⾯//EF MA ,利⽤线⾯平⾏的判定定理,即可证明//EF 平⾯PAB ;(2)①要证明平⾯PBC ⊥平⾯ABCD ,可⽤⾯⾯垂直的判定定理,即只需证明PB ⊥平⾯ABCD 即可;②由①BE ⊥平⾯PBC ,所以FEB ∠为直线EF 与平⾯PBC所成的⾓,由PB =ABP ∠为直⾓,即可计算,AM EF 的长度,在Rt EBF ?中,即计算直线EF 与平⾯PBC 所成的⾓的正弦值.试题解析:(1)证明:如图,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,故MF ∥BC 且MF =12BC .由已知有BC ∥AD ,BC =AD .⼜由于E 为AD 中点,因⽽MF ∥AE 且MF =AE ,故四边形AMFE 为平⾏四边形,所以EF ∥AM .⼜AM ?平⾯PAB ,⽽EF ?平⾯PAB ,所以EF ∥平⾯PAB .(2)①证明:如图,连接PE ,BE .因为PA =PD ,BA =BD ,⽽E 为AD 中点,故PE ⊥AD ,BE ⊥AD ,所以∠PEB 为⼆⾯⾓P -AD -B 的平⾯⾓.在△PAD 中,由PA =PDAD =2,可解得PE =2.在△ABD 中,由BA =BD,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60°,由余弦定理,可解得PB从⽽∠PBE =90°,即BE ⊥PB .⼜BC ∥AD ,BE ⊥AD ,从⽽BE ⊥BC ,因此BE ⊥平⾯PBC .⼜BE ?平⾯ABCD ,所以平⾯PBC ⊥平⾯ABCD .②连接BF .由①知,BE ⊥平⾯PBC ,所以∠EFB 为直线EF 与平⾯PBC 所成的⾓.由PB及已知,得∠ABP 为直⾓.⽽MB =12PB=2,可得AM=2,故EF=2.⼜BE =1,故在Rt △EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平⾯PBC 所成⾓的正弦值为21111.考点:直线与平⾯平⾏的判定及直线与平⾯垂直的判定与性质;直线与平⾯所成⾓的求解.【⽅法点晴】本题主要考查了直线与平⾯平⾏的判定及直线与平⾯垂直的判定与性质,直线与平⾯所成⾓的求解,熟练掌握线⾯位置关系的判定定理与性质定理是解答基础,同时根据题设条件确定直线与平⾯所成的⾓是解答的关键,本题的第⼆问的解答中,根据BE ⊥平⾯PBC ,可以确定FEB ∠为直线EF 与平⾯PBC 所成的⾓,可放置在Rt EBF ?中,即计算直线EF 与平⾯PBC 所成的⾓的正弦值.23.(Ⅰ)见证明;(Ⅱ)见证明【解析】【分析】(Ⅰ)先证明PO ⊥平⾯BCD ,再证明平⾯PBD ⊥平⾯BCD ;(Ⅱ)先证明//OM DC .再证明//OM 平⾯PCD . 【详解】(Ⅰ)因为//AD BC ,2BC AD =,所以2CO AO =,所以6CO =,3AO =.即3PO =,⼜因为35PC =PO CO ⊥ . 因为AC BD ⊥于点O ,所以PO BD ⊥. ⼜因为BD OC O ?=,所以PO ⊥平⾯BCD . ⼜因PO ?平⾯PBD ,所以平⾯PBD ⊥平⾯BCD . (Ⅱ)因为//AD BC ,2BC AD =,所以2BODO=,⼜因为2BM CM =,因此BO BMDO CM=,所以//OM DC . ⼜因为OM ?平⾯PCD ,DC ?平⾯PCD ,所以//OM 平⾯PCD . 【点睛】本题主要考查线⾯平⾏和⾯⾯垂直的证明,意在考查学⽣对这些知识的理解掌握⽔平和分析推理能⼒.24.(1)750x y +-=(2)详见解析【解析】试题分析:(1)求直线CD 的⽅程,只需确定C ,D 坐标即可:34(,)55C -,(5,0)D ,直线CD 的斜率40153755-=-??--,直线CD 的⽅程为750x y +-=.(2)证明动圆过定点,关键在于表⽰出圆的⽅程,本题适宜设圆的⼀般式:22+0x y Dx Ey F +++=设(3,4)(01)C m m m -<≤,则D (5+4,0)m ,从⽽()()2220,{916340,54540.F m m mD mE F m m D F =+-++=++++=解之得(54),0D m F =-+=,103E m =--,整理得22435(2)0x y x y m x y +---+=,所以△OCD 的外接圆恒过定点为(2,1)-.试题解析:(1)因为(3,4)A -,所以22(3)45OA =-+=, 1分⼜因为4AC =,所以1OC =,所以34(,)55C -, 3分由4BD =,得(5,0)D , 4分所以直线CD 的斜率40153755-=-??--, 5分所以直线CD 的⽅程为1(5)7y x =--,即750x y +-=. 6分(2)设(3,4)(01)C m m m -<≤,则5OC m =. 7分则55AC OA OC m =-=-,因为AC BD =,所以5+4OD OB BD m =-=,所以D 点的坐标为(5+4,0)m 8分⼜设OCD ?的外接圆的⽅程为22+0x y Dx Ey F +++=,。
(人教版)高中数学必修二(全册)单元测试卷汇总
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
【易错题】高中必修二数学下期中试卷附答案(1)
【易错题】高中必修二数学下期中试卷附答案(1)一、选择题1.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 2.对于平面、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==I I 则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα3.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,72PA =,若该四棱锥的所有顶点都在同一球面上,则该球的表面积为( ) A .812π B .814π C .65π D .652π 4.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为43的等边三角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20π B .40π C .80π D .160π5.在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 长度最小值为3,则三棱锥P ABC -的外接球的表面积是( )A .92πB .92πC .18πD .40π6.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .307.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 8.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A .15B .5C .6D .104 9.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1010.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .16011.已知ABC V 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,25BC =,三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22π B .743π C .24π D .36π12.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误..的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行二、填空题13.已知平面α与正方体的12条棱所成角相等,设所成角为θ,则sin θ=______.14.已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.15.直线10ax y ++=与连接A (4,5),B (-1,2)的线段相交,则a 的取值范围是___.16.若圆1C :220x y ax by c ++++=与圆2C :224x y +=关于直线21y x =-对称,则c =______.17.若直线l :-3y kx =与直线23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.18.在各棱长均为1的正四棱锥P ABCD -中,M 为线段PB 上的一动点,则当AM MC +最小时,cos AMC ∠=_________19.如图所示,二面角l αβ--为60,,A B o是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.20.在正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则直线BE 和平面11ABB A 所成的角的正弦值为_____________.三、解答题21.在平面直角坐标系xOy 中,已知圆C 经过()0,2A ,()0,0O ,(),0D t (0t >)三点,M 是线段AD 上的动点,1l ,2l 是过点()10B ,且互相垂直的两条直线,其中1l 交y 轴于点E ,2l 交圆C 于P 、Q 两点.(1)若6t PQ ==,求直线2l 的方程;(2)若t 是使2AM BM ≤恒成立的最小正整数①求t 的值; ②求三角形EPQ 的面积的最小值.22.已知圆C 的圆心坐标()1,1,直线l :1x y +=被圆C 2.(1)求圆C 的方程;(2)从圆C 外一点()2,3P 向圆引切线,求切线方程.23.如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .24.如图,在正三棱柱111ABC A B C -中,点D 、E 、F 分别是BC 、1AC 、1BB 的中点.(1)求证:AD ⊥平面11BCC B ;(2)求证://EF 平面111A B C .25.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.26.求满足下列条件的直线方程:(1)经过两条直线23100x y -+=和3420x y +-=的交点,且平行于直线10x y -+=;(2)经过两条直线280x y +-=和210x y -+=的交点,且垂直于直线320x y --=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系2.C解析:C【解析】【分析】【详解】 若由线面垂直的判定定理知,只有当和为相交线时,才有 错误; 若此时由线面平行的判定定理可知,只有当在平面 外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若//αβ,a αγ⋂=,b βγ=I ,则//a b 为真命题, 正确; 若此时由面面平行的判定定理可知,只有当、为相交线时,才有//,D βα错误.故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系. 3.B解析:B【解析】【分析】根据题意可知,该四棱锥的外接球即为其所在长方体的外接球,根据公式即可求得.【详解】根据题意,为方便说明,在长方体中找出该四棱锥如图所示:由图可知在长方体中的四棱锥P ABCD -完全满足题意,故该四棱锥的外接球即是长方体的外接球, 故外接球半径222722294R ⎛⎫++ ⎪⎝⎭==, 故该球的表面积为28144S R ππ==. 故选:B .【点睛】 本题考查四棱锥外接球的问题,关键的步骤是将问题转化为求长方体的外接球. 4.C解析:C【解析】【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin a r A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案. 【详解】 SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =.ABC ∆的外接圆半径为42sin a r A ==,设球O 的半径为R , 则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得5R =O 的表面积为2480R ππ=. 故选:C .【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.5.C解析:C【解析】首先确定三角形ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =, 所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC V 为等腰三角形. 所以:23BC =在ABC V 中,设外接圆的直径为324120r sin ==︒, 则:2r =, 所以:外接球的半径2229222R ⎛⎫=+= ⎪ ⎪⎝⎭, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用. 6.C解析:C试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C .考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.7.D解析:D【解析】【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可.【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,则ABEG 四点共面,且平面1//A BGE 平面1B HI ,又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.8.D解析:D【解析】【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,设正三棱柱的各棱长为2,则115,22,3C N BC BN ===,设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 42522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为10,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.9.D解析:D【解析】【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解.【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C , 当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =, 再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10.故选:D.【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10.D解析:D【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.11.C解析:C 【解析】 【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC V 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积公式求解. 【详解】在ABC V 中,∵2AB =,4AC =,25BC =得AB AC ⊥, 则斜边BC 的中点O '就是ABC V 的外接圆的圆心, ∵三棱锥O ABC -的体积为43, 11424323OO '⨯⨯⨯⨯=,解得1OO '=,221(5)6R =+=, 球O 的表面积为2424R ππ=. 故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.12.D解析:D 【解析】 【分析】先利用三角形中位线定理证明//MN BD ,再利用线面垂直的判定定理定义证明MN 与1CC 垂直,由异面直线所成的角的定义证明MN 与AC 垂直,即可得出结论.【详解】如图:连接1C D ,BD ,Q 在三角形1C DB 中,//MN BD ,故C 正确.1CC ⊥Q 平面ABCD ,1CC BD ∴⊥,MN ∴与1CC 垂直,故A 正确;AC BD ^Q ,//MN BD ,MN ∴与AC 垂直,B 正确;∵//MN BD ,MN ∴与11A B 不可能平行,D 错误 故选:D . 【点睛】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键.二、填空题13.【解析】【分析】棱与平面所成的角相等所以平面就是与正方体的12条棱的夹角均为θ的平面之一设出棱长即可求出【详解】因为棱与平面所成的角相等所以平面就是与正方体的条棱的夹角均为的平面设棱长为:易知故答案 3【解析】 【分析】棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面之一,设出棱长,即可求出sin θ. 【详解】因为棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面,1A AO θ∠=,设棱长为:1,126AO AO ==,易知232sin 36θ==. 故答案为:33【点睛】本题考查了线面所成的角,解题的关键是作出线面角,属于基础题.14.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个解析:相交 【解析】 【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可. 【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>, 则圆心为(0,)a ,半径R a =, 圆心到直线0x y +=的距离2d =,Q 圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22222222a a ∴-即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =, 则2MN =3R r +=Q ,1R r -=, R r MN R r ∴-<<+,即两个圆相交. 故答案为:相交. 【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.15.或【解析】【分析】判断直线恒过定点P (0-1)计算PAPB 的斜率再利用数形结合求a 的取值范围【详解】解:由直线ax+y+1=0的方程判断直线恒过定点P (0-1)如图所示计算且或则或即实数a 的取值范围解析:32a ≤-或3a ≥ 【解析】 【分析】判断直线0ax by c ++=恒过定点P (0,-1),计算PA 、PB 的斜率,再利用数形结合求a 的取值范围. 【详解】解:由直线ax+y+1=0的方程,判断直线恒过定点P (0,-1),如图所示,计算513402PA k +==-,21310PB k +==--- 且PA k k ≥或PB k k ≤, 则PA a k ≤-或PB a k ≥-, 即实数a 的取值范围是:32a ≤-或3a ≥. 故答案为:32a ≤-或3a ≥. 【点睛】本题考查直线的斜率与直线方程的应用问题,是基础题.16.【解析】【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为 解析:165-【解析】 【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值. 【详解】解:因为圆1C :220x y ax by c ++++=,即22224224ab a b cx y 骣骣+-琪琪+++=琪琪桫桫, 圆心111,22C a b ⎛⎫-- ⎪⎝⎭,半径r =由题意,得111,22C a b ⎛⎫-- ⎪⎝⎭与()20,0C 关于直线21y x =-对称,则112,122112221,22b a ba ⎧-⎪=-⎪⎪-⎨⎪--⎪⎪=⨯-⎩解得85=-a ,45b =,圆1C的半径22r ==,解得165c =-. 故答案为:165-【点睛】本题考查圆关于直线对称求参数的值,属于中档题.17.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】若直线:l y kx =2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(03330k -==-l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫⎪⎝⎭ 18.【解析】【分析】将侧面和侧面平展在一个平面上连即可求出满足最小时点的位置以及长解即可求出结论【详解】将侧面和侧面平展在一个平面上连与交点即为满足最小正四棱锥各棱长均为在平展的平面中四边形为菱形且在正解析:13-【解析】 【分析】将侧面PAB 和侧面PBC 平展在一个平面上,连AC ,即可求出满足AM MC +最小时,点M 的位置,以及,AM CM 长,解AMC V ,即可求出结论. 【详解】将侧面PAB 和侧面PBC 平展在一个平面上, 连AC 与PB 交点即为满足AM MC +最小, 正四棱锥P ABCD -各棱长均为1,在平展的平面中四边形PABC 为菱形,且60PAB ∠=o ,32AM MC ==P ABCD -中,2AC =在ACM V 中,222332144cos 32324AM CM AC AMC AM CM +-+-∠===-⋅⋅. 故答案为:13-.【点睛】本题考查线线角,要注意多面体表面的长度关系转化为共面的长度关系,考查直观想象能力,属于中档题.19.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程解析:217. 【解析】 【分析】推导出CD CA AB BD =++u u u r u u u r u u u r u u u r,两边平方可得CD 的长. 【详解】Q 二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内,且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++u u u r u u u r u u u r u u u r, ∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222CA AB BD CA BD =+++u u u r u u u r u u u r u u u r u u u r g361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==u u u r.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.【解析】【分析】作出直线和平面所成的角解直角三角形求得线面角的正弦值【详解】设为的中点连接根据正方体的性质可知平面所以是直线和平面所成的角设正方体的边长为在中所以故答案为:【点睛】本小题主要考查线面 解析:23【解析】 【分析】作出直线BE 和平面11ABB A 所成的角,解直角三角形求得线面角的正弦值. 【详解】设F 为1AA 的中点,连接,,EF EB BF ,根据正方体的性质可知EF ⊥平面11ABB A ,所以EBF ∠是直线BE 和平面11ABB A 所成的角.设正方体的边长为2,在Rt EBF ∆中2EF =,2222213BE =++=,所以2sin 3EF EBF BE ∠==. 故答案为:23【点睛】本小题主要考查线面角的求法,考查空间想象能力,属于基础题.三、解答题21.(1)4340x y --=;(2)①4,②152. 【解析】 【分析】(1)求出圆的标准方程,设直线2l 的方程(1)y k x =-,利用6PQ =,结合圆心到直线的210911k -=+,解可得k 的值,验证直线与y 轴有无交点,即可得答案;(2)①设(,)M x y ,由点M 在线段AD 上,得220x ty t +-=,由2AM BM ≤,得224220()()339x y -++…,结合题意,线段AD 与圆224220()()339x y -++=至多有一个公共288||25334t t -+…t 的值,②由①的结论,分直线的斜率存在与不存在2种情况讨论,用k 表示三角形EPQ 的面积,结合二次函数的性质分析可得答案.【详解】解:(1)由题意可知,圆C 的直径为AD ,所以圆C 方程为:()()223110x y -+-=,设2l 方程为:()1y k x =-,则()222213101k k-+=+,解得10k =,243k =,当0k =时,直线1l 与y 轴无交点,不合题意,舍去. 所以,43k =时直线2l 的方程为4340x y --=. (2)①设(,)M x y ,由点M 在线段AD 上,则有12x yt +=,即220x ty t +-=. 由2AM BM „,则有224220()()339x y -++…依题意知,线段AD 与圆224220()()339x y -++=至多有一个公共点,88||t -t „或1611t +…,因为t 是使2AM BM ≤恒成立的最小正整数,所以4t =; ②由①的结论,圆C 的方程为22(2)(1)5x y -+-=. 分2种情况讨论:a 当直线2:1l x =时,直线1l 的方程为0y =,此时,2EPQ S =V ;b 当直线2l 的斜率存在时,设2l 的方程为(1)y k x =-,0k ≠,则1l 的方程为1(1)y x k=--,点1(0,)E k,所以BE =又圆心到2l,所以PQ =故1122EPQ S BE PQ ===V g2<, 故求三角形EPQ. 【点睛】本题考查直线与圆的方程的综合应用,涉及三角形面积的最小值的求法,(2)的关键是确定三角形面积的表达式,属于中档题.22.(1)()()22111x y -+-=;(2)2x =和3460x y -+=. 【解析】 【分析】()1设圆C 的半径为r ,根据圆心坐标写出圆的标准方程,利用点到直线的距离公式求出圆心到直线l 的距离即为弦心距,然后根据垂径定理得到其垂足为弦的中点,由弦长的一半,圆心距及半径构成的直角三角形,根据勾股定理列出关于r 的方程,求出方程的解即可得到r 的值,从而确定圆C 的方程;()2当切线方程的斜率不存在时,显然得到2x =为圆的切线;当切线方程的斜率存在时,设出切线的斜率为k ,由p 的坐标和k 写出切线方程,利用点到直线的距离公式求出圆心到所设直线的距离d ,根据直线与圆相切,得到d 等于圆的半径,列出关于k 的方程,求出方程的解即可得到k 的值,从而确定出切线的方程,综上,得到所求圆的两条切线方程. 【详解】(1)设圆C 的标准方程为: ()()22211x y r -+-= (0)r > 圆心()1,1C 到直线10x y +-=的距离:d ==则22211122r d =+=+=⎝⎭∴圆C 的标准方程: ()()22111x y -+-=(2)①当切线斜率不存在时,设切线: 2x =,此时满足直线与圆相切. ②当切线斜率存在时,设切线: ()32y k x -=-,即23y kx k =-+ 则圆心()1,1C 到直线230kx y k --+=的距离:1d ==解得: 43k =,即34k =则切线方程为: 3460x y -+=综上,切线方程为: 2x =和3460x y -+= 23.(1)见解析;(2)见解析. 【解析】 【分析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论; (2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可. 【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.24.(1)见解析;(2)见解析.【解析】【分析】(1)可证1AD CC ⊥,AD BC ⊥,从而可证AD ⊥平面11BCC B .(2)取11A C 的中点为G ,连接1,EG B G ,可证1//EF B G ,从而可证//EF 平面111A B C .【详解】由正三棱柱111ABC A B C -可得1C C ⊥平面ABC ,而AD ⊂平面ABC ,故1AD CC ⊥.因为ABC ∆为等边三角形,BD DC =,故AD BC ⊥,因为1BC CC C =I ,BC ⊂平面11BCC B ,1C C ⊂平面11BCC B ,所以AD ⊥平面11BCC B .(2)取11A C 的中点为G ,连接1,EG B G .在11A AC ∆,因为111,A G GC AE EC ==,故111//,2EG AA EG AA =.由正三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,故1111,//AA BB AA BB =, 而1112B F BB =,所以11111//,2B F AA B F AA =,故11//,EG B F EG B F =, 故四边形1B FEG 为平行四边形,1//EF B G .因为EF ⊄平面111A B C , 1B G ⊂平面111A B C ,故//EF 平面111A B C .【点睛】本题考查线面垂直与线面平行的证明,前者转化为线线垂直,注意平面中的两条直线需为相交直线,后者转化为线线平行,注意一条线是平面外,另一条线是平面内,本题属于中档题.25.(1)见解析;(2)在棱PA 上存在点E 且E 满足2AE EP=时能使得面//BOE 面PCD ,证明见解析.【解析】【分析】(1)可证PD ⊥平面PAB ,从而得到要证明的面面垂直.(2)在棱PA 上存在点E 且E 满足2AE EP =时能使得面//BOE 面PCD , 利用面面平行的判断定理可证明该结论.【详解】(1)因为90BAD ∠=︒,故BA AD ⊥又因为侧面PAD ⊥底面ABCD ,侧面PAD I 底面ABCD AD =,BA ⊂平面ABCD , 所以BA ⊥平面PAD . 因为PD ⊂平面PAD ,故BA PD ⊥,又因为PA PD ⊥,PA AB A =I ,PA ⊂平面PAB ,AB Ì平面PAB ,所以PD ⊥平面PAB ,而PD ⊂平面PCD ,故平面PAB ⊥平面PCD .(2)在棱PA 上存在点E ,使得面//BOE 面PCD ,E 满足2AE EP =,证明如下: 因为2AE EP =,2AO OD =,所以DAE EP AO O =,故//OE PD .因为OE ⊄平面PCD ,PD ⊂平面PCD ,故//OE 平面PCD .因为//BC AD ,13OD AD BC ==,故//,OD BC OD BC =, 所以四边形BCDO 为平行四边形,故//BO CD ,因为BO ⊄平面PCD ,CD ⊂平面PCD ,故//BO 平面PCD . 因为BO ⊂平面EOB ,EO ⊂平面EOB ,BO EO O ⋂=,故面//BOE 面PCD .【点睛】本题考查面面垂直的证明和面面平行的探索,前者注意空间中三种垂直关系的转化,后者应根据题设条件得到动点满足的位置特征,然后再根据判定定理来证明,本题属于中档题.26.(1)40x y -+=(2)390x y +-=【解析】【分析】【详解】得23100{3420x y x y -+=+-=⇒2{2x y =-= 即两直线交点坐标为()2,2-.∵所求直线与已知直线平行.∴设直线方程1:0l x y C -+=;将交点坐标代入直线方程,解得4C =.∴直线1:40l x y -+=.(2)联立两直线方程得280{210x y x y +-=-+=⇒32x y =⎧⎨=⎩ 即两直线交点坐标为()3,2.∵所求直线与已知直线垂直.∴设直线方程2:30l x y C ++=;将交点坐标代入直线方程,解得9C =-.∴直线2:390l x y +-=.。
新人教版(2019A版)高中数学必修第二册综合测试卷(含答案解析)
新人教版(2019A 版)高中数学必修第二册综合测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.若复数z =2i3-i ,则z 的共轭复数z =( ) A.-15-35I B.-15+35I C.15+35I D.15-35i 答案:A2.某公司生产三种型号的轿车,其中型号Ⅰ的轿车的月产量为 1 200辆,型号Ⅱ的轿车的月产量为6 000辆,型号Ⅲ的轿车的月产量为2 000辆,现用分层抽样的方法抽取92辆车进行检验,则型号Ⅲ的轿车应抽取( )A.12辆B.36辆C.20辆D.60辆答案:C3.2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业发展较快.2010-2018年全球连接器营收情况如图所示,根据折线图,下列结论正确的个数为 ( )①每年的营收额逐年增长;②营收额增长最快的一年为2013-2014年;③2010-2018年的营收额增长率约为40%;④2014-2018年每年的营收额相对于2010-2014年每年的营收额,变化比较平稳.A.1B.2C.3D.4答案:C4.已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506 318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为( )A.0.25B.0.3C.0.35D.0.4答案:B5.盒子中有若干个大小和质地完全相同的红球和黄球,从中任意取出2个球,都是红球的概率为328,都是黄球的概率为514,则从盒子中任意取出2个球,恰好是同一颜色的概率为( )A.1328B.57C.1528D.37 答案:A6.某校篮球运动员进行投篮练习,若他前一球投进,则后一球投进的概率为34;若他前一球投不进,则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A.34 B.58 C.116 D.916 答案:D7.已知数据x 1,x 2,x 3的中位数为k ,众数为m ,平均数为n ,方差为p ,下列说法中,错误的是( )A.数据2x 1,2x 2,2x 3的中位数为2kB.数据2x 1,2x 2,2x 3的众数为2mC.数据2x 1,2x 2,2x 3的平均数为2nD.数据2x 1,2x 2,2x 3的方差为2p答案:D8.一个圆柱的轴截面是正方形,如果这个圆柱的侧面积与一个球的表面积相等,那么圆柱的体积与球的体积之比为( )A.1∶3B.3∶1C.2∶3D.3∶2答案:D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图,已知点O 为正六边形ABCDEF 的中心,下列结论中正确的是( )A.OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =0B.(OA ⃗⃗⃗⃗⃗ -AF ⃗⃗⃗⃗⃗ )·(EF ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=0C.(OA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ D.|OF ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=|FA ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ -CB⃗⃗⃗⃗⃗ | 答案:BC10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,一定符合该标志的是( )甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.A.甲地B.乙地C.丙地D.丁地答案:AD11.如图,在正方体ABCD -A 1B 1C 1D 1中,以下四个选项正确的是( )A.D1C∥平面A1ABB1B.A1D1与平面BCD1相交C.AD⊥平面D1DBD.平面BCD1⊥平面A1ABB1答案:AD12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.若b=c cos A,A的平分线交BC于点D,AD=1,cos A=18,以下结论正确的是()A.AC=34B.AB=8C.CDBD =1 8D.△ABD的面积为3√74答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知a=(1,-1),b=(λ,1),若a与b的夹角为钝角,则实数λ的取值范围是(-∞,-1)∪(-1,1).14.从分别写有1,2,3,4,5的五张质地相同的卡片中,任取两张,这两.张卡片上的数字之差的绝对值等于1的概率为2515.(本题第一空2分,第二空3分)随机抽取100名学生,测得他们的身高(单位:cm),按照身高依次分成六组:[155,160),[160,165), [165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图如图所示,则频率分布直方图中的x的值为0.06;若将身高区间[170,175),[175,180),[180,185)依次记为A,B,C三组,并用分层抽样的方法从这三组中抽取6人,则从A,B,C三组中依次抽取的人数为3,2,1.16.如图所示,已知六棱锥P-ABCDEF的底面是正六边形, PA⊥平面ABC,PA=2 AB.则下列命题中正确的有②④.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD 与平面ABC所成的角为45°.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)如图,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为A1B,AC的中点.(1)证明:EF∥平面A1C1D;(2)求三棱锥C-A1C1D的体积.(1)证明:如图,连接BD.因为四边形ABCD为正方形,所以BD交AC于点F,且F为BD的中点.因为E为A1B的中点,所以EF∥A1D.因为EF⊄平面A1C1D,A1D⊂平面A1C1D,所以EF∥平面A1C1D.(2)解:三棱锥C-A1C1D的体积V=V棱锥A1-CC1D =13S△CC1D·A1D1=13×12×2×2×2=43.18.(12分)从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出所有可能的结果组成的样本空间.(2)求取出的两件产品中,恰有一件次品的概率.解:(1)每次取出一个,取后不放回地连续取两次,其所有可能的结果有6个,即Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.(2)用A 表示事件“取出的两件产品中,恰好有一件次品”,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},所以P (A )=46=23. 19.(12分)某居民小区为了提高小区居民的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站.由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内读书者进行年龄调查, 随机抽取了一天中40名读书者进行调查,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到的频率分布直方图如图所示.(1)估计在这40名读书者中年龄分布在区间[40,70)上的人数;(2)求这40名读书者年龄的平均数和中位数;(3)从年龄在区间[20,40)上的读书者中任选两名,求这两名读书者年龄在区间[30,40)上的人数恰为1的概率.解:(1)由频率分布直方图知,年龄在区间[40,70)上的频率为(0.020+0.030+0.025)×10=0.75.所以40名读书者中年龄分布在区间[40,70)上的人数为40×0.75=30.(2)40名读书者年龄的平均数为25×0.05+35×0.1+45×0.2+55×0.3+ 65×0.25+75×0.1=54.设40名读书者年龄的中位数为x,0.05+0.1+0.2+(x-50)×0.03=0.5,解得x=55,即40名读书者年龄的中位数为55岁.(3)年龄在区间[20,30)上的读书者有2人,分别记为a,b,年龄在区间[30,40)上的读书者有4人,分别记为A,B,C,D.从上述6人中选出2人,有如下样本点:(a,b),(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C),(b,D),(A,B), (A,C),(A,D),(B,C),(B,D),(C,D),共15个,记选取的两名读书者中恰好有1人年龄在区间[30,40)上为事件A,则事件A包含8个样本点:(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C), (b,D),故P(A)=8.1520.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,设△ABC的面积为S,已知3c2=16S+3(b2-a2).(1)求tan B 的值;(2)若S =42,a =10,求b 的值.解:(1)因为3c 2=16S +3(b 2-a 2),所以3(c 2+a 2-b 2)=16S ,即3×2ac cos B =16×12ac sin B , 所以3cos B =4sin B ,即tan B =34. (2)由(1)可得sin B =35,cos B =45, 所以S =12ac sin B =12×10c ×35=3c =42, 所以c =14.由余弦定理可得,45=100+196-b 22×10×14,整理可得,b =6√2.21.(12分)已知向量a ,b 满足|a |=|b |=1,|xa +b |=√3|a -xb |(x >0,x ∈R).(1)求a ·b 关于x 的解析式f (x );(2)求向量a 与b 夹角的最大值;(3)若a 与b 平行,且方向相同,试求x 的值. 解:(1)由题意得|xa +b |2=3|a -xb |2,即x 2a 2+2xa ·b +b 2=3a 2-6xa ·b +3x 2b 2. 因为|a |=|b |=1,所以8xa ·b =2x 2+2, 所以a ·b =x 2+14x (x >0),即f (x )=14(x +1x ) (x >0). (2)设向量a 与b 夹角为θ,则cos θ=a ·b |a ||b |=f (x )=14[(√x -√x )2+2], 当√x =√x ,即x =1时,cos θ有最小值12.因为0≤θ≤π,所以θmax =π3. (3)因为a 与b 平行,且方向相同,|a |=|b |=1,所以a =b ,所以a ·b =14(x +1x )=1, 解得x =2±√3.22.(12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,AA 1⊥平面ABCD ,AC 与BD 交于点O ,∠BAD =60°,AB =2,AA 1=√6.(1)证明:平面A 1BD ⊥平面ACC 1A 1;(2)求二面角A -A 1C -B 的大小.(1)证明:由AA 1⊥平面ABCD ,得AA 1⊥BD ,AA 1⊥AC. 因为四边形ABCD 为菱形,所以AC ⊥BD.因为AC ∩AA 1=A ,所以BD ⊥平面ACC 1A 1.因为BD ⊂平面A 1BD ,所以平面A 1BD ⊥平面ACC 1A 1.(2)解:如图,过点O 作OE ⊥A 1C 于点E ,连接BE ,DE. 由(1)知BD ⊥平面ACC 1A 1,所以BD ⊥A 1C.因为OE ⊥A 1C ,OE ∩BD =O ,所以A 1C ⊥平面BDE ,所以A 1C ⊥BE. 因为OE ⊥A 1C ,BE ⊥A 1C ,所以∠OEB 为二面角A -A 1C -B 的平面角. 因为△ABD 为等边三角形且O 为BD 中点, 所以OB =12AB =1,OA =OC =√32AB =√3. 因为AA 1⊥AC ,所以A 1C =√AA 12+AC 2=3√2. 因为△A 1AC ∽△OEC ,所以OE AA 1=OC A 1C ,所以OE =OC ·AA 1A 1C =√3×√63√2=1. 在△OEB 中,OB ⊥OE ,所以tan ∠OEB =OBOE =1,即∠OEB =45°. 综上,二面角A -A 1C -B 的大小为45°.。
高中数学必修2测试题快
高一数学必修2期中考试复习测试题文科一选择题(每题只有一个选项正确,每题5分,共50分)1. 直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )A.重合B.平行C.垂直D.相交但不垂直2. 过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=03.若正四棱台的上底边长为2,下底边长为8,高为4,则它的侧面积为( )A 50B 100C 248D 以上答案都不对4.教室内有一根直尺,无论怎样放置,在地面上总有直线与直尺所在的直线( ) A异面 B相交 C平行 D垂直5、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行B. 平行于同一直线的两平面平行C. 垂直于同一平面的两条直线平行D.垂直于同一直线的两条直线平行6.点(2,1)到直线3x -4y = 2的距离是( ) A .0 B .2 C .1D .2 7.球面面积等于它的大圆面积的( )倍A 1B 2C 3D 48.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果一个平面内的无数条直线都平行于另一个平面,那么这两个平面互相平行(4)如果一个平面经过另一个平面的一条垂线,则这两个平面垂直其中正确的命题个数有( )A 1B 2C 3D 49若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ).A y=x+1B y=-x-1C y=-x+1D y=x-110、直线121:21,l y x l l =-直线过点(0,1),其倾斜角是倾斜角的2倍,则2l 方程为( )A41y x =+ B1y x =+ C4330x y +-= D21y x =+二 填空(每题5分,共16分)11.若直线202(1)30x ay ax a y a +-=+-+=与直线互相垂直,则的值是__________ 。
新课标人教版B版高一数学必修2期中期末试卷(含答案)(2套)
普通高中课程标准实验教科书——数学第二册[人教版]高中学生学科素质训练新课标高一数学同步期中测试本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.一个棱锥所有的棱长都相等,则该棱锥一定不是 ( ) A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥 2.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为 ( ) A .πQ B .2πQ C . 3πQ D . 4πQ3.已知高与底面的直径之比为2:1的圆柱内接于球,且圆柱的体积为500π,则球的体积 为 ( )A .π53500B .π5310000C .π5320000 D .π5325004.到空间四点距离相等的平面的个数为 ( )A .4B .7C .4或7D .7或无穷多 5.在阳光下一个大球放在水平面上, 球的影子伸到距球与地面接触点10米处, 同一时刻, 一根长1米一端接触地面且与地面垂直的竹竿的影子长为2米, 则该球的半径等于 ( ) A .10(5-2)米 B .(6-15)米C .(9-45)米D .52米6.已知ABCD 是空间四边形,M 、N 分别是AB 、CD 的中点,且AC =4,BD =6,则 ( )A .1<MN <5B .2<MN <10C .1≤MN ≤5D .2<MN <57.空间一个角的两边分别垂直于另一角的两边,则这两个角 ( )A .相等B .互补C .相等或互补D . 不确定8.已知平面α ⊥平面β ,m 是α 内一条直线,n 是β 内一条直线,且m ⊥n .那么,甲:m ⊥β ;乙:n ⊥α ;丙:m ⊥β 或n ⊥α ;丁:m ⊥β 且n ⊥α .这四个结论中,不正确的三个是( )A .甲、乙、丙B .甲、乙、丁9.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边 形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组10.棱台的两底面积分别为S 上、S 下、平行于底面的戴面把棱台的高自上而下分为两段之比 为m ∶n 则截面面S 0为 ( )A .nm mS nS ++下上B .n m S m S n ++下上C .(nm mS nS ++下上)2D .(nm S m S n ++下上)2第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.半径为a 的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为 .12.α 、β 是两个不同的平面,m 、n 是平面α 及β 之外的两条不同直线,给出四个论断:(1)m ⊥n (2)α ⊥β (3)n ⊥β (4)m ⊥α 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题___________.13.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分 别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= _____.14.还原成正方体后,其中两个完全一样的是.(1) 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,长方体ABCD -A 1B 1C 1D 1中被截去一部分,其中EF ∥A 1D 1.剩下的几何体是什么?截取的几何体是什么?若FH ∥EG ,但FH<EG ,截取的几何体是什么?① ②③ ⑤ ⑥ ④④ ⑥ ①⑤ ③②① ⑤ ⑥ ④③ ②④ ② ⑥ ③ ①⑤16.(12分)有一正三棱锥和一个正四棱锥,它们的所有棱长都相等,把正三棱锥和正四棱锥的一个全等的面重合.①说明组合体是什么样的几何体?②证明你的结论.17.(12分)正四棱台的高,侧棱,对角线长分别为7cm,9cm,11cm,求它的侧面积.18.(12分)三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S-BCED的体积.19.(14分)如图,在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.20.(14分)如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2 BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.高一新数学期中测试题参考答案一、DBDDA ADBCD.二、11a3;12.①③④⇒②;13.7∶5;14.②③;三、15.五棱柱,三棱柱,三棱台。
人教版高中数学必修2第二章测试题A组及答案解析
人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。
那么()。
A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①②都是真命题D。
①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。
A。
BD $\parallel$ 平面CBB。
AC $\perp$ BDC。
AC $\perp$ 平面CBD。
异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。
A。
①②B。
③④C。
①④D。
②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。
A。
1B。
2C。
3D。
45.下列命题中正确的个数是()。
①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。
(人教版A版)高中数学必修第二册 第七章综合测试试卷02及答案
第七章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设1234i,23i z z =-+=-其中i 为虚数单位,则12z z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知i 为虚数单位,复数122i,2i z a z =+=-,且21z z =,则实数a 的值为( )A .1B .1-C .1或1-D .1±或03.复数:满足31i z z +=-(i 为虚数单位),则复数z 对应的点的轨迹是( )A .直线B .正方形C .圆D .射线4.已知复数(12i)(23i)z =++(i 是虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.若复数z 满足(12i)5z +=,i 为虚数单位,则z 的虚部为( )A 2i-B .2C .2-D .2i6.定义运算a b ad bc c d =-,则符合条件1142i iz z -=+(i 是虚数单位)的复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知复数2349i+i +i +i ++i 1+iz =L (i 是虚数单位),则复数z 在复平面内对应的点为( )A .11,22æöç÷èøB .(1,1)C .11,22æö-ç÷èøD .(1,1)-8.设z 是纯虚数,i 是虚数单位,若21iz +-是实数,则z =( )A .2i -B .1i 2-C .1i 2D .2i9.对于复数,,,a b c d ,若集合{,,,}S a b c d =具有性质“对任意,x y S Î,必有xy S Δ,则当,,,a b c d 同时满足①1a =:②21b =;③2c b =时,b c d ++=( )A .1B .1-C .0D .i10.已知i 是虚数单位,给出下列命题,其中正确的是( )A .满足i i z z -=+的复数z 对应的点的轨迹是圆B .若2,i 1m Î=-Z ,则123i i i i 0m m m m ++++++=C .复数i z a b =+(其中,a b ÎR )的虚部为iD .在复平面内,实轴上的点都表示实数,虚轴上的点都表示虚数二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ÎR g ”是“z 为实数”的充分不必要条件12.设()()2225322i,z t t t t t =+-+++ÎR ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知i 为虚数单位,若复数24(2)i()z a a a =-+-ÎR 是纯虚数,则1z +=________;z z =g ________.(本题第一空2分,第二空3分)14.如图所示,网格中的小正方形的边长是1,复平面内的点Z 对应复数z ,则复数12z i-(i 为虚数单位)的共轭复数的虚部是________.15.若34i z =-(i 为虚数单位),则z z=________.16.复数12,z z 分别对应复平面内的点12M M 、,且1212z z z z +=-,线段12M M 的中点M 对应的复数为43i +(i 为虚数单位),则2212z z +=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知复数z 满足13z i z =+-,i 是虚数单位,化简22(1i)(34i)2z++.18.(本小题满分12分)(1)已知m ÎR ,i 是虚数单位,复数()()2245215i z m m m m =--+--是纯虚数,求m 的值;(2)已知复数z 满足方程(2)i 0z z +-=,i 是虚数单位,求z 及|2i |z +的值.19.(本小题满分12分)(1)已知2i 1-(i 是虚数单位)是关于x 的方程10mx n +-=的根,,m n ÎR ,求+m n 的值;(2)已知2i 1-(i 是虚数单位)是关于x 的方程210x mx n ++-=的一个根,,m n ÎR ,求+m n 的值.20.(本小题满分12分)已知复数()21223(25)i,10i 15z a z a a a =+-=+--+,其中a 为实数,i 为虚数单位.(1)若复数1z 在复平面内对应的点在第三象限,求a 的取值范围;(2)若12z z +是实数(2z 是2z 的共轭复数),求1z 的值.21.(本小题满分12分)欧拉公式cos sin ix e x i x =+(e 为自然对数的底数,i 为虚数单位,x ÎR )是由瑞士著名数学家欧拉提出的,它将指数函数的定义域扩大到复数,阐述了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式:(1)判断复数2i e 在复平面内对应的点位于第几象限,并说明理由;(2)若0ix e <,求cos x 的值.22.(本小题满分12分)若,42i,sin icos z z z w q q Î+=+=-C (q 为实数),i 为虚数单位.(1)求复数z ;(2)求z w -的取值范围.第七章综合测试答案解析一、1.【答案】B【解析】1234i,23i z z =-+=-Q ,1234i 23i 1i z z \+=-++-=-+,12z z \+在复平面内对应的点坐标为(1,1)-,位于第二象限,故选B .2.【答案】C【解析】因为复数12i z a =+,22i z =-,且12z z =,所以2441a +=+,解得1a =±,故选C .3.【答案】C【解析】设i(,)z x y x y =+ÎR ,则33i 1i i x y x y ++=+-,所以2222(31)9(1)x y x y ++=+-,即224430x y x y +++=.所以复数z 对应的点的轨迹为圆.故选C .4.【答案】B【解析】(12i)(23i)47i z =++=-+Q ,z \在复平面内对应的点的坐标为(4,7)-,位于第二象限,故选B .5.【答案】C 【解析】依题意得,512i 12iz ==-+,所以z 的虚部为2-,故选C .6.【答案】D【解析】依题意得,i 42i z z +=+,42i 3i 1iz +\==-+,对应的点的坐标为(3,1)-,位于第四象限,故选D .7.【答案】A 【解析】2349i i i i i i 1i 1i ==1i 1iz +++++--+++=++L L i (1i)i 11i 1i (1i)(1i)22-==+++-,所以复数z 在复平面呢对应的点的坐标为11,22æöç÷èø.8.【答案】A【解析】z Q 为纯虚数,\设i z b =(b ÎR 且0b ¹),则2i 2(i 2)(1i)21(2)i 1i 1i (1i)(1i)22z b b b b ++++-+===++---+,又21i z +-Q 为实数,1(2)02b \+=,即2b =-,2i z \=-.9.【答案】B【解析】由题意知1,i b c =-=±.当i c =时,满足性质“对任意,x y S Î,必有xy S Δ的d 为i -;同理,当i c =-时,i d =.综上可知,0c d +=,1b c d \++=-.10.【答案】B【解析】对于A ,满足i i z z -=+的复数:对应的点的轨迹是实轴,不是圆,A 错误;对于B ,若2,i 1m Î=-Z ,则123i i i i i (1i 1i)0m m m m n ++++++=+--=,B 正确;对于C ,复数i z a b =+(其中,a b ÎR )的虚部为b ,i 是虚数单位,C 错误;对于D ,在复平面内,实轴上的点都表示实数,虚轴上的点除原点外都表示虚数,D 错误.故选B .二、11.【答案】BC【解析】对于复数z ,若0z z +=,z 不一定为纯虚数,可以为0,反之,若z 为纯虚数,则0z z +=,\“0z z +=”是“z 为纯虚数”的必要不充分条件,A 错误,B 正确;“z z =”是“z 为实数”的充要条件,C 正确;若z z ×ÎR ,z 不一定为实数,也可以为虚数,反之,若z ÎR ,则z z ×ÎR .\“z z ×ÎR ”是“z 为实数”的必要不充分条件,D 错误.故选BC .12.【答案】CD【解析】对于A ,22549492532488t t t æö+-=+--ç÷èø>,2222(1)10t t t ++=++>,所以复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;对于B ,当222530,220,t t t t ì+-=ïí++¹ïî即3t =-或12t =时,z 为纯虚数,故B 错误;对于C ,因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;对于D ,由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确.故选CD .三、13.16【解析】Q 复数24(2)i()z a a a =-+-ÎR 是纯虚数,240,20,a a ì-=ï\í-¹ïî解得2a =-,4i z \=-,4i z =,114i z \+=-=,z z ×.14.【答案】1-【解析】由题图可知,点Z 的坐标为(2,1),2i z \=+,2i (2i)(12i)i 12i 12i (12i)(12i)z +++\===---+,其共轭复数为i -,\其共轭复数的虚数是1-.15.【答案】34i 55+【解析】依题意得,34i 55z z ==+.16.【答案】100【解析】设O 为坐标原点,由1212z z z z +=-知,以线段12,OM OM 为邻边的平行四边形是矩形,即12M OM Ð为直角,又M 是斜边12M M 的中点,5OM ==u u u r ,所以1210M M =u u u u u u r ,所以22222121212100z z OM OM M M +=+==u u u r u u u r u u u u u u r .四、17.【答案】解:设i(,)z a b a b =+ÎR ,则由13i z z =+-13i i 0a b -++=,10,30,a b +-=\-=ïî解得4,3,a b =-ìí=î43iz \=-+22(1i)(34i)2i(724i)247i (247i)(43i)34i 22(43i)43i (43i)(43i)z ++-++++\====+-+--+.18.【答案】(1)解:由复数z 是纯虚数,可得22450,2150,m m m m ì--=ïí--¹ïî即251,53,m k m m m ì==-ïí¹¹-ïî或且解得1m =-.(2)解:由题意可得,2i 2i(1i)1+i 1i (1i)(1i)z -===++-,从而1i z =-,所以2i (1i)z +=-+.19.【答案】(1)解:由已知得(2i 1)10m n -+-=,(1)2i 0n m m \--+=,10,20,n m m --=ì\í=î解得1,0,n m =ìí=î1m n \+=.(2)解:解法一:由已知得2(2i 1)(2i 1)10m n -+-+-=,(4)(24)i 0n m m \--+-=,40,240,n m m --=ì\í-=î解得6,2,n m =ìí=î8m n \+=.解法二:2i 1-Q 是实系数方程21=0x mx n ++-的根,\12i --也是此方程的根,因此,(12)(12),(12)(12)1,i i m i i n -++--=-ìí-+--=-î解得6,2,n m =ìí=î8m n \+=.20.【答案】(1)复数1z 在复平面内对应的点在第三象限,则20,1250.a a ìï-íï-î<解得1,5,2a a ìïíïî><即52a 1<<,故实数a 的取值范围是51,2æöç÷èø.(2)解:()22310i 5z a a =+-+Q ()22310i 5z a a \=--+()()22122332(25)i 10i (25)10i 1551z z a a a a a a a a éù\+=+-+--=++---ëû-++-.12z z +Q 是实数,()225100(15)a a a a \---=¹¹且.由()225100a a ---=得22150a a +-=,解得3a =或5a =-(舍).12(25)i 1i 1z a a \=+-=-+-,1z \=.21.【答案】(1)解:位于第二象限.理由如下:2i cos 2isin 2e =+在复平面内对应的点的坐标为(cos 2,sin 2),由于22pp <,因此cos2<0,sin 20>,\点(cos 2,sin 2)在第二象限,故复数2i e 在复平面内对应的点位于第二象限。
高中数学必修2测试题附答案
高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。
2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。
3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。
4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。
5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。
6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。
7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。
8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。
因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。
9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。
人教A版高中必修二试题期中考试数学试题
高中数学学习材料金戈铁骑整理制作期中考试数学试题一、选择题1.已知圆的方程为2220x y x +-=,则圆心坐标为 ( )A .()0,1B .()0,1-C .()1,0D .()1,0-2.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ).A .x 2+y 2= 2B . x 2+y 2=2C .x 2+y 2=1D .x 2+y 2=43.设直线过点(0,a),其斜率为1, 且与圆x 2+y 2=2相切,则a 的值为A.± 2B.±2C.±2 2D.±44.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是A .,,//,////m n m n ααββαβ⊂⊂⇒B . //,,//m n m n αβαβ⊂⊂⇒C . ,//m m n n αα⊥⊥⇒D . //,m n n m αα⊥⇒⊥5.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,直线l 被圆C 截得的弦长为23,则a=( )A .2B .2-2C .2-1D .2+1 6.若直线ax +by =1与圆x 2+y 2=1相交,则P (a ,b )( ) A .在圆上 B .在圆外C .在圆内D .以上都有可能7.如图,已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC ,2PA AB =则下列结论正确的是A .PB AD ⊥ B .平面PAB ⊥平面PBCC .直线//BC 平面PAED .直线PD 与平面ABC 所成的角为45°8.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ).A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=19.圆x 2+y 2-4x+2y+C=0与y 轴交于A 、B 两点,圆心为P ,若∠APB=900,则C 的值是A .-3B .3C .22D .810.已知矩形ABCD ,1AB =,BC x =,将△ABD 沿矩形对角线BD 所在的直线进行翻折,在翻折过程中,则( )A .任意)2,0(∈x ,都存在某个位置,使得AB CD ⊥B .任意)2,0(∈x ,都不存在某个位置,使得AB CD ⊥C .任意x>1,都存在某个位置,使得AB CD ⊥D .任意x>1,都不存在某个位置,使得AB CD ⊥二、填空题11.在空间直角坐标系中,点A (1,-2,3)关于平面xoz 的对称点为B ,关于x 轴的对称点为C ,则B 、C 间的距离为___________________12.已知圆C 的半径为1,圆心在第一象限,且与y 轴相切,与x 轴相交于点A 、B , 若|AB |=3,则该圆的标准方程是__________________________________________13.已知正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为14.在四棱锥P ABCD -中,已知底面ABCD 是边长为23的正方形,四条侧棱长都为3,则侧棱与底面所成角的余弦值为 .15.直线1l :y=x+a 和2l :y=x+b 将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.三、解答题16.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m 、n 的值,使(1)l 1与l 2相交于点P (m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.17.已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 最短时,写出直线l 的方程;(3)当直线l 的倾斜角为45º时,求弦AB 的长.18.根据下列条件求圆的方程:(1)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上;(2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2);(3)过三点A (1,12),B (7,10),C (-9,2).19.如图所示,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE .20.21. 已知圆O 的方程为x 2+y 2=4.(1)求过点P (1,2)且与圆O 相切的直线l 的方程;(2)直线l 过点P (1,2),且与圆O 交于A 、B 两点,若|AB |=23,求直线l 的方程;(3)圆O 上有一动点00(,)M x y ,00(2,)ON x y =,若向量122OQ OM ON =+,求动点Q 的轨迹方程.参考答案一、选择题1-5 CBBDC, 6-10 BDAAC二、填空题 11.6 12.1)21()1(22=-+-y x 13.43 14.36 15.2 三、解答题16.解 (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =02m -m -1=0,解得m =1,n =7. ----------4分 (2)当m =0时,显然l 1不平行于l 2;当m ≠0时,由m 2=8m ≠n -1, 得⎩⎪⎨⎪⎧ m ·m -8×2=0,8×(-1)-n ·m ≠0, ∴⎩⎪⎨⎪⎧ m =4,n ≠-2,或⎩⎪⎨⎪⎧m =-4,n ≠2. 即m =4,n ≠-2时或m =-4,n ≠2时,l 1∥l 2.-----------8分(3)当且仅当m ·2+8·m =0,即m =0时,l 1⊥l 2.又-n 8=-1,∴n =8. 即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.------------12分17.(1) 已知圆C :()2219x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2, 直线l 的方程为y=2(x-1),即 2x-y-20.-----------------------------------------4分(2) 当弦AB 最短时,l ⊥PC, 直线l 的方程为12(2)2y x -=--, 即 x+2y-6=0-----------8分 (3) 当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0圆心C 到直线l 的距离为12,圆的半径为3, 弦AB 的长为34.---------------------------------12分18.解 (1)设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组⎩⎪⎨⎪⎧ a 2+b 2=r 2(a -1)2+(b -1)2=r 22a +3b +1=0,解之得⎩⎪⎨⎪⎧ a =4,b =-3,r 2=25.∴圆的标准方程是(x -4)2+(y +3)2=25.-----------------------4分(2)过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).∴半径r =(1-3)2+(-4+2)2=22,∴所求圆的方程为(x -1)2+(y +4)2=8.-----------------------4分(3)方法一 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧ 1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0.------------------12分方法二 由A (1,12),B (7,10),得AB 的中点坐标为(4,11),k AB =-13, 则AB 的中垂线方程为3x -y -1=0.同理得AC 的中垂线方程为x +y -3=0.联立⎩⎪⎨⎪⎧ 3x -y -1=0x +y -3=0,得⎩⎪⎨⎪⎧x =1y =2, 即圆心坐标为(1,2),半径r =(1-1)2+(2-12)2=10.∴所求圆的方程为(x -1)2+(y -2)2=100.19.证明 (1)由四棱锥P —ABCD 中,∵PA ⊥底面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .∵AC ⊥CD ,PA ∩AC =A ,∴CD ⊥平面PAC .而AE ⊂平面PAC ,∴CD ⊥AE .---------------------------6分(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA .∵E 是PC 的中点,∴AE ⊥PC .由(1),知AE ⊥CD ,且PC ∩CD =C ,∴AE ⊥平面PCD .而PD ⊂平面PCD ,∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD 且PA ∩AD =A ,∴AB ⊥平面PAD ,而PD ⊂平面PAD ,∴AB ⊥PD .又∵AB ∩AE =A ,∴PD ⊥平面ABE .------------------------------------12分20.证明:(1)设AC 与BD 交于O ,连接PO ,依题意知,PO 为△BDD 1的中位线,PO ∥BD 1,PO ⊂面PAC,BD 1⊄面PAC,∴BD 1∥面PAC -----------4分(2)在正方形ABCD 中,AC ⊥BD,长方体ABCD-A 1B 1C 1D 1中,BB 1⊥面ABCDAC ⊂面ABCD ,∴AC ⊥BB 1,又BB 1∩BD=B ,∴AC ⊥面BDD 1B 1而AC ⊂面PAC,∴面PAC ⊥面BDD 1B 1-----------9分(3)由(2)知,∠CPO 即为PC 与面BDD 1B 1所成的角∵AB=AD=1,∴22=CO 又知DP=1,∴2=PC在Rt △COP 中,sin ∠CPO 21==PC CO ∴∠CPO=300,即PC 与面BDD 1B 1所成的角为300---------------13分21.解 (1)显然直线l 的斜率存在,设切线方程为y -2=k (x -1), 则由|2-k |k 2+1=2,得k 1=0,k 2=-43, 从而所求的切线方程为y =2和4x +3y -10=0.---------------------------5分(2)当直线m 垂直于x 轴时,此时直线方程为x =1,m 与圆的两个交点坐标为(1,3)和 (1,-3),这两点的距离为23,满足题意;当直线m 不垂直于x 轴时,设其方程为 y -2=k (x -1),即kx -y -k +2=0,设圆心到此直线的距离为d (d >0),则23=24-d 2,得d =1,从而1=|-k +2|k 2+1,得k =34,此时直线方程为3x -4y +5=0,综上所述,所求直线m 的方程为3x -4y +5=0或x =1.---------------------------10分(3)设Q 点的坐标为(x ,y ),M 点坐标是(x 0,y 0),ON →=(2x 0,y 0),∵122OQ OM ON =+, ∴00000015(,)(2,2)(,)(3,)22x y x y x y x y =+=⇒0012,35x x y y == .∵x 20+y 20=4,∴2212()()435x y +=,即2213625x y +=. ∴Q 点的轨迹方程是2213625x y +=,--------------------------------------------14分。
【典型题】高中必修二数学下期中试卷附答案(1)
15,则这个棱柱的侧面积是( ).
A.130
B.140
C.150
D.160
11.某几何体的三视图如图所示(单位: cm ),其俯视图为等边三角形,则该几何体的
体积(单位: cm3 )是( )
A. 4 3
B. 10 3 3
C. 2 3
D. 8 3 3
12.已知平面 且 l , M 是平面 内一点, m , n 是异于 l 且不重合的两条
③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形. 故可选 A.
8.C
解析:C 【解析】 【分析】
首先确定三角形 ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定
球的表面积. 【详解】 解:如图所示:
三棱锥 P ABC 中, PA 平面 ABC,AP 2, AB 2 ,
4.A
解析:A 【解析】 【分析】 求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】
由题意,根据圆的方程 x2 y2 2x 2 y a 1 0 ,即 (x 1)2 ( y 1)2 2 a ,
则圆心坐标为 (1,1) ,半径 r 1 a ,
11 2
又由圆心到直线的距离为 d
2 是 SA, SC 的中点,现将 SCD 沿 CD 翻折到 PCD 位置,使 PB 2 3
(1)证明: PD 面 ABCD ; (2)求二面角 E BD C 的平面角的正切值; (3)求 AB 与平面 BDE 所成的角的正弦值. 23.在四棱锥 S ABCD 中,平面 SAB 平面 ABCD ,平面 SAD 平面 ABCD .
(Ⅰ)证明: SA 平面 ABCD ; (Ⅱ)若底面 ABCD 为矩形, SA 2AD 3AB , F 为 SC 的中点, BE 2 BC ,求直
高中数学必修二 必刷卷02下学期期中仿真必刷模拟卷(含答案)
2020-2021学年高一下学期数学期中仿真必刷模拟卷【人教A版2019】期中检测卷02姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1B.﹣3C.1D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B =2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C 与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a=a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x轴、y轴、z 轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C(2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角。
高中数学必修2测试试卷
高中数学测试试卷(4)1)0(0=+≠=++y x abc c by ax 与圆|b|,|c|的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在 2. a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件3.点M (x 0,y 0)是圆x 2+y 2=a 2 (a>0)内不为圆心的一点,则直线x 0x+y 0y=a 2与该 圆的位置关系是( )A .相切B .相交C .相离D .相切或相交 4.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个5.命题“∀x >0,都有x 2-x ≤0”的否定是 ( ).A .∃x 0>0,使得x 02-x 0≤0B .∃x 0>0,使得x 02-x 0>0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >06.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27π B .56π C .14π D .64π7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 28.如图8-24,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )9.如图8-25,在三棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q ,且满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1B .2∶1C .4∶1D .3∶110.图8-23中多面体是过正四棱柱的底面正方形ABCD 的顶点A 作截面AB 1C 1D 1而截得的,且B 1B=D 1D 。
人教A版(2019)高中数学必修第二册第六章、第七章检测试题及参考答案
高中数学必修第2册第六章、第七章综合测试一、单选题(共8小题)1. 在△ABC中,角A,B,C所对边分别为a,b,c,则下列结论正确的是( )A. a2=b2+c2+2bc cos AB. a2=b2+c2+bc cos AC. a2=b2+c2-2bc cos AD. a2=b2+c2-bc cos A2. 如果将直角三角形的三边分别增加同样的长度,那么新三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 由增加的长度确定3. 已知复数z=-i,则复平面内对应的点Z的坐标为( )A. (0,-1)B. (-1,0)C. (0,0)D. (-1,-1)4. 设复数z1=,z2=6,则z1z2为( )A. 3iB. 3C. -3iD. 35. “复数z=(a∈R)在复平面内对应的点位于第三象限”是“a≥0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 若(1+i)=1-i,则z=( )A. 1-iB. 1+iC. -iD. i7. 在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则等于()A. B. C. D.8. 已知三个力F1=(-2,-1),F2=(-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力F4,则F4等于( )A. (-1,-2)B. (1,-2)C. (-1,2)D. (1,2)二、多选题(共4小题)9. 如图所示,四边形ABCD,CEFG,CGHD是全等的菱形,则下列结论中一定成立的是( )A. ||=||B. 与共线C. 与共线D. =10. 已知△ABC是边长为2a(a>0)的等边三角形,P为△ABC所在平面内一点,则·(+)的值可能是( )A. -2a2B. -a2C. -a2D. -a211. 下列各式中结果为零向量的是( )A. +++B. ++C. +++D. -+-12. △ABC的内角A,B,C所对的边分别为a,b,c,对于△ABC,有如下命题,其中正确的有( )A. sin(B+C)=sin AB. cos(B+C)=cos AC. 若a2+b2=c2,则△ABC为直角三角形D. 若a2+b2<c2,则△ABC为锐角三角形三、填空题(共4小题)13. 已知|a|=|b|=1,且a⊥b,若|a+b+m|≤1恒成立,则|m|的取值范围是________.14. 方程x2-2x+5的复数根为________.15. 设复数z=a+b i(a,b∈R),1≤|z|≤2,则|z+1|的取值范围是________.16. 小顾同学在用向量法研究解三角形面积问题时有如下研究成果:若=(x1,y1),=(x2,y2),则S△OAB=|x1y2-x2y1|.试用上述成果解决问题:已知A(1,1),B(2,3),C(4,5),则S△ABC=______.四、解答题(共6小题)17. 如图所示,在正方形ABCD中,E,F分别是AB,BC的中点,求证:AF⊥DE.18. 已知△ABC的三个内角A,B,C所对的边分别为a,b,c,(a+b+c)(b+c-a)=3bc.(1)求A的大小;(2)若b+c=2a=2,试判断△ABC的形状.19. 在△ABC中,已知A=15°,B=45°,c=3+,解这个三角形.20. 如图所示,四边形ABCD是矩形,点A和B对应的复数分别为-1+2i,1+i,并且|BA|∶|DA|=1∶,求点C和点D分别对应的复数.21. 设复数z=(a2+a-2)+(a2-7a+6)i,其中a∈R,当a取何值时,(1)z∈R;(2)z 是纯虚数;(3)z是零.22. 如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)++;(2)+++.参考答案1. 【答案】C【解析】由余弦定理的结构特征易知选C.2. 【答案】A【解析】设直角三角形的三条边长分别为a,b,c,且a2+b2=c2,三条边均增加同样的长度m,三边长度变为a+m,b+m,c+m,此时最长边为c+m,设该边所对角为θ,则由余弦定理,得cosθ==.因为m2>0,a+b-c>0,所以cosθ>0,所以θ为锐角,其他各角必为锐角,故新三角形是锐角三角形.3. 【答案】A【解析】由z=-i可知,复平面内对应的点Z的坐标为(0,-1).4. 【答案】A【解析】z1z2=×6=3=3i.5. 【答案】A【解析】易得z==-a-3i,则z在复平面内对应的点位于第三象限⇔a>0.又a>0⇒a≥0,a≥0D⇒/a>0,所以“a>0”是“a≥0”的充分不必要条件,即“z在复平面内对应的点位于第三象限”是“a≥0”的充分不必要条件.6. 【答案】D【解析】由(1+i)=1-i,得===-i,故z=i.7. 【答案】A【解析】=-=8. 【答案】D【解析】为使物体平衡,则合力为零,即F4=(0-(-2)-(-3)-4,0-(-1)-2-(-3))=(1,2).9. 【答案】ABD【解析】由向量相等及共线的概念,由∠EDB与∠HED不一定相等可知C选项不一定正确.10. 【答案】BCD【解析】建立如图所示的平面直角坐标系.设P(x,y),因为A(0,a),B(-a,0),C(a,0),则=(-x,a-y),=(-a-x,-y),=(a-x,-y).所以·(+)=(-x,a-y)·[(-a-x,-y)+(a-x,-y)]=(-x,a-y)·(-2x,-2y)=2x2+2y2-2ay=2x2+22-a2≥-a2,当且仅当x=0,y=a时取等.故选项B,C,D满足,故选BCD.11. 【答案】BD【解析】由向量加法的法则得A:+++=++=,故结果不为零向量;B:++=+=0,结果为零向量;C:+++=+=,结果不为零向量;D:-+-=+-(+)=-=0,结果为零向量.12. 【答案】AC【解析】依题意,在△ABC中,B+C=π-A,sin(B+C)=sin(π-A)=sin A,A正确;cos(B+C)=cos(π-A)=-cos A,B不正确;因为a2+b2=c2,则由余弦定理的推论得cos C==0,而0<C<π,即有C=,则△ABC为直角三角形,C正确;因为a2+b2<c2,则cos C=<0,而0<C<π,即有<C<π,则△ABC为钝角三角形,D不正确.13. 【答案】[-1,+1]【解析】建立平面直角坐标系(图略),设a=(1,0),b=(0,1),a+b=(1,1),m=(x,y),a+b+m=(x+1,y+1).由题意可知(x+1)2+(y+1)2≤1,|m|表示以点(-1,-1)为圆心,1为半径的圆面(包括边界)上的动点与原点连线段的长度,易知|m|的最大值为+1,最小值为-1.14. 【答案】1±2i【解析】由求根公式得x===1±2i.15. 【答案】[0,3]【解析】由复数的模及复数加减运算的几何意义可知,1≤|z|≤2表示如图所示的圆环,而|z+1|表示复数z的对应点A(a,b)与复数z1=-1的对应点B(-1,0)之间的距离,即圆环内的点到点B的距离d.由图易知当A与B重合时,d min=0,当点A与点C(2,0)重合时,d max=3,所以0≤|z+1|≤3.16. 【答案】1【解析】因为A(1,1),B(2,3),C(4,5),所以=(1,2),=(3,4),又当=(x1,y1),=(x2,y2)时,S△OAB=|x1y2-x2y1|,所以S△ABC=×|1×4-3×2|=1.17. 【答案】证明方法一设=a,=b,则|a|=|b|,a·b=0.又=+=-a+,=+=b+,所以·=·=-a2-a·b+=-|a|2+|b|2=0.故⊥,即AF⊥DE.方法二如图所示,建立平面直角坐标系,设正方形的边长为2,则A(0,0),D(0,2),E(1,0),F(2,1),则=(2,1),=(1,-2).因为·=(2,1)·(1,-2)=2-2=0.所以⊥,即AF⊥DE.18. 【答案】解(1)∵(a+b+c)(b+c-a)=3bc,∴a2=b2+c2-bc,由余弦定理得a2=b2+c2-2bc cos A,∴cos A=.∵A∈(0,π),∴A=.(2)∵在△ABC中,a2=b2+c2-2bc cos A,且a=,∴()2=b2+c2-2bc·=b2+c2-bc.①又∵b+c=2,与①联立,解得bc=3,∴∴b=c=,又∵a=,∴△ABC为等边三角形.19. 【答案】解由三角形内角和定理,得C=180°-(A+B)=180°-(15°+45°)=120°.由正弦定理,得a=====,b======+.20. 【答案】解要求出点C对应的复数,即求出向量对应的复数,结合图形并注意到=+,可以先求向量对应的复数.向量可以看成向量的长度扩大为原来的倍,并绕点B按顺时针方向旋转90°后得到,又向量对应的复数为(-1+2i)-(1+i)=-2+i,故向量对应的复数为(-2+i)··[cos(-90°)+isin(-90°)]=+2i.于是点C对应的复数为(+2i)+(1+i)=(+1)+(2+1)i.同理可得点D对应的复数是(-1)+(2+2)i.21. 【答案】解(1)z∈R,只需a2-7a+6=0,所以a=1或a=6.(2)z是纯虚数,只需所以a=-2.(3)因为z=0,所以所以a=1.22. 【答案】解(1)++=++=++=+=;(2)+++=+++=++=+=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学立体几何试卷
满分150分,考试时间120分钟
第Ⅰ卷(选择题 共50分)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,
只有一项是符合题目要求的)
1. 已知平面α与平面β、γ都相交,则着三个平面可能的交线有 ( )
A .1条或2条
B .2条或3条
C .1条或3条
D .1或2条或3条
2.过正方体一面对角线作一平面去截正方体,截面不可能是 ( )
A .正三角形
B .钝角三角形
C .等腰三角形
D .矩形 3. 正四棱锥的一个对角面与一个侧面的面积之比为2:6,则侧面与底面的夹角为( )
A .
12
π B .
6
π
C .
4
π D .
3
π 4. 在斜棱柱的侧面中,矩形的个数最多是 ( )
A .2
B . 3
C .4
D .6
5.设地球半径为R,若甲地在北纬45︒东经120︒,乙地在北纬45︒西经150︒,甲乙两地的球面距离为( )
A .3R π
B .6R π C
R D . R
6. 如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,2
3=EF ,EF 与面AC 的距离为2,则该多面体的体积为 ( ) A .2
9
B .5
C .6
D .2
15
7. 已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( ) A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β=n ,则m ∥n
C .若m ⊥α,m ⊥β,则α∥β
D .若m ⊥α,β⊂m
,则α⊥β
8. 下列命题中,正确命题的个数是 ( ) (1)各个侧面都是矩形的棱柱是长方体(2)三棱锥的表面中最多有三个直角三角形 (3)简单多面体就是凸多面体 (4)过球面上二个不同的点只能作一个大圆
A.0个
B.1个
C.2个
D. 3个
9. 将鋭角B 为60°, 边长为1的菱形ABCD 沿对角线AC 折成二面角θ,若[]60,120θ∈︒︒
则折后两条对角线之间的距离的最值为
( )
A. 最小值为43
, 最大值为23
B. 最小值为43, 最大值为43
10.设有如下三个命题: 甲:相交的直线l ,m 都在平面α,并且都不在平面β;
乙:直线l ,m 中至少有一条与平面β相交; 丙:平面α与平面β相交 .
当甲成立时, ( )
A .乙是丙的充分而不必要条件;
B .乙是丙的必要而不充分条件
C .乙是丙的充分且必要条件
D .乙既不是丙的充分条件又不是丙的必要条件.
第II 卷(非选择题 共100分)
二、填空题(本大题共6小题,每小题5分,共30分)
11.边长为2的正方形ABCD 在平面α的射影是EFCD ,如果AB 与平面α的距离为
2,则AC 与平面α所成
角的大小是 .
12.设三棱锥的三个侧面两两互相垂直,且侧棱长均为则其外接球的表面积为 . 13.足球可以看成由12个五边形和20个六边形相间围成的多面体.则这个多面体有
条棱,有 个顶点.
14.已知异面直线a 、b ,A 、B 是a 上两点,C 、D 是b 上两点,AB=2,CD=1,直线AC 为a 与b 的公垂线,
且AC=2,若a 与b 所成角为60︒,则BD= .
15.长方体1111ABCD A B C D -中,AB=3,BC=2,1BB =1,则A 到1C 在长方体表面上的最短距离为 . 16.已知点P ,直线βα、以及平面、、c b a ,给出下列命题:
①若b a b a //成等角,则与、α ②若βαβα⊥⊥c c
,则,//
③若αα//b a b a
,则,⊥⊥
④若βαβα⊥⊥a a ,则,//
⑤若相交、异面或、或,则,b a b a b a c b c a //⊥⊥
其中正确命题的序号是_______________.(把所有正确命题的序号都填上)
三、解答题(本大题共6题,共70分)
17.(本题满分10分)已知平面⊥α平面β,直线α//a ,a 垂直于α
与β的交线AB ,试判断a 与β 的
位置关系,并证明结论.
18. (本题满分12分)已知正四棱柱ABCD —A 1B 1C 1D 1.AB=1,AA 1=2,点E 为CC 1中点,点P 为BD 1中点. (Ⅰ)证明EF 为BD 1与CC 1的公垂线; (Ⅱ)求点D 1到面BDE 的距离.
19.(本题满分12分)如图,在底面是菱形的四棱锥P-ABCD 中,60ABC ∠=︒,PA=AC=a ,PB=PD=2a ,
点E 为PD 的中点,
(Ⅰ)PA ABCD PB EAC ⊥平面,平面;
(Ⅱ)求以AC 为棱,EAC 与DAC 为面的二面角的θ正切值。
20.(本题满分12分)在正方体ABCD —A 1B 1C 1D 1中,O 为正方形ABCD 的中心,M 为D 1D 的中点. (Ⅰ)求证:异面直线B 1O 与AM 垂直; (Ⅱ)求二面角B 1—AM —C 的大小;
(III )若正方体的棱长为a ,求三棱锥B 1—AMC 的体积。
A B
C
P
E
21.(本题满分12分)已知斜三棱柱111ABC A B C -的侧面11A ACC 与底面ABC 垂直,90ABC ∠=︒,
BC=2,
AC=11AA A C ⊥,1AA =1A C ,求:
(Ⅰ)侧棱1AA 与底面ABC 所成角的大小; (Ⅱ)侧面
11A ABB 与底面ABC 所成二面角的大小;
(Ⅲ)顶点C 到侧面11A ABB 的距离。
22.(本题满分12分)三棱锥P-ABC 中,AP=AC ,PB=2,将此三棱锥沿三条侧棱剪开,其展开图是一个直角梯
形123PP P A (Ⅰ)求证:侧棱PB AC ⊥
;
(Ⅱ)求侧面PAC 与底面ABC 所成角θ的余弦。
A
P1
P2B
高二期末数学试卷答案
一.选择题(本大题共10小题,每小题5分,共50分).
二、填空题(本大题共6小题,每小题5分,共30分)
11.30º 12. 36π cm 13.90,60 14.. ②⑤
三、解答题(本大题共5题,共70分) 17.解:a 与β的位置关系是:直线⊥a 平面β.
证明 过直线a 作平面=αγ
直线c ,(2
分) ∵ α//a ,∴c //a .(4分)又
∵,AB a ⊥∴AB c ⊥.(6分)又∵α⊂c ,AB =βα 且β⊥α,∴β⊥c ,(8分)故β⊥a .
(10分)
18.(Ⅰ)取BD 中点M.连结MC ,FM . ∵F 为BD 1中点 , ∴FM ∥D 1D 且FM=2
1
D 1D .
(2分) 又EC=
2
1
CC 1且EC ⊥MC ,∴四边形EFMC 是矩形 ∴EF ⊥CC 1.(4分) 又CM ⊥面DBD 1 .∴EF ⊥面DBD 1 .
∵BD 1⊂面DBD 1 . ∴EF ⊥BD 1 . 故EF 为BD 1 与CC 1的公垂线.(6分)
(Ⅱ)解:连结ED 1,有V E -DBD 1
=V D 1
-DBE .
由(Ⅰ)知EF ⊥面DBD 1 ,设点D 1到面BDE 的距离为d.
分)(分)
(分)则6.3322
3
222d 23)2(2321S 4.2222
1
S ,22EF ,2ED BE BD .
1AB ,2AA .EF 2(S d S 2DBE DBD 1DBD DBE 11=⨯
=∴⋅=⋅⋅==⋅⋅=∴====∴==⋅=⋅∆∆∆∆ 故点D 1到平面DBE 的距离为
3
3
2. 19.(Ⅰ)略(6分)(Ⅱ)
23
3
(6分) 20.(Ⅰ)设AD 的中点为N ,连结ON ,由O 为正方形ABCD 的中心,
得ON ⊥平面ADD 1A 1.又AA 1⊥平面ADD 1A 1,所以A 1N 为B 1O 在平面ADD 1A 1的射影.(2分)在正方形ADD 1A 1中,
)
4.(,,2
,,111111分所以AM O B AM N A AM A N AA MAD N AA ADM Rt AN A Rt ⊥⊥=
∠+∠∠=∠∆≅∆π
(Ⅱ)因为AC ⊥平面BB 1D 1D ,所以AC ⊥B 1O.由(1)知
B 1O ⊥AM ,所以B 1O ⊥AM ,所以B 1O ⊥平面AMC. (6分)
作OG ⊥AM 于G ,连结B 1G,则∠B 1GO 为二面角B 1—AM —C 的平面角. (7分) 设正方体棱长为1,则,1030
=⋅=
AM OA OM OG 所以,5tan 11==∠OG
O B GO B 所以
.5arctan 1=∠GO B (9分)
(Ⅲ)由(1)知,B 1O ⊥平面AMC.所以V B1-AMC =
3
1
B 1O ×S △AM
C 因棱长为a ,所以B 1O=
26a ,S △AMC =21×MO ×AC=2
123a 2a=46a
2 故V B1-AMC =
31
×26a ×46a 2=4
1a 3(12分)
21.(Ⅰ)45︒(4分)
(Ⅱ)60︒(4分)
(4分)
22.(Ⅰ)略(5分)(Ⅱ)4
5
(7分)。